
Proceedings of ICAD2000
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000
ICAD017

Copyright © 2000 by the Institute for Axiomatic Design 250

ABSTRACT
This paper proposes an architecture for a design knowledge
database that is aimed at providing a substrate for automation in
the engineering design process. We address issues of knowledge
representation, knowledge source, and design processes that
make use of this knowledge. The knowledge representation is
based on the Axiomatic Design view of design as a top-down
hierarchical problem solving process. Every step in the
decomposition process is regarded as a building block, and is an
element of the database. The design step is thus a unit of design
knowledge; it may sometimes be a physical component, feature
or parameter, but it can be any aggregation of hardware,
software and disembodied abstract concepts. A design step
primarily contains knowledge describing modifiable
parameters, physical behavior and interfaces. All information is
stored in a mathematical form, in attempt to alleviate many of
the ambiguity and incoherence problems associated with earlier
work involving textual, keyword and symbolic representations.
Furthermore, the computational representation makes the
information more systematically accessible and amenable to
fully automated design.

Keywords: design automation, functional representation,
axiomatic design, object-oriented.

1 INTRODUCTION
Design methodologies have been a subject of extensive research
for several decades. However, it has been acknowledged that
one of the main hurdles on the way to design automation is the
lack of a scientific foundation and a computational design-space
in which design-search could be carried out systematically
(Navinchandra, 1991; Suh, 1990). In this paper we set to
propose the architecture of a design knowledge database that
will provide a substrate for enabling automation in the
engineering design process. The approach is based on the
Axiomatic Design view of design as a hierarchical top-down
problem solving process with each stage in the decomposition
being a building block – a design step. The design step is thus a
unit of design knowledge; it can be a physical component,
feature, or parameter, but it can also be any aggregation of
hardware, software and disembodied abstract concepts. We
shall refer to the content of a design step as design component.
The design knowledge associated with the component primarily
describes modifiable parameters, physical behavior and
interfaces of the design component. It also contains new
constraints and requirements this design step introduces, and
indication as to functional requirements the design step may be

used to satisfy. In attempt to create a computational domain for
design search based on this view, we address two aspects: (a)
the universal representation of functional and integration
information of these components, and (b) the search/assembly
approaches that will use this information for problem solving.
Fundamental to our approach is that the entire method be fully
computational, based on rudimentary principles of design and
interactions between components. This is in attempt to alleviate
many of the ambiguity and synthesis problems associated with
earlier work involving textual, keyword and symbolic
representations of knowledge (e.g. Suh and Sekimoto, 1990). At
this stage, we focus our representation at describing elementary
knowledge; we explicitly refrain from attempting to represent
high-level concepts and complex designs like automobiles and
airplanes. Just as a child must learn to spell before it can write,
or to add before it can solve differential equations, we will
begin with simple design problems and elementary design
knowledge. If we can demonstrate how an unforeseen
application of a design principle emerges spontaneously, then
the path to truly automated conceptual design will follow

1.1 STRUCTURE OF THIS PAPER
In the following background section we analyze the
requirements of a design database and automated design
process and decompose it into several constituents. We provide
an overview and critique of related work on these issues, and
indicate where we believe progress can be made. Next, in the
design-step architecture section we describe our proposed
architecture. We then provide details on our ongoing
implementation efforts and describe some early results.

2 BACKGROUND
It is generally agreed that engineering design is a process that
starts from a need, and follows through specification and
conceptual solution, to embodiment and detailed design
(French, 1994). Over the last several decades, several
successful design methodologies have been developed and used
in a variety of applications. Most of these are prescriptive, and
lead the designer through a sequence of procedures that are
geared to ensure important aspects of a design are considered.
They provide methods for rank-ordering alternative designs
using criteria specified by the designer. Some of the more
known methods are the Quality Function Deployment (QFD)
method, Pugh matrix and Taguchi loss function (Pahl and Beitz,
1994). While these methods are widely accepted and taught in
many schools, they rely heavily on designer creativeness and
experience in generating the initial design alternatives to be
assessed and in providing criteria for comparison and selection

TOWARDS A UNIVERSAL KNOWLEDGE DATABASE FOR DESIGN
AUTOMATION

Hod Lipson and Nam P. Suh
hlipson@mit.edu

Mechanical Engineering Department, Massachusetts Institute of Technology
77 Massachusetts Ave., Cambridge MA 02139-4307, USA

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 251

of a particular design. Axiomatic Design (Suh, 1990) also relies
on designer knowledge and creativeness when coming up with
DPs for a set of given FRs. In fact, it is this creative step that
precludes most design approaches from being automated –
because a human designer is always required in the process.
Due to time and cognitive constraints, a human designer can
conceive and consider only very few of the vast number of
possibilities to embody a design, and hence designers need to
prune many options in a top-down process based on their
knowledge and experience.

