Proceedings of ICAD2000
First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

ICADO21

ENHANCING OBJECT-ORIENTED SOFTWARE DEVELOPMENT THROUGH
AXIOMATIC DESIGN

Paul J. Clapis, Ph.D.
Metacom Inc.
PO Box 561
Southbury, CT 06488
pclapis@pantheon.yale.edu

ABSTRACT

Several formal software design methodologies have evolved
in the past few years to guide and document the development of
object-oriented software. OMT (Object Modeling Technique)
and UML (Universal Modeling Language) are two of the most
widely used notations for graphically documenting the design of
software objects. ~ While these methodologies can convey
significant software design detail, they do not provide a
mechanism for documenting the functional requirements that
drive the software development process. In addition, object-
oriented design does not maintain traceability between functional
requirements and the design of software objects.

In the past two decades, Axiomatic Design has emerged as a
powerful tool for capturing the functional requirements and
design parameters for a system. Due in part to its origins in
mechanical engineering, Axiomatic Design has not been widely
exploited in the software engineering field. In this paper we
show how object-oriented software design can be enhanced by
including Axiomatic Design in the formal design of object-
oriented software systems. We will show the results of recent
work which integrates the Axiomatic Design equations with
OMT design documentation, enhancing the value of the
software design process. A comparison will be made between
the design parameters produced through Axiomatic Design and
the classes and objects that result from the use of the OMT
methodology.

Keywords: OMT, software design, object-oriented design,
Axiomatic Design

1 INTRODUCTION

The explosive growth in computer processing capabilities
during the last decade has led to an equally rapid expansion in
the size and complexity of computer programs. To manage this
complexity, computer scientists have developed a new paradigm
known as object-oriented programming, which decomposes large
programs into an interacting collection of modular software
components. By encapsulating much of the software within
private functions and providing simple public interfaces, objects
seck to reduce the apparent software complexity while improving
robustness and reducing maintenance costs. Not surprisingly, the

Copyright © 2000 by the Institute for Axiomatic Design

Jason D. Hintersteiner
SVG Lithography Systems, Inc.
901 Ethan Allen Highway
Ridgefield, CT 06877
hintersj@svg.com

design rules for object-oriented software correspond closely to
the rules for efficient Design for Manufacture (DFM): develop a
modular design, use standard components, and design parts for
reuse.

The success of object-oriented programming has led to a
proliferation of object-oriented design methodologies and
notations such as Schlaer-Mellor, OMT, UML, Booch, Use Cases,
Fusion and Catalysis [7]. These methodologies increasingly
emphasize the value of formal software design strategies,
narrowing the disparity between use of formal design approaches
in software and more traditional engineering disciplines such as
mechanics, electronics and optics.

Despite this maturation of the software design process, an
important aspect has been largely neglected. Sparse attention has
been paid to formalizing an approach to optimizing the design of
software objects and minimizing coupling between them.
Current textbooks focus on graphical design notations, coding
standards and implementation issues but provide only anecdotal
or heuristic guidance in partitioning software functionality or
mapping functional requirements to object designs. In fact, all
but one methodology (Use Cases, developed by Ivar Jacobsen)
ignores the issue of software functional requirements altogether.
Perhaps more importantly, little emphasis has been placed on
designing software objects from a systems engineering
perspective; that is, achieving an overall design that optimizes the
performance of the system rather than the performance of
individual objects.

Since its inception in the late 1980%, Axiomatic Design has
provided a powerful set of guidelines to aid in developing
optimal designs of physical hardware. Originally applied to the
design of mechanical assemblies, awareness of Axiomatic Design
has expanded to include other disciplines such as systems
engineering and manufacturing [1]. In the past decade, significant
interest has emerged in applying the principles of Axiomatic
Design to software as well [2-6].

Axiomatic Design complements modern object-oriented
software methodologies in several ways:

272

e It provides traceability between a system’s functional
requirements and the consequent design of each
object’s functionality

e It establishes metrics for optimizing the public
interfaces between objects from the perspective of the
overall system

e It encourages a recursive design process in which
objects are hierarchically decomposed into smaller
objects, with each level of the hierarchy mapping to a
subsystem

Subsequent sections of this paper will describe these
contributions of Axiomatic Design to the formal object-oriented
design of large software systems.

2 BACKGROUND

Silicon Valley Group’s Lithography division (SVGL) designs
and manufactures state of the art lithographic instruments which
are used in producing memory chips, integrated circuits and
microprocessors. SVGL’s instruments span many engineering
disciplines including optics, mechanics, electronics and chemistry.
The complexity of such hardware creates a correspondingly
complex matrix of software requirements to control and manage
the operation of the instrument.

