Proceedings of ICAD2000
First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

ICADOO6

HIERARCHICAL STATE DECOMPOSITION FOR THE DESIGN OF PLC
SOFTWARE BY APPLYING AXIOMATIC DESIGN

Matthias Schreyer
iems@ust.hk

Mitchell M. Tseng
tseng@ust.hk

Department of Industrial Engineering and Engineering Management
The Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, Hong Kong

ABSTRACT

Axiomatic design is applied with state transition
representation to software design for Programmable Logic
Controllers (PLC). By comparing several approaches of applying
the principles of axiomatic design in order to generate an
equivalent description in state transition representation, we
conclude that hierarchical statecharts are an important
description of the decomposition and zigzagging procedure at
conceptual design stage. This notation helps to identify the goal
states and other important design parameters, such as time delays,
input signals from sensors, and shared memory data. Since
statecharts may provide inherent uncoupled designs we introduce
a modified design table for state transition description. The state
transition table combines the state transition model with the
matrix notation and maps the input conditions to output actions
for each state. The table can then easily be employed for
implementing the PLC program code. This is particularly
important in large-scale PLC controlled systems where a
substantial number of control engineers have to collaborate by
exchanging the input/output specification among the partial
systems. An example is prepared to illustrate the proposed design
method.

Keywords: axiomatic design, programmable logic controller,
statecharts

1 INTRODUCTION

1.1 RELATED RESEARCH

Automation systems like manufacturing systems or
transportation systems require concurrent design of control
hardware as well as control software. Suh has proposed [1999] a
modular system architecture that is derived from the
transformation of functional requirements into the design
parameter and may indicate the operational sequence of the
hardware/softwate modules in the system. The system
architecture reflects the hierarchical decision making process and
denotes the way of how to satisfy a selected set of functional
requirements. The operational sequence of system modules is
assumed to be static which might be valid in an ideal world.

Copyright © 2000 by the Institute for Axiomatic Design

Automation systems, however, exhibit reactive and dynamic
behavior where the operational sequence cannot be completely
predicted. For instance, a general characteristic of flexible
automation systems is sharing of resources, which means that
components are mutually dependent. System components have to
communicate by sending request and acknowledge signals in
order to provide a correct behavior. This negotiation process can
cause variations of the operational sequence depending on
particular system conditions.

Hintersteiner and Tate [1998] have defined a system design
template denoted as a generic matrix for designing
manufacturing processes and control. In accordance with the
functional requirements, the sequence of design decisions is
following: (1) process functions, (2) transport functions, (3)
supervisory control, (4) controller and computer hardware, and
finally (5) the integrating framework. Decomposing a particular
process or transport module into a lower level will also expose a
similar design sequence: first the system hardware (actuator,
transmission, sensor), secondly the control algorithm, and the
implementation of the controller hardware at last. Similarly,
Hintersteiner and Nain [1999] have further elaborated the system
architecture templates in order to decompose the control
functions into so-called command and control algorithm (CCA).

1.2 DESIGN OF PLC SOFTWARE

The design of PLC programs is a complex and error-prone
task. Until today, relay ladder logic (RLL) is predominantly
employed to program PLCs and to implement the desired
behavior in automation systems though a couple of
interchangeable programming languages have been accepted in
the international standard [IEC 61131-3, 1993]. RLL is
advantageous because it is a graphical notation derived from
electric circuit diagrams and is, therefore, easy to understand for
engineers and electricians. However, RLL is well known for its
fundamental misconception with respect to the structure of data
and programs in modern programming languages. Consequently,
large-scale PLC programs become tedious to trace, modify and
debug.

PLC programs are inherently coupled regarding sharing of
data and exclusive system states. The latter aspect indicates that
certain system states interfere and interlock with other states and
prevent them from execution. Since the procedural nature of an

264

Hierarchical State Decomposition for the Design of PLC Software by Applying Axiomatic Design

RLL program can only reflect a small fraction of states
combinations and their interference, an RLL program is initially
often inconsistent and incorrect and requires a significant effort
to achieve a certain level of robustness for system installation
and operating,

As mentioned above coupling cannot be avoided completely
in software systems since it is necessary to communicate data.
Therefore, our research investigates design methods from the
field of computer science and engineering design theory which
are potentially suitable for a systematic approach. The systematic
approach should support a sequential and logical decision making
process, by reducing the manifold interrelations of a complex
design to an ordered, traceable and repeatable design procedure.
Being aware of the systematic and formal nature of axiomatic
design [Suh, 1999], we have discovered that state transition
notations are suitable tools since they offer similarly an
immediate cognitive mapping of functional requirements to
design parameters. In addition, the hierarchical and modular
character of statecharts [Harel, 1987] supports a structured top-
down design process.