2.1 COMPUTATIONAL DESIGN
In a more algorithmically oriented approach, design can be
formulated as a search in a problem space (Chandrasekaran,
1990). The design space is then the set of all possible designs.
To make this space tractable, a design can be viewed as a finite
configuration of components (not necessarily hardware
components). The interaction and relationships among the set of
components determines whether the design satisfies particular
requirements and constraints. In some cases, when the set of
components is fixed and the configuration known, a design
problem may reduce to a parameter optimization problem.
Various well-established optimization techniques such as hill-
climbing can then be used (Wilde, 1978). More robust
stochastic methods like genetic algorithms may prove better
suited in some cases (Wallace et al, 1996), as well as fuzzy
representations of decision criteria (Antonson et al, 1994).
However, true conceptual design is non-parametric: it is
inherently open ended. At the conceptual stage, the set of
parameters – the design space – is yet unknown, and so the set
of parameters to be optimized is thus unspecified.
In contrast to methodological top-down design, bottom-up
design methods like natural evolution try very many designs and
in this respect are inefficient, but do not require, and can even
generate knowledge. Recently, there have been reports from
various fields on open-ended evolutionary design, where
systems can evolve by adding more and more components in
various ways. Among these, Bently’s work on evolutionary
design of tables and optical systems (Bently, 1996) and Sim’s
work on evolution of robot bodies (Sims, 1994) are some
examples. Although these works do introduce open-ended
designs by permitting the evolutionary process to add more and
more parameters, the type of parameter that can be added is of a
fixed repertoire. Consequently it is convenient to characterize
such design spaces as semi-parametric. Unlike parametric
optimization, such semi-open-ended methods can indeed
produce so-called ‘creative’ solution that the designer has not
foreseen. However, the solution domain is still not fully open-
ended.
In this work we go a step further: by making the repertoire of
components open too, in attempt to establish a truly open-ended
design space that is effectively non-parametric1.

1 Strictly speaking mathematically, even an infinite pool of parametric

components still gives rise to only a semi-parametric space, but for practical
purposes it approaches a truly non-parametric domain.

2.2 DESIGN AUTOMATION REQUIREMENTS
In order to establish an open ended and fully automated
computational design process there are three fundamental issues
that need to be addressed:

• The component representation – defining a universal
component representation that can describe virtually any
engineering object and knowledge and permit interaction
between components to take place in configurations not
known a-priori.

• The source of components – systematically supplying the
components and knowledge to establish the database.

• The design algorithm – finding efficient ways to integrate
and evaluate many configurations of general components.

Universal representations
Perhaps the main obstacle in addressing the first aspect might
be that due to the very general scope of design it is a highly
unstructured domain, and so reaching a universal framework is
difficult. Indeed, at the intersection of Artificial Intelligence and
Engineering, much work has been done in providing a
representational foundation for engineering knowledge (Forbus,
1988). Primarily, however, this work has yielded keyword-
based and symbolic representations that suffer from ambiguity
or require strict coordination, respectively. Ideas relevant to
describing the architecture of a component can be found in the
framework of functional representation research (Modarres,
1997). Functional representation tries to provide a framework
for representing how a product works, and focuses on what a
device is intended to do, the causal process by which it does it,
and how component functions interconnect and enable a
process. A language of symbolic primitives is used for
formatting this information into predicates. Interesting
behaviors are selected and associated with named functions, and
these are associated with devices and modes (states) and
transitions between them. The transitions are annotated with
explanatory and predictive information. Hodges (1992) and
Goel (1989) both provide a set of basic functions of mechanical
interactions. Chittaro (1994) and Lind (1994) provide elements
for describing flow related domains, and Keuneke (1991)
proposes several, more general categories of functions
explicitly dealing with activities such as making, controlling,
preventing, etc., as means to enforce specific relations between
functional predicates. Based on this model, Iwasaki and
Chandrasekaran (1993) define the Causal Functional
Representation Language (CFRL) to capture and organize the
functional, structural and behavioral knowledge of general
systems at various level of detail. Similar ideas of abstraction of
function and behavior have been proposed by Umeda et al
(1990). Although these models have been found useful in a
variety of domain-specific applications, our basic criticism is
that because of the use of symbolic predicates, a component can
only be used in one of preconceived or foreseen applications,
and only in anticipated configurations provided in the form of
templates. Although preconceived templates are important for
representing existing design knowledge, components must also
be able to connect in unanticipated ways if we are to permit
new creative configurations to emerge. Moreover, although

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 252

functional representations are very useful for documenting
devices, the use of states forces a discrete-like behavior; this
limits description to top-level abstract concepts rather than
actual physical behavior which is often continuous.