In 1996, SVGL embarked on an effort to apply object-
oriented software principles to the design and coding of a tool
control system. This was part of a DARPA-sponsored initiative
to develop an advanced software control system that could be
extended to a variety of lithography tool platforms. The top-
level requirements of this system included process recipe
management, control of processing operations, interfaces to
external users and factory host computers, and hardware
diagnostics such as self-scheduled preventive maintenance and
health checks. To manage this complexity, SVGL turned to
object-oriented design to define the architecture of the software
control system.

3 TRADITIONAL OBJECT-ORIENTED DESIGN
APPROACH

The traditional sequence in object-oriented design is to
design software objects iteratively from the top down, starting
with the major subsystems and successively designing smaller and
more specialized objects that represent increasingly fine levels of
detail. The general sequence of steps is:

e Identify domain objects at this level

e Assign functionality to each object

e Define the public interface to each object

e Document this level of the design using a graphical
notation such as OMT

e Code and test each object individually

e Integrate the objects and test them as a subsystem

OMT graphical notations provide a rich representation of

each object’s functionality and interfaces using diagrams known
as object models. Other types of OMT models contribute

Copyright © 2000 by the Institute for Axiomatic Design

additional information: dynamic models document the sequence
of interactions between objects, their time-dependent behavior
and control flow, while functional models capture the design of
the objects’ algorithms, data flows, behavioral states and state
transitions. The popularity of object-oriented design stems in
part from the effectiveness of these graphical models in
communicating the software design to managers, engineers, and
other stakeholders who are unfamiliar with the often-complex
syntax of modern programming languages. By design, these
object-oriented design models are language-independent, helping
to separate the software design process from the ultimate
implementation of the design in code. This approach is identical
to the graphical nature of Axiomatic Design, which seeks to
clarify and document the functional design of hardware
components.

An important aspect of a software object’s design is that it
represents a conceptually complete package of functionality.
Unlike traditional procedural computer programs, which provide
few mechanisms for grouping functionality, object-oriented
programs organize logically related functions into objects. Good
object design dictates that strongly coupled functions should be
incorporated together into an object, and each object should
have minimal functional coupling to other objects. Because
objects can interact only through explicitly defined functional
interfaces, the strongly coupled functions in one object can be
essentially hidden from other objects in the system. Axiomatic
Design follows a similar convention, grouping coupled
functionality (i.e. dependent FRs, or Functional Requirements) at
the same level in the design hierarchy so that higher levels of the
hierarchy can remain uncoupled [11]. As with object-oriented
designs, this reduces the apparent complexity of the design. In
essence, software objects combine dependent DPs into
independent packages that satisfy functional hierarchies. From
an Axiomatic Design perspective, a software object is essentially
a package of dependent DPs.

Another strong similarity between Axiomatic Design and
object-oriented design is their use of a hierarchy to represent
increasingly detailed levels of the design. Both approaches use
hierarchical representations to recursively decompose the system
into increasingly fine-grained subsystems. Tigure 1 shows a
typical decomposition hierarchy of objects using OMT object
model notation. The diamond symbol represents decomposition;
that is, each object directly connected to the diamond is
composed of the objects linked to the diamond by lines. OMT
refers to this relationship as ownership or aggregation. Figure 1
indicates that lithography tool software is composed of machine
mechanism objects, which in turn are composed of other
machine mechanism objects.

273

Lithography Tool
Machine Machine Machine
Mechanism Mechanism Mechanism
Machine Machine
Mechanism Mechanism

Figure 1: OMT Representation of hierarchical objects.

This similar use of a hierarchy does not end there. In
Axiomatic Design, a system’s FRs and DPs are represented as
decomposition hierarchies [12]. The Axiomatic Design process
encourages us to alternate between the functional and physical
domains as we move down the hierarchy. This corresponds to
the object-oriented design convention of designing software
objects hierarchically, from the outside in; thus, the aggregation
of objects represents a hierarchical decomposition of design
patameters.

4 ENHANCING OBJECT ORIENTED DESIGN

Despite these similarities, object-oriented design lacks a
fundamental feature: a formal process for optimizing the quality
of the design. Object methodologies such as OMT do not
directly address functional independence and information
minimization, which are the fundamental axioms of Axiomatic
Design. Nevertheless, these axioms can be adapted to the
software design process in a straightforward way. The goal of
the first axiom is to decouple the DPs of a design in order to
maximize modularity; in object-oriented design this equates to
minimizing coupling between classes. The second axiom
encourages us to minimize the information content of our
design. What does this mean in the context of a software
design? The answer is clear when we consider the original intent
of this axiom. In the physical world, the largest post-design cost
of hardware is the expense of the manufacturing process.
Minimizing the information content of a mechanical design
results in reduced manufacturing cost. In the software world,
however, the greatest post-design cost is maintenance — that is,
modifying the software to meet new or changing requirements or
to correct programming flaws. Object-oriented design has
demonstrated that reduced maintenance is achieved by
minimizing the apparent complexity of the software design — that
is, by minimizing the public data and public functions in each
class and using private data and private functions wherever
possible. This principle is known as énformation hiding. In the
context of software design, then, the second axiom is to
minimize the public interface (i.e. public functions and public
data) of each object.