To this end, we propose an extension of the axiomatic
design with state transition representations. Mapping this
representation into a state transition design table eases the
refining of the input/output pattern of each state and identifies
potential interferences between states and process modules.

2 PLC CONTROLLED AUTOMATION SYSTEMS

PLC controlled automation systems belong to the category
of real-time, reactive and discrete event dynamic systems since
they have to respond to external or internal stimuli within a finite
and specified time interval [Kopetz, 1997]. Such dynamic systems
are regarded as concatenations of events that occur at discrete
instants of time and cause a change (transition) of the system
state. The PLC and the controlled automation systems are
traditionally considered as two separated systems that interact via
sensors and actuators, indicating two unidirectional information-
flows. The PLC has to be designed and programmed in such a
way that the controlled automation system performs the intended
behavior.

A PLC (Figure 1) is a simple computing device that consists
of a programmable memory for internal storage for instructions,
input and output channels and a scanning logic to read the inputs
and write the outputs periodically. The input channels connect
the incoming signals from sensors and the output channels link
the outgoing signals to the actuators or other peripheral devices.
The PLC may exchange data with parallel control nodes over a
network. Commands can be retrieved from supervisory control
instances and status information could be sent back to a higher-
level controller. The PLC operates according to cycles of
operations consisting of three phases: (a) polling the input
channels, (b) computing the outputs according to the program
instructions, and (c) updating the outputs in the output channels.
The scan time of each cycle is normally fixed.

Copyright © 2000 by the Institute for Axiomatic Design

First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

Higher Level Control

‘ [Q
command c}% %—feedbackf

Controller,, hared dat > Controller, hared data—— Controller,,

system control
state y I Q action u

Sensors Actuators

Material —»‘ Controlled System (Manufacturing, Transport, etc...) }—» Material

Figure 1. Controller model.

3 APPLYING AXIOMATIC DESIGN TO
DESIGNING PLC SOFTWARE

3.1 BASIC CONCEPTS OF AXIOMATIC DESIGN

Axiomatic design theory includes the following basic
concepts [Suh, 1999]:

e Domain framework comprising four domains, the customer
requirements (CR), functional requirements (FR), design
parameters (DP), and process variables (PV);

e Hierarchical decomposition of each domain;

e Mapping through a gigzageing procedure between the
domains creating structural congruent decomposition trees
in each domain and supporting a concurrent engineering
method;

e Design axioms postulating (1) to maintain the independence
of the functional requirements and (2) minimizing the
information content in order to achieve a good design
solution.

The fundamental idea of the domain concept is to let the
designer distinguish between what is going to be achieved in the
left-hand side domain and Alow the “whats” are going to be
achieved in the right-hand side domain. This is performed top-
down by zigzagging between the domains.

In principal, axiomatic design could be applied to any design
problem, in mechanical design, system design, software design,
and even in the design of business plans or organizations. In a
specific technical design context the domains may have different
interpretations.

In PLC software design, we propose the following
interpretation: the CR domain represents the user requirements
and attributes. The FR domain denotes the desired functionality
or activities as a composite of elementary control actions. The
DP domain expresses the behavior of the system or subsystems
in terms of states. The PV domain takes the particular
implementation by assigning concrete input/output values to the
state variables into account (Table 1).

265

Hierarchical State Decomposition for the Design of PLC Software by Applying Axiomatic Design

Functional Design Process Variables
Requirements Parameters
Function, Activity State State string

FR.x: Provide resource | DP.x: Available State
FR.y: Perform action DP.y: Action State
FR.z:... DP.z:...

PV.x = [11XX 10XX]
PV.y = [111X 11XX]
PV.z = ...