Component Databases
Once a universal component architecture has been formulated,
it is necessary to create a database of such components. A
design process will then access this database as a source of
building blocks for a design. Indeed, there are numerous
applications in almost every field of engineering that store and
reuse engineering knowledge from databases. However, rarely
is the representational architecture universal enough to
represent general devices, and rarely is there a realistic
mechanism that enables the database’s contents to expand and
be used outside its original environment and by uncoordinated
users. Beyond having a universal representation, making the
database general and expandable involves providing a
consistent and scalable source of design knowledge. The NIST
Design, Process Planning and Assembly Repository (Regli and
Gaines, 1997) is one example of a database with these
challenges in mind, although components there contain mostly
geometric and manufacturing data, and not design rationale
information. Similar commercial component databases are also
beginning to appear. Miller et al (1997) describe a shareable
engineering knowledge database based on the functional
representation discussed earlier. They explicitly try to allow
reuse across different processes, and overcome some limitations
of CFRL in this respect. Shin et al (1998) describe a repository
for software components based on the same principles.
Although they address only software objects, they describe
similar problems in searching, matching and categorizing
representation. Urban et al (1996) describe a multidatabase
environment containing components in STEP format (Standard
for the Exchange of Product Data). Although this database is
useful for manual design, it does not contain information that
allows an automated process to integrate components together
and achieve new functionalities. Fishpick (1997) presents an
Object-Oriented Physical Modeling (OOPM) methodology for
web-based simulation. He defines a formal approach to
constructing both natural and artificial systems using an
extension of the classical object-oriented framework. The end
result of OOPM design is a model repository, which is
integrated with the web and made available to others on the
Internet so that models can be constructed in a "plug and play"
fashion. We believe that web-based databases provide a scalable
medium for distributing information and computation, as well
as a natural mechanism for protecting proprietary knowledge
and providing commercial incentive. All the above works rely,
directly or indirectly, to encode the design knowledge manually.

Design search algorithms
Finally, there is need for a search process that scans the
database, integrates design steps in meaningful ways and
evaluates the resulting assembled product. There are two main
problems here: (a) how to connect (integrate) components, (b)
how to search the extremely large space efficiently yet
thoroughly. Of particular interest is the DARPA RaDEO project,

carried out at the Ohio State University (Chandrasekaran et al,
1998). Briefly, the objective of that project is to develop
technologies for representing and using object-oriented
component libraries for various design tasks. In combining the
CFRL language and the shareable engineering knowledge
database cited above, they specifically address object
representation, exploration of very large design spaces and
automated design analysis and criticism. Their work involved
applications to design of hybrid-electric vehicles, conceptual
designs of process plants for chemical synthesis and mechanical
gear design for helicopter transmission. The large domain has
been reduced significantly by a dominance-filtering process
where designs dominated by other designs over all dimensions
of evaluation are removed. The problem of finding out how to
interface components to yield valid configurations is overcome
using templates. These are generic-components that show how
certain components can come together. Hence components can
only be assembles in ways pre-coded into templates2.
To summarize, it is evident that there is a recognized need to
formulate a general computational domain containing building
blocks for design. However, various attempts to do so have not
been able to demonstrate that both (a) their approach is general,
and not custom tailored to a specific domain, and (b) it is
actually capable of producing new concepts that have not been
explicitly pre-coded into the system in one way or another.
Hence we see the challenge in

• A universal representation,

• A knowledge source

• A synthesizing design process

2.3 AXIOMATIC DESIGN THEORY
We base our approach on Axiomatic Design Theory (Suh, 1990)
which is briefly described here. The guiding principle of
Axiomatic Design is that design can be based on a rigorous
scientific foundation, rather than on accumulated training.
Hence design can be carried out using a few simple axioms and
derived theorems, without the need of extensive design
experience. The framework of axiomatic design views design as
a mapping between several problem domains: the customer
domain, the functional domain, the physical domain and the
process domain, as illustrated in Figure 1 (Suh, 1997). In each
domain, the design is specified using different elements,
namely, customer attributes (CAs), functional requirements
(FRs), design parameters (DPs), and process variables (PVs),
respectively. In addition there are constraints (Cs). The design
process starts in the identification of customer needs and
attributes, and formulating them as FRs and constraints. These
FRs are then mapped onto the physical domain by conceiving a
design embodiment and identifying the DPs. There may be
more than one solution to this mapping. Each DP is then
mapped onto a set of PVs that define it. Each DP typically
introduces new FRs, DPs and PVs at a lower level, and so the
mapping process iterates by zigzagging between domains, until
the design can be implemented without further decomposition.

2 This might explain why, as the authors note, no conceptually new design
has emerges although over 2 million designs were evaluated.

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 253

At the basis of the theory are two axioms that guide the
mapping process: the Independence axiom, stating that a
mapping should be sought such that DPs satisfy FRs
independently, and the Information axiom, which specifies
overall information content of the design should be kept to a
minimum (alternatively, that the probability of success of the
design should be maximized). Axiomatic design has been
applied to numerous real-life cases (Suh, 2000).

Figure 1. Domain mapping and zigzagging. Shaded area

represents a design step

3 PROPOSED DESIGN-STEP ARCHITECTURE
We base our approach on the hierarchical decomposition view
taken by axiomatic design theory. In this view the design
process can be seen as recursive problem solving where at every
stage the current problem is decomposed into smaller sub-
problems. Each sub problem can be addressed separately, but
only the emergent behavior of the components as a system
satisfies the given requirements and constraints. We see each
stage in this decomposition process as a building block – a
design step. In axiomatic design theory, a single cycle of the
zigzagging between domains can be viewed as a design
component. One such cycle is highlighted in Figure 1.
Provided all domains are defined mathematically, then both the
independence axiom and the information axiom can be
computed explicitly even without explicit design matrices3: The
design matrix itself (and consequently dependency measures)
can be computed by differentiating functional requirements with
respect to design parameters, and information content can be
assessed by computing the probability of success of the design
using component behavior functions. Thus, the axiomatic
design approach lends itself to algorithmic implementation as it
provides computational criteria for distinguishing among good
and bad designs, as well as an algorithmic procedure for
constructing it, given FR-DP sets. The challenge, thus, is to
formulate FRs, DPs and PVs in a purely mathematical way, and
to provide an algorithmic mechanism to locate and interface
sets of DPs and evaluate them as solutions to given FRs.

3.1 A UNIVERSAL REPRESENTATION
A design component can be regarded as a system, having an
interface to other components, which are in turn systems too.

3 In a fully automated design process there might not be schematic FR-DP

design matrices (X’s and O’s), but rather an explicit set of equations in terms of
system state variables that describe the behavior of the system DPs and
satisfaction rate of FRs.

The components are arranged in a hierarchy based on their
functionality: The function of a component is attained jointly by
its subcomponents and in unison with its sibling components. A
component is defined by its behavior, constraints and
requirements all specified explicitly as algorithms or
mathematical equations (e.g. differential equations) in terms of
state variables (parameters). Table 1 lists the primary attributes
of a design component. In addition it has interfaces by which it
can connect to other components in the hierarchy. Some of
these state variables are local to the component (e.g. its
geometry or rigid body parameters), while other are global (e.g.
time) or with limited scope. Some of the variables are constants,
while others might change. Some might be internal while others
might describe interfaces. In absence of any applicable design
knowledge, any of the variables might be considered as design-
parameter. However, typically a component will contain
additional component-specific knowledge as to which variables
are primary parameters, and how they can be used effectively,4
along with a verbal description to be used for documentation.

Table 1. Primary attributes of a design component

Attribute Meaning
Parameters State variables that describe this component, and

their physical units
Interfaces List of interfaces of the component by which it

connects to other components, and corresponding
parameters

Behavior A description of how the state variables of the
component change according to the behavior of the
component and applicable physical laws (e.g. a set
of differential equations or an algorithm)

Constraints New constraints introduced by this component, in
terms of state variables

Requirements New functional requirements introduced by this
component, in terms of state variables. Provides an
indication as to whether a particular requirement is
satisfied

Knowledge Component-specific design knowledge, e.g. which
parameters are primary, preferred configurations
with other components, and FRs satisfied.

The fundamental integration criterion is that interfaces among
connected systems be compatible (i.e., of matching physical
units). The units are derived from basic units of physics, namely
time, distance, mass, information, charge, etc, their derivatives
and combinations. Thus, given a set of components, the domain
of theoretically possible designs becomes all the arrangements
of the components in which interfaces are matched with
corresponding interfaces of the same type. The computational
domain of possible configurations is well defined. Each
interface is assigned a state variable. The state of the system as
a whole and the internal state of a component is then a function

4 Exploration versus exploitation: In absence of any design knowledge all
parameters are of equal importance, and so the number of design permutations
to be tried is enormous but potential for creativity is maximized. Evolution in
nature is an example of this case. On the other hand, when design knowledge is
plentiful, experience guides to consider only selected variables as parameters.
Design is then efficient, but creativity is limited. In allowing components to
integrate in arbitrary (unforeseen) ways yet permitting explicit domain-specific
knowledge to prefer certain parameters and configurations, we can move
between these two extremes.

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 254

of these variables only. Functional requirements (FRs) and
constraints can thus be specified in terms of these variables.
Newly introduced functional requirements and sub-components
can then be specified in terms of the variables of new interfaces.
Issues pertaining as to whether a particular interface is input or
output, valid ranges and whether its must be interfaced or can
be left under-interfaced, are all constraints specified in terms of
the corresponding state variables.

Table 2. Example: descriptions of attributes of an electric
linear servo design component

Attribute Example
Parameters Geometry, mass properties, performance (range,

thrust and power), current actuation state.
Interfaces End effector and base (structural), electric position

specification and feedback (control) and power,
geometry (contact and collision), possibly also
thermal, RFI, magnetic, vibration effects if
manufacturer considers them important.