Table 1. FRs, DPs, and PVs in PLC software design.

3.2 STATE TRANSITION MODELING

In computer science, state transition models such as finite
state machines are commonly used to describe the behavior of
reactive and real-time systems such as PLC controlled transport
and manufacturing systems. Thereby, the system dynamics is
segregated into a number of interrelated states, whereby each
state captures a snapshot of the system’ behavior. State
transition models naturally map the event-driven characteristics
of reactive systems, in contrast to the transformational and data-
flow modeling methods. State machines are powerful because
they provide intuitive graphical representation and they are
conducive to build simulation models. Thus, state machines can
be analyzed without the necessity of building the real system.
Moreover, modeling with state machines can be regarded as a
structured design method of PLC programs. A detailed
specification of the model can be translated into the PL.C control
program in relay ladder logic or any other PLC programming
language.

Designing with state transition notations means to
decompose the system’s behavior into a set of states which are
bounded by transitions, reflecting the state change (Figure 2). A
state corresponds to a meaningful system condition, ze. a desired
and functional condition. A system state change is caused by
internal or external events. External events correspond to state
changes of the system to be controlled and recognized by sensor
devices, triggering a signal to the controller. State changes of the
controller program are internal events and communicated by
shared variables. Each event that causes a state change may be
accompanied by a certain control action to be performed. In
Harels [1987] semantics of statecharts, the event/action
relationship labels the state transition and occurs at a discrete
instant of time (without consuming time), which agrees with the
synchrony hypothesis of Berry and Cosserat [1985]. The
event/action label reflects the common way to desctibe the
reactive behavior:

Event e.xc:If (whenever) an observed input pattern, then Action a.x:
perform a set of control actions (output).

A state is, therefore, made of all incoming and outgoing
signals that persist over a significant amount of time. The
concatenation of input and output signals is regarded as a state
pattern or string. When the state pattern changes, a new state is
entered. Therefore, we consider the state pattern as a final
representation of a state construct in the implementation domain

Copyright © 2000 by the Institute for Axiomatic Design

First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

(PV domain). It should be noted that this type of elementary
state construct so far does not indicate the sequential order. This
might confuse beginners employing the graphical notation of
statecharts since a labeled transition carries two elements of
information, the event/action pattern and the sequential order
(arrow) of states. We shall decouple these elements by strictly
assigning the event/action pattern to the state. By doing this, we
modify the Mealy-like statecharts into Moore-like statecharts
because the output depends only on the current state, and not
anymore on both the current state and the transition.
Accordingly, we will follow the restrictions of Douglass [1999],
who required that states should not overlap and should be
disjoint in terms of the events they accept, the activities and
control action they perform, and the follow-up transition they
take in response to external and internal stimuli. Furthermore, we
declare that a system, a part of the system, or a particular object
resides in a non-empty set of states at any time. When no action
occurs the system is located in the default or initiating state so.

State
A
S3 — '—!
e3 /a3 T V

S, |

e2 /a2 T
ST — .

T L)l _ state duration
el/a T
So
T T T T T T T T T T T T T T T T T T I=

Figure 2. State transitions in a timing diagram.

3.3 DETERMINING THE FRS AND DPS THROUGH
HIERARCHICAL STATE DECOMPOSITION

Our focus in this paper is to present the hierarchical state
decomposition by applying the basic concepts of axiomatic
design. While decomposing the states the designer always takes
the desired functions into account. This procedure will
graphically be accompanied by the statecharts notation, which
augments the flat state machines with the capabilities of nesting
states (depth), modular structure (orthogonality), and a
communication mechanism (broadcasting). Including the
notation of hierarchical states facilitates a top-down design,
whereby each functional requirement (FR) can be directly
specified by a design parameter (DP) on the equivalent
hierarchical level.

When following the mapping procedure from the FR
domain to the DP domain, we have to specify what activity (or
control action) is to be performed and ask how to achieve this
action in a particular state or substate (§.x). We therefore cast the
FRs, the desired activities and control actions, into states and
substates.!

! In the state diagrams throughout this paper, initial (®) and terminal (®)
pseudo-states are used to denote the starting and final state in a state sequence.