Behavior Length/force as function of control and time, plus
rigid body dynamics and energy consumption.

Constraints Performance ranges, workable environmental
conditions, valid control signals.

Requirements Power source, structural stability.
Knowledge Primary parameter to change is performance. Works

nicely with specific controller. Alternative specific
actuators to try. Doesn’t work well with extensive
duty cycles.

The information is provided by a component as static attributes
or as functions (methods) returning or requesting data. Design
components may provide information upon request, and may
interrogate the calling process, if they represent a family of
possible objects (for example, if they represent a job shopper
with a variety of options).
It is important to note that a design component is not
necessarily a physical component; it may be an aggregation of
hardware, software and disembodied abstract concepts. It may
be entirely abstract, specifying how a particular functionality
can be achieved using other functions. Abstract components
(lacking a physical embodiment) can be thought of as pure
design knowledge. For example, while a physical circular-to-
linear motion conversion component describes a black-box
assembly with an input shaft and output stroke, an abstract
component can show how such conversion may be achieved
using a nut-and-screw assembly and the constraints they must
meet to do so. Another might show a sprocket-and-chain
assembly.

Auxiliary attributes
The primary attributes of a component as described above are
sufficient to establish a meaningful design space in which it is
possible to integrate components and evaluate designs, and
ultimately carry out design search. However, additional
attributes might be necessary for practical reasons. Briefly,
these attributes address the need for a human engineer to
extract, interpret, understand, and use solution provided by a
search engine. These include (a) unique identification of
components, (b) verbal description (documentation) of each of
the primary attributes, (c) component visualization, (d) user

interface for designer to directly manipulate and examine the
behavior of a component, (e) CAD embedding information, (f)
e-commerce and legal information.

Inheritance
A fundamental property of a design-component is inheritance.
Rather than having to define the full functionality of each
component, a component will typically inherit most of its
properties from a simpler component on which it is based. For
example, a wheel component is based on a rigid body object,
and inherits the attributes and internal behavior of a rigid body.
It then adds to that the special properties of wheel, such as a
constraint on the geometry and (possibly) a shaft interface.
Next, a gearwheel may inherit most of its properties from a
wheel component, adding only the properties that distinguish it
from its base5. Multiple inheritance is also possible: For
example, a telephone might be derived from both rigid body
and communication base objects. An abstract object will not be
derived from a rigid body component. Following down to the
base, all objects are derived from the design-component object.
Some examples are illustrated in Figure 2.

Figure 2. Object diagram for design components

Interface variables are also subject to inheritance (Figure 3).
The base interfaces are the physical units, such as time,
distance, mass, voltage, charge, temperature and information,
and compounds of these such as force or power. More elaborate
types of variables can be derived from these: AC-Power is
derived from power, and mains supply is derived from AC-
Power with some constraints on voltage and current. Real-value
is derived from information, Fluid-level is derived from real
value, and level-of-fresh-water-tank may be derived from fluid-
level, and so forth. A physical implementation may require
multiple inheritance: to implement a water-level gauge, it might
be necessary to have an information channel carried over a
voltage channel. Similarly, functional requirements and
constraints may also be subject to inheritance themselves.
The inheritance mechanism has several advantages:
1. It lends itself to reuse – one needs to define only those

attributes that are unique to one’s product. For example, a
manufacturer of a telephone need not understand rigid
body dynamics, although a telephone obeys rigid body
dynamics.

5 Note that class names are only as means to reuse mathematical code; the

actual name carries no significance in itself and is not used as a search criteria.

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 255

2. Derived objects can always serve as base objects. For
example, in searching for wheel objects, one can use
flywheels and gearwheels. A Telephone can serve as a
weight. This is a basic inherent property of design space,
and can be used to prune the design space during search:
once a certain object is adequate, all objects derived from it
need not be considered.

3. It provides a framework for encoding generalizations and
design knowledge. When useful assemblies of components
are identified, they can be encoded as new complex
compound objects.

Figure 3. Object diagram for component interfaces and

process variables

3.2 KNOWLEDGE SOURCE
Three alternatives are proposed as a source for generating
knowledge (design steps) and populating the database. First two
are human-dependent, in the sense that they reply on human
engineers to provide the knowledge either directly by keying in
data or indirectly by sample designs. The third approach is one
that relies on a self-discovery of design knowledge using
evolutionary techniques.