266

Hierarchical State Decomposition for the Design of PLC Software by Applying Axiomatic Design

The decomposition follows the zigzagging procedure
between the two domains. The hierarchical state set can be
visualized as a tree structure, where the leaf-states correspond to
the conventional notion of flat state machines (Figure 3).

FR.X
Activity

FR.x1 Control
Action

DP.x
Superstate

DP X1 DP.x2
| substate_1 Substate_2

FR.x2 Control
Action

FR.x21 Control
Action

FR.x22 Control
Action

DP.x21
Substate_21

DP.x22
Substate_22

Figure 3. Hierarchical state decomposition.

Setting up the design matrices demonstrates the dependency
of the substates according to the type of state decomposition.
There are two kinds of state decomposition, the XOR and the
AND state decomposition.

3.3.1 XOR State Decomposition

The XOR state decomposition declares that the state has to
be in exactly one of the decomposed substates. The XOR
decomposition type indicates a decoupled or uncoupled design
matrix, according to the sequential order, if any, of the state
transitions.

FRx1 | X 0|[DP.x 0
FRx2 | % X||DP.x2
In case the states take place in a particular sequence, the
state design is decoupled. Otherwise, if there is no
predetermined sequence, in the sense that the occurrence of a
state is independent of a previous state, the design is uncoupled.

For example, in Figure 4 the uncoupled case is depicted by state
transitions from state S.x7 to substate S.x2 and vice versa.

/ S.x Superstate ™\

/7s.x21 S.x22 N

- J
Figure 4. XOR / AND state decompositions.

3.3.2 AND State Decomposition

The other type describes the AND decomposition of states,
Ze. an orthogonal state set, declaring that the system or module
has to be in all substates of the enclosing super-state. This design
may exhibit an uncoupled or coupled design, depending on
whether or not the AND states are communicating, At this point,

Copyright © 2000 by the Institute for Axiomatic Design

First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

it needs to be clarified that orthogonality has two meanings,
independence and concurrency. The states, for instance S.x27
and S.x22 in Figure 3 and 4, are executed simultaneously and, to
a certain extent, independently. However, states in AND
decomposition may communicate through the labeled transitions
(event/action statement). The action-statement can cause a state
transition in a parallel state. Thus, in case there is no
communication at all, the orthogonal state set is independent
and, therefore, uncoupled. If AND states are communicating in a
unidirectional or bi-directional way, then states are decoupled or
coupled, respectively.

FRx2] | X % |[DP.x2 ,
FRx22 |9¢ X |[DP.x2 @
Originally, orthogonal state regions were introduced into the
statechart notation in order to avoid the combinatorial explosion
of states in flat state transition models. For instance, if each of
three state variables can have three values, the entire state set
could consist of 27 states. The usage of orthogonal state regions
may visually reduce the number of states to 9. However, by
doing this, the designer should not get distracted from the fact
that states could still remain coupled. Orthogonality is a feature
that helps to impose structure on large and complex state
transition models but cannot reduce the coupling per se.

3.3.3 Overlapping of States

In fact, there is a third type of state decomposition which is
referred as OR decomposition. The OR decomposition indicates
an ovetlapping of states, meaning that a substate resides in more
than one superstates. Suppose state S.x223 in Figure 4 is a
substate of both superstates S.x27 and S.x22 as depicted in
Figure 5. This might be a reasonable design decision because this
state is cooperatively used.

4 N\
Sx2 /S x22 ~N

/7s.x21

(S.x212 }

> - J

Figure 5. States overlapping.

S.x2shared

: S.x222

Harel [1987] argued that there is no deep reason why
designer should avoid overlapping of states because it can also
reduce the number of states, in a similar way shared
methods/procedutes ate used in modern programming
languages. However, we argue that this type should be avoided

267

Hierarchical State Decomposition for the Design of PLC Software by Applying Axiomatic Design

since it points to a coupled design; and, indeed, it deteriorates the
readability and increases the complexity of the state diagram
when used excessively. Once a shared state of two superstates is
going to be modified, the change will impact both superstates;

therefore:
FR.x2 X X|[DP.x2 5
FR.x2 X X ||DP.x2 ©
In concluding this section, we state that obviously an
uncoupled state design should be preferred which means
independence of state sequences and non-overlapping of states.
Transitions caused by internal or external stimuli should be
independent of preceding states. In many cases, some states
requite a certain history of states; therefore, a sequential
execution of states is a common type and cannot be
circumvented. In an XOR decomposition we may always find a
particular state sequence which indicates a decoupled design.
The designer should be careful in using the AND decomposition
as it could point to an uncoupled design, if the states are totally
independent. Since communication is a necessary element of a
controller program, the AND state decomposition could also
conceal a coupled design.

3.4 STATE DIAGRAM AND RELAY LADDER LOGIC

Relay ladder logic (RLL) is predominantly employed in
industrial practice to program PLCs. Since the linkage between
the semantics of statecharts and relay ladder logic is not as
obvious, this paragraph will provide a deeper understanding
regarding the correspondence of the two notations.

RLL is a graphical program notation consisting of a set of
rungs, vertically arranged and similar in the appearance to a
laddetr. Each rung represents a logical input/output condition,
equivalent to the event/action pair of the labeled transitions in
the statecharts notation. In RLL, states are not an explicit
construct but each rung with his input/output pattern could be
considered as a state. The set of rungs in a ladder diagram is thus
a flat state machine. In order to express nested or hierarchical
states dedicated Boolean state variables are introduced. However,
the programming environment of an RLL editor is not
performing a semantic check in terms of states overlapping. A
programmer can unintentionally produce coupled designs that
are difficult to trace, and modify. A small generic example will
illustrate this problem.

4 S.x Superstate N\

4 S.x2 Requested \

e.x22: {Sensor}
a.x22: {0.n[0..1] = [0,1]}

e.x2: {Request} o

S.x1 Available

S.x21 Idle S.x22 Active

e.x21: {NOT.(Sensor)}
a.x21: {0.n[0..1] = [1,0]}

- J
- J

Figure 6. Generic statechart example.

e.x1: {.NOT. Request}
T~

Copyright © 2000 by the Institute for Axiomatic Design

First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

As mentioned in the introduction of this paper, a
characteristic of flexible manufacturing systems is the sharing of
resources. The usage of shared resources such as the transport
system has to be negotiated among requesting participants. The
provided services, ze. the control actions, of the shared resource
could be encapsulated within a pair of superstates, denoting the
availability of the resource at each instant of time. In Figure 6
this type of state pair is called S.x7 = Awalable and S.x2 =
Reguested. Once a shared resource is in the requested state, it
cannot serve other requests. Other requests have to wait until the
resource becomes available again. The enclosure of states with a
superstate in this example is very useful and could be regarded as
a kind of protection. It encapsulates a critical uninterruptible
state sequences that can only be executed upon the validity of a
synchronization signal, which is also comparable to the
semaphore construct of Dijkstra [1968].

In the given example the zd/ and active state, which performs
the actual control actions, are the encapsulated states S.x27 and
S.x22. An external sensor signal initiates the acfive state, activating
a certain output command. For instance, a green light (O.n[1] =
1) indicates the active state, and a yellow light (O.n[0] = 1) the
opposite state idle.

Figure 7 shows the corresponding implementation of relay
ladder logic by using the standard elements. Rung 1 and rung 2
express the states S.x7 and S.x2, respectively. A Boolean state
variable B.n[0] is used to represent this state pair, because
sequence and hierarchy is not an implicit feature of RLL
programs. If a resource request signals occurs bit B.n[0] is
latched. After task completion, the bit is unlatched, whereby the
completion event (NOT. Request) is triggered from the final
state inside the acfive state S.x22. Rung 3 and rung 4 represent the
states Zdle and active with their accompanied output actions O.n[1]
and O.n[0], respectively.

.NOT.

B.n[0] Elements of Relay Ladder Logic
Re?‘uest p
RLI— O 4k 4+
Normally Open Normally
Request B}”[O] Switch Closed Switch
= T o o
B.n[0] Sensor 0.n[1]
Normally Open Normally
R3 —“ ” ()— Coil Closed Coil

.NOT.