• Direct manufacturer key in. The repository of design
components will be Internet based, to be provided by
manufacturers of components and knowledge providers
(consulting services). By placing such components on the
Internet, manufacturers will be able to specify their
products’ function, interface and required sub-components
in a computer-readable format, as well as information
regarding possible use contexts of their products. As more
components are introduced on the net, so will design
engines become more productive and explorative, and more
paradigms can be put to test. As design engines become
more sophisticated, incorporating new design paradigms,
incorporating learning and improved search techniques, so
does the incentive grow for manufacturers to put their
products in the appropriate format, and to describe their
product in more than one way. The rationale behind having a
Internet distributed component is twofold. First, it is
typically the manufacturer of a product or component that is
in the best position to accumulate and provide information
about a product. Moreover, the manufacturer typically has
the incentive to construct various abstract components that
will show how his/her product can be used in different
contexts. It is therefore important to allow abstract

components to ‘recommend’ physical embodiments, both to
accelerate convergence and to increase manufacturer
incentive. These recommendations may be ignored. Second,
having the components distributed permits the calculations
to be distributed as well, so that computational power
increases with problem complexity. Computation is then
made more efficient by having manufacturers specialize in
computation of their own products’ behavior. Distributed
(remote) computation also protects proprietary data by
releasing the need to disclose all product model data.

• Learning from examples: Alternatively, by analyzing
existing designs described in a suitable mathematical format,
a process might try do identify structure in the design
(subcomponents and interfaces) use these elements to
populate the database.

• Self-discovery: As mentioned earlier, evolutionary design
processes are highly inefficient in terms of many futile trials,
yet they are capable of actual discovery of design principles
and thus generation of knowledge. Its is therefore
conceivable that such an evolutionary process, based on a
minimal set of ‘atom’ building blocks, might be used to
generate design knowledge and populate the design database
automatically.

3.3 THE DESIGN PROCESS
The design search process is the gradual breakdown of the
initial design problem into simpler and lower-level design
components. There are various approaches suitable for
implementing a search process, ranging from the brute-force
exhaustive search through the design space on one hand, to a
knowledge-intensive approach that requires all of the solution
knowledge to be pre-coded into the system, on the other hand.
Both of these extreme approaches are not good: While the first
extreme is simply impractical at any scale, the second requires
databases that cover all possibilities and will tend to eliminate
possibility for any innovative solutions. And so there are several
approaches in between these two extremes that combine
exploration with knowledge exploitation, as well as forms of
learning and search.

• Knowledge based search Dynamic programming
approach that builds multiple decomposition trees while
expanding promising branches first, until a complete
solution is found. The figure of merit assigned to particular
solutions/branches is based on external knowledge in the
form of heuristics (which might be specified by the
component themselves) or global rules such as the design
axioms.

• Learning Different forms of learning can be incorporated
into the search process, such as assigning figures of merit
to known solutions, identifying and reusing subsystems,
etc. A system will then learn from its own design
experience and improve.

• Stochastics Stochastic processes might compensate in
absence of design knowledge or might be used to introduce
innovation. The “Blind Watchmaker” is an extreme
example of this approach.

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 256

Typically, a combination of these methods should be used.
During the entire search process individual components
simulate according to their supplied functions, and the overall
system behavior emerges6.

4 IMPLEMENTATION
In this section we report two efforts in implementation of the
design-component architecture. Note that these examples
demonstrate only partial aspects of the proposed architecture
coupled with a evolutionary source

4.1 ELECTROMECHANICAL LOCOMOTION
The first implementation involves a database containing simple
machine and control elements. These design-components were
used along with their corresponding constraints and knowledge
attributed to automatically design a mechanism capable of
locomotion, using an stochastic evolutionary algorithm
developed by Lipson and Pollack (2000). Hence this example
demonstrates the use of the proposed design architecture
coupled with a direct key-in information source and stochastic
evolutionary design process.
The machine elements consisted of round elastic bars, linear
actuators, ball joints, and step-function control elements. Each
of these components was entered into the database with
specification of its parameters, behavior and interfaces, as well
as constraints, requirements and design knowledge as applicable
(see Table 1). The interfaces were defined so that control
elements could interface with other control elements, bars and
actuators could interface with ball joints, and control elements
could interface to actuators. While bars and actuators had a
physical embodiment, joints and control elements remained
abstract (schematic). No power considerations were modeled.
Table 3 lists the primary attributes of two prevailing
components.
Each evaluation of a given configuration was obtained by
iteratively applying the behavior of each component until the
entire system reaches relaxation. The computation was carried
out using a physical and control simulator originally developed
for robotic simulation (Lipson and Pollack, 1999). Because of
the relaxational method of this solver, it cannot account for high
momentum dynamics, but only quasi-static motion.
Nevertheless, this simplification allows rapid evaluation of
candidate designs while retaining a rich repertoire of physical
effects, such as friction, material elasticity and failure, collision
and contact.