BA0] Sensor O.n[0] L))
R —{—— ()

Latch Coil Unlatch Coil

Figure 7. Ladder logic implementation.

As mentioned above, we disallow overlapping of states,
which provides a clearer and more rigorous representation of the
system states. In ladder logic states overlapping is possible if the
designer is careless and has no clear state transition model in
mind. According to our knowledge, this is one major reason why
RLL programs are error-prone and difficult to trace. For
instance, in rung 4 of the given example, the programmer might
disregard to check the first state bit (B.n[0]) when this rung
occurs at a different position in a much more larger program.

268

Hierarchical State Decomposition for the Design of PLC Software by Applying Axiomatic Design

Note that a common industrial application has hundreds or even
thousands of rungs, and there is often more than one state bit
that has to be evaluated in a rung statement.

In case the state bit is missed, the semantics of the
underlying state model becomes different from the intended
design. The states awailable and init would become overlapped. In
case there is no request and no sensor signal, the system would
reside in both states at the same time. In accordance with our
argumentation in the previous chapter we may say that the design
is coupled and there is no semantic check in an RLL program
editor that could prevent the designer from doing this. Figure 8
shows the corresponding statechart notation. Note that the
encapsulating superstate reguested becomes obsolete and looses its
shielding function. We may also argue that this function is not
anymore adequately designed and therefore coupled.

4 S.x Superstate)

e.x2" {Request} Sx2" Requested

e.x2"": {Sensor}
a.x2": {0.n[0..1] = [0,1]}
S.x1

Available S.x2"" Active

e.x2': {NOT.(Sensor)}
a.x2":{0.n[0..1] = [1,0]}

e.x1: {NOT. Request}
- J
Figure 8. Statechart for coupled design.

Certainly, this state diagram is a reconstructed example and a
cautious designer would not select this design solution. Inversely,
we can however conclude that using the statechart in a correct
way, Ze. applying the AND/XOR state decomposition type, the
designer will be prevented from creating this kind of coupling.

3.5 STATE-TRANSITION DESIGN TABLE

Following the hierarchical state decomposition with
statecharts apparently results in a de- or uncoupled design.
However, the achieved design matrices are uncommon for
control engineers. Therefore, in the next step the statechart
notation is mapped into state-transition design table. This table
combines the functional requirements, design parameters (states),
and the process variables as the state pattern at a glance. The
table comprises the following information:

e Functionality, provided service/activity (FRs),

e State description (DPs),

e Input-patterns of each state,

e Output-pattern associated with each state amplifying
actuators,

e Temporal boundaries, if any, of each state,

o Allowed state transitions to other states.

For each state of the statechart notation a row with the
desired control actions (outgoing signal pattern) and the event
pattern of incoming signals and data are specified (Figure 9).
Thereby, a unique set of incoming and outgoing signals of bit-
values defines a disjoint set of controller states. The number of
theoretical possible states is an exponential function of the
number of I/O bits (29), and is much more larger than the

Copyright © 2000 by the Institute for Axiomatic Design

First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

number of actual designed controller states. Therefore, I/O-
patterns not explicitly defined in the state transition table are
treated as error states. In addition, “don’t care” states, denoted as

X =0 v 1, are introduced to represent the state hierarchy.

4 S.x Superstate \

e.x2: {Request I.n0 == 1}

S.x1
Available

e.x1: {Request I.n0 == 0}

S.x2 Requested

e.x22: {Sensor I.n1 == 1}
a.x22:{0.n[0..1] = [0,1]}

S.x22
Active

e.x21: {Sensor I.n1 == 0}
a.x21: {0.n[0..1] = [1,0]}

S.x21 Idle

PVs
FRs DPs
1.n0 l.nl 0.n0 | O.n1
x1 FR.x1 S.x1 Available 0 X X X
x2 FR.x2 S.x2 Requested 1 X X X
x21 FR.x21 S.x21 Idle 1 0 1 0
x22 FR.x22 $.x22 Active 1 1 0 1

Figure 9. State transition design table.

The table is segregated into four parts, on the left-hand side
the FRs, followed by the DPs, the PVs, and the state transition
matrix on the right-hand side. An ‘1’ in the state transition matrix
indicates what are the possible subsequent states of each state.
Shaded areas illustrated prohibited transitions.