6 One of the main attacks on this approach is that there is no guarantee

that simulation of individual components joined together will predict correctly
overall system performance. In fact, so-called complex systems are often
characterized by the converse. However, we hypothesize that to do any design
at all, even human engineers typically need to speculate about properties of
system configuration based on knowledge of individual components. They
succeed because it is specifically those predictable aspects of systems that we
use in design; Moreover, Axiomatic Design Theory asserts that design can and
should be carried out while focusing on only a single DP for every FR, and that
this simplification is crucial.

Table 3. Attributes of actuator and control elements used
in experiment

ACTUATOR COMPONENT
Attribute Values
Parameters Length, radius, density, elasticity, yield. Primary

DP: actuation range.
Interfaces Position within actuation range [m]
Behavior Rigid body dynamics, length changes as function of

interface value.
Constraints Collision. Material failure. Manufacturing

constraints: Actuation range must be smaller than
shaft housing.

Requirements Must be connected to one or two ball joints and
actuation control

Knowledge Needs to connect to a control unit to move.
Pythagoras equation to create a right angle triangle
with two other bars.

CONTROL UNIT
Attribute Values
Parameters Interface amplifications and internal step threshold
Interfaces Connections to other units [information]
Behavior Sum of amplified connection and threshold
Constraints Output in range –1 to 1
Requirements None
Knowledge Needs a feedback loop to generate oscillations.

A single functional requirement was specified: Locomotion.
Mathematically the locomotion FR was formulated as the
distance traveled by the center of the designed machine over a
fixed period of time. The design process implemented is
basically a knowledge-based search, coupled with a stochastic
element to cover in absence of design knowledge. The search
process started with a null (empty) design. Design components
were integrated into the design iteratively, either according to
design knowledge (for example: “attach a control unit to an
actuator”, or “attach 3 bars to form a triangle” – see Table 3), or
by joining components with matching physical interfaces, as
well as by modifying component parameters (again, according
to database knowledge or in random if no information exists).
The more successful designs (according to the FR) were
automatically selected to continue to the next stage, and so on,
until a certain satisfaction rate of the FR was attained. The
design axioms were not implemented in this experiment.

Results
Since relatively little external knowledge has been provided, the
“creativity” factor was high: One of the resulting designs is
shown in Figure 4 below. This is basically a relatively
symmetrical tetrahedral structure, with a freely joined bar
dragged on the floor. One of the sides of the tetrahedron is an
actuator, controlled by an oscillating control circuit (the circuit
and wiring are shown only schematically). When the actuator
oscillates, the free bar ratchets against the floor and pushes the
entire mechanism forward. This result was obtained after only
4014 evaluations, over 55 minutes of processing on a 500MHz
computer.
This design contains two apparently redundant actuators on the
base. This redundancy might be attributed to the fact that the
Information Axiom was not applied in this experiment. At this
point it is also relatively difficult to follow the somewhat alien
reasoning in the unfolding design tree. It is important to
emphasize, however, that the principle of this design – the

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 257

tetrahedral structure and the ratcheting motion – were not coded
anywhere in the system nor provided in any direct or indirect
way. We therefore consider this design to be a truly creative
solution7.

4.2 LARGER SCALE DESIGNS
We are now carrying out a second (ongoing) implementation of
a design database. This database includes a larger variety of
design components comprised of structural elements, control
elements, gearwheels and shafts, joints, electric and pneumatic
power, along with established design knowledge, and a more
realistic physical simulation. With these components we intend
to enable a richer universe of Lego™-like designs, and enable
more elaborate experimentation. Figure 5 shows a snapshot of
the system in development.

5 CONCLUSIONS
In this paper we have proposed a universal design-database
architecture, with the intent of creating large-scale design
databases containing generically reusable design knowledge.
The architecture was developed in accordance with the
Axiomatic Design view of design as a hierarchical problem
solving process governed by DP-specific knowledge as well as
generally applicable rules (axioms and theorems). Fundamental
to our approach is that the entire method be fully computational,
based on elementary principles of design and interactions
between components. We hypothesize that for efficient yet
innovative design to occur automatically, a database must

7 We attribute the creativity to the fact that components of the database

could connect to each other in an open-ended way, as well as according to
knowledge based templates. This permitted innovative solutions to emerge in a
relatively6short period, while still using knowledge.

support both use of exiting design knowledge, as well as allow
for integration of components without pre-coded templates. We
start with elementary knowledge. Although the design we have
demonstrated is still far from being practical, we believe that
even this simple form of creativity may indicate a path to truly
automated conceptual design in the future.

REFERENCES
Antonsson E. K., 1997, "Imprecision in Engineering Design", Proceedings of

IDEA"97, Symposium on Intelligent Design in Engineering Applications,
5th European Congress on Intelligent Techniques and Soft Computing -
EUFIT"97, September 97, Aachen, Germany

Bently P. J., 1996, Generic evolutionary design of solid objects using a
genetic algorithm, Ph.D. thesis, University of Huddersfield, UK..