4 CASE STUDY

We will illustrate the developed method by the means of a
program segment, which is a part of the PLC program in our
FAS line in the HKUST manufacturing systems laboratory. The
flexible assembly system consists of several workstations: a
loading/unloading robot, several manual workstations for
commissioning, assembling, and packaging. These stations are
interconnected with a computer-controlled transfer system

(CTS).

| |
[7 Shuttle
!_| . L

N7:4 N7:2

Shuttle!
4+ O
I

Figure 10. Transport system.

An essential part of the CTS is to control the transfer of a
transport shuttle from one workstation to the next. A shuttle
staying in one workstation has to wait until the next workstation
is free (Figure 10).

Stopping and releasing of the shuttle is performed with a
stopper unit at each workstation, consisting of a proximity sensor
and a pneumatic actuator. In order to design this seemingly
simple task we have to make sure that the workstation, and
therefore the stopper unit, is requested only by one shuttle at a
time. In addition, the stopper unit has to control the correct

269

Hierarchical State Decomposition for the Design of PLC Software by Applying Axiomatic Design

transport to the next station because no further sensor is
installed. A watchdog timer monitors the regular time of the
transportation process. If the time exceeds the normal time, an
alarm signal is triggered.

The high level functional requirement (FR.x) is to temporary
stop the transport shuttle at the workstation location. The
corresponding design parameter is a PLC controlled stopping
state-module (S.x). The decomposition procedure has been
carried out in many iterative design cycles and through
zigzagging between FRs and DPs. The table in Figure 11 shows
the result of the decomposition process of the FRs and DPs
including the related statechart. An analysis of all state patterns
(PVs) confirms that the state set is non-overlapping.

This case study also supports the reuse in an analogous
design problem. For instance, a reusable structure is the state-pair
available and requested. These two states wraps up the acting
substates of shared resources. Likewise, the states zdle and active
encapsulate the control actions. The linear sequence of control
actions within the substate ac#zve indicates a typical decoupled
design with a starting state and a terminal state.

5 CONCLUSION

In this paper, we analyzed the applicability of axiomatic
design to PLC software design. It has been shown that statechart
notation supports the decomposition and zigzagging procedure
of the FRs and DPs in an explicit way. Using the statechart
notation leads inherently to an uncoupled or at least decoupled
design solution. This is because statecharts disallow overlapping
of states which is an indication of state-coupling.

First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

An ideal design is the total uncoupling of states, meaning
that the states are independent of the sequence of occurrence.
Interestingly, the independence axiom might provide a scientific
explanation why relay ladder logic is still the preferred language
in programming automation controllers. The rung-structure of
relay ladder enforces decoupling of the program into
independent elements. However, this paper has also shown that
without applying the hierarchical state decomposition procedure,
programming in relay ladder logic is error-prone. Augmenting the
power of relay ladder logic with the conceptual and
decomposable nature of axiomatic design could be an important
step to ease the programming, debugging, and testing,
particularly in a complex and large system. Furthermore,
applying a systematic approach is conducive to the development
of a computer-aided design tool that could generate the program
code automatically.

The outlined example also illustrates that the principles of
axiomatic design contribute a clear repeatable state
decomposition procedure to the computer science community.
The general principle of designing “good” statecharts has not
been reported until now.

6 ACKNOWLEDGMENTS

The authors would like to acknowledge Rockwell
Foundation for financial support (HKUST grant RAHK 97/98)
and their information and feedback. The authors would like to
express their gratitude to Professor N. P. Suh, K. D. Lee, and the
anonymous reviewers of this paper for their valuable comments.

-

® -

a.x211: S.x21 Idle

{Arrival 0.n1 = 0y S.x211
o Waiting

@._e.x212. { StpCmpl 1.n4 =51

e.x2: {Request 1.n0 ::'H

O

a.x2: {Interlock 0.n0 = 1}

S.x1
Available

e.x1: {Request 1.n0 == ({}
a.x1:{Interlock 0.n0 = Q

a.x2121: S.x212 Watched
.\{lmIWdTlmsr Shuttle Transfer
0.n4 =1}

S.x2121
Transfer

e.x2122: {T > Timeout I.n5 == 1}

a:x2122: { Alarm 0.n5 = 1}
$.x2122
@

_______________ 1 T
e.x213:{Arrival (Next Station) I.n6 == 1}
e.tl:

a.x213: {RequestCmpl 0.n6 = 1}, T I.nl == 0} \
.

~

S.x2 Requested

(S.x22 Active \

S.x221

Stopping

e.x22: {Sensor
L~ 1n1==1) ~4|
a.x22: {Arrival
0.n1 =1}

-

$.x222 Releasing \

$.x2221
Waiting

e.x2222: {.not. Interlock (Next Statiqn)
1.n3 == 1}

a.x2222: {Request (Next Station)
0.n3 = 1)}

e.x222:

{Release Button
1.n2 == 1}
a.x222:
{StpCmpl 0.n2 = I~

S.x2222
Setting Actuators
(T=3s)

e.x21: {Sensor

‘ Initial pseudo-state @ Terminal pseudo-state

|

|

{InitWdTimer} THH :
s :

Timer
f:) AN

|

|

|

@ Linkage to state diagram elsewhere

FRs DPs PVs
1.n0 I.nl 1.n2 1.n3 I.n4 1.n§ Ing | O.n0 [O.n1 | O.n2 | O.n3 | O.n4 [O.n5 | O.n6
X Temporary stop shuttle at workstation | PLC controlled stopping module X X X X X X X X X X X X X X
x1 Make resource available S.x1 Available 0 X X X X X X 0 X X X X X X
X2 Provide secure (encapsulated) service | S.x2 Requested 1 X X X X X X 1 X X X X X X
x21 Provide idle period S.x21 Idle 1 0 X X X X X 1 X X X X X X
x211 Provide arrival waiting time S$.x211 Waiting 1 0 X X X X X 1 0 X X X X X
x212 Provide monitored shuttle transfer S.x212 Watched Transfer Shuttle 1 0 X X 1 X 0 1 X X X X X X
x2121 Transfer Shuttle S.x2121 Transfer Shuttle 1 0 X X 1 0 0 1 X X X 1 0 X
x2122 Alert if timeout / transfer failure $.x2122 Alarm 1 0 X X 1 1 0 1 X X X 0 1 X
x213 Terminate safely release action S$.x213 Terminating 1 0 X X X X 1 1 X X X X X 1

Figure 11. Statechart for a stopper system.

Copyright © 2000 by the Institute for Axiomatic Design

270

7
(1]

2]

3]

3]

(6]

(8]

[

Hierarchical State Decomposition for the Design of PLC Software by Applying Axiomatic Design

REFERENCES

Berry G., and Cosserat 1., “The ESTERAL Synchronous
Programming Language and its Mathematical Semantics,”
Seminar on Concurrency, Lecture Notes in Computer Science
197, Springer, Berlin, 1985.

Douglass B.P., Doing Hard Time, Massachusetts: Addison-
Wesley, 1999.

Dijkstra E.W., “Cooperating Sequential Processes”,
Programming Languages ed. F. Genuys, Academic Press,
London, 1968.

Harel D., “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming, Vol. 8, pp. 231-274,
1987.

Hintersteiner].D., and Nain A., “Integrating Software into
Systems: An Axiomatic Design Approach”, Proceedings of the
3" International Conference on Engineering Design and Automation,
Vancouver, B.C. Canada, August 1-4, 1999.

Hintersteiner].D., Tate D., “Command and Control in
Axiomatic Design Theory: Its Role and Placement in System
Architecture”, Proceedings of the 2 International Conference on
Engineering Design and Automation, Maui, HI, August 9-12,
1998.

1EC 61131-3, Programmable Controllers Part 3: Programming
Languages, International Electrotechnical Commission,
Geneva, 1993.

Kopetz H., Real-Time Systems — Design Principles for Distributed
Ewmbedded Applications, Boston: Kluwer Academic Publishers,
1997. ISBN 0-7923-9894-7

Suh N.P., Axiomatic Design: Advances and Applications, New
York: to be published by Oxford University Press, 1999.

Copyright © 2000 by the Institute for Axiomatic Design

First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

271