Chandrasekaran B., Josephson J. R., 1997, "Representing functions as effects",
in Proceedings of the fifth international workshop on advances in
functional modeling of complex technical systems, Paris, France, July
1997, pp. 3-16

Chandrasekaran B., Josephson J. R., Davis J. F., Rizzoni G., Carroll M., Iyer
N., Elsass M., Miller D., Miller T. A., 1998, "Functional and diagramatic
representation for device libraries", Annual progress report for period
May 1st 1997 – April 30th 1998. DARPA Order #D591

Chittaro L., Tasso C., Toppano E., 1994, "Putting functional knowledge on
firmer ground", International journal of applied artificial intelligence,
Vol. 8, pp. 239-258

Fishwick, Paul A. Web-based simulation, Winter Simul Conf Proc, p 100-102 ,
1997

Forbus, K. D., 1988, "Qualitative Physics: Past, present and future", Exploring
Artificial Intelligence, Shorbe H., (Ed.), Morgan kaufman, pp. 239-296

French M. J., 1994, Invention and Evolution: Design in Nature and in
Engineering, 2nd Ed., Cambridge University Press

Goel A. K., 1989, Integration of case based reasoning and model based
reasoning for adaptive design problem solving, Ph.D. Dissertation, Ohio
State University

Hodges J., 1992, "Naïve mechanics: A computational model of device use and
function in design improvisation", IEEE Expert, Vol. 7 No. 1, pp. 14-27

Iwasaki Y., Chandrasekaran B., 1992, "Design verification through function
and behavior oriented representation: bridging the gap between function
and behavior", in Artificial Intelligence in Design ’92, Gero J. S., (Ed.),
Kluwer Academic Publishers, pp. 597-616

Keuneke A., 1991, "Devive representation: The significance of functional
knowledge", IEEE Expert, pp. 22-25

Kim S. J., Suh N. P., Kim S.-G., 1991, "Design of software systems based on
axiomatic design", Annals of the CIRP, Vol. 40 No. 1.

Lind M., 1994, "Modeling goals and functions of complex industrial plants",
Applied artificial intelligence, Vol 8 No. 2, pp. 259-283

Lipson H. and Pollack J.B., 2000, “Towards Continuously Reconfigurable Self-
Designing Robotics”, Proceedings of IEEE.conf. on Robotics and
Automation, SF CA, USA

Miller D. C., Davis J. F., Chandrasekaran B., Josephson J. R., Elsas, M. J.,
1997, "Shareable engineering knowledge databases for intelligent system
applications, Computers and Chemical Engineering, Vol. 21, S77-S82.

Modarres M., (Ed.), 1997, Proceeding of functional modeling workshop,
Proceedings of the fifth international workshop on advances in functional
modeling of complex technical systems, Paris, France, July 97, published
by the Center for Technology Risk Studies, University of Maryland

Pahl, Beitz, 1996, Engineering Design, 2nd Ed., Springer Verlag.
Regli, William C. Gaines, Daniel M. Repository for design, process planning

and assembly, Comput Aided Des v 29 : n 12 , p 895-905 , 1997
Rich E., Knight K., 1991, Artificial Intelligence, McGraw-Hill Inc.
Shin, Hyun-Jeong Choi, Il-Woo Kim, Soo-Dong Rhew, Sung-Yul Design of

object-oriented framework repository, Proc IEEE Int Conf Syst Man
Cybern v 3 , p 2686-2691 , 1998

Sims, K. 1994. Evolving 3d morphology and behavior by competition. In
Brooks, R. and Maes, P., editors, Proceedings 4th Artificial Life
Conference. MIT Press.

Stahovich T. F., Davis R., Shrobe H., "Generating Multiple New Designs from
a Sketch," in Proceedings Thirteenth National Conference on Artificial
Intelligence, AAAI-96, pp. 1022-1029, 1996

Suh, N.P., Sekimoto, S., 1990, Design of Thinking Design Machine, Annals of
CIRP 39/1

Suh N. P., 1990, The principles of design, Oxford University Press, New York

Figure 5. Design molder and database in development

Figure 4. One of the automatically generated designs for the
task of locomotion

Towards A Universal Design-Component Architecture for Design Automation
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 258

Suh N. P., 2000, Axiomatic Design: Advances and Applications, to be
published by Oxford University Press

Umeda Y., Takeda H., Tomyama T., Yoshikawa H., 1990, "Function, behavior
and structure", Artificial Intelligence in Engineering, Computational
mechanics publications and Springer Verlag, pp. 177-193

Urban, Susan D. Shah, Jami J. Liu, Hong Rogers, Mary 1996, Shared design
manager: interoperability in engineering design, Integr Comput Aided
Eng v 3 : 3 , p 158-176

Wallace D. R., Jakeila M., Flowers W., "Design search under probabilistic
specifications using genetic algorithms", Computer Aided Design, Vol.
28, 1996