We can now propose a revised sequence of steps to the
object-oriented design process:

Copyright © 2000 by the Institute for Axiomatic Design

e Use Axiomatic Design to identify an optimally
independent set of software FRs representing a
subsystem

e Tor cach top-level FR in this subsystem, design an
object which satisfies it

e Design private data and methods which implement the
FR

e Design public methods that present a minimal interface
to other objects

e Document this level of the design using the Axiomatic
Design equation, mapping FRs to software objects

e Code and test each object individually

e Integrate the objects and test them as a subsystem

e Iterate / decompose the FR hierarchy as necessary

This sequence enhances the steps described previously in
section 3 in several key ways. By defining FRs that are optimally
independent, we can then design software classes that each
satisfy one and only one top-level FR. This guarantees that our
software objects are modular and have minimal coupling to other
objects. By documenting the corresponding Axiomatic Design
equation for this level of the design hierarchy, we produce a
requirements traceability matrix that aids maintenance by
identifying which objects satisfy each requirement. The design
equation also assures that all FRs are addressed by the design.

Fundamentally, this sequence is identical to the standard
Axiomatic Design “zigzagging” process of hierarchically
identifying hardware FRs and designing corresponding DPs. In
both the hardware and software domains, we move back and
forth between the FR hierarchy and DP hierarchy as we iterate to
lower and lower levels. However, it is important to note that the
resultant hierarchy of software FRs does not always correspond
directly to the hierarchy of hardware FRs. Nevertheless, it is an
established convention to design software objects that
correspond to objects in the hardware domain, in part because
this improves the ability of other engineers to understand the
software architecture. Recent work has been done to apply
Axiomatic Design from a systems engineering perspective,
combining the FR definition process for both hardware and
software into a hierarchy of subsystems[13-14].

5 AN EXAMPLE DECOMPOSITION

To demonstrate the process discussed above, we will present
a decomposition of one small part of a lithography tool known
as a wafer prealigner. Here is an excerpt of the FR and
corresponding DP at this level of the hierarchy [15]:

FR.2.1: Determine and correct the wafer rotational position
and centering offsets prior to lithographic processing

DP.2.1: Design a Wafer Prealigner device which performs a
coarse alignment of the wafer to put it into the proper rotational
position for the wafer stage. In addition to a wafer rotator, the
prealigner consists of an optical sensor which is used to detect
the location of the notch in the wafer, and serves as a source of

274

information on the wafer’s offset from center, based on its spin
characteristics.

At this level, the hardware solution is to design a wafer
prealigner assembly. Following our object-oriented design
sequence, we would design a corresponding Wafer Prealigner
software class whose sole responsibility is to encapsulate the
software necessary to control the prealigner hardware assembly
and determine the notch location. Note that the Axiomatic
Design justification for this decision is identical for both
hardware and software:

Hardware perspective: The Wafer Prealigner hardware
assembly satisfies one and only one FR, to orient the wafer’s
rotational position prior to lithographic processing. Subsequent
changes to the design of this hardware should have minimal
impact on the design of other hardware components.

Software perspective: The Wafer Prealigner software
object satisfies one and only one FR, to control the wafer
prealigner hardware and determine the location of the wafer
notch. Subsequent changes to the design of this software object
should have minimal impact on the design of other software
components.

Moving down a level, we can decompose FR2.1 into five
software subrequirements:

FR.2.1.1: Rotate the wafer in order to find the notch and to
subsequently orient the wafer

FR.2.1.2: Maintain the lateral position of the wafer while
rotating so that no loss of x-y position information occurs

FR.2.1.3: Detect the position of the wafer edge as the wafer
is rotated

FR.2.1.4: Calculate the notch location from the detected
edge information

FR.2.1.5: Calibrate the wafer prealigner hardware

Following our axiomatic software design strategy, these FRs
lead us to define five corresponding software classes:

DP.2.1.1: Wafer Prealigner Rotator — controls the rotation of
the wafer turntable

DP.2.1.2: Pneumatic Wafer Holder — controls a pneumatic
(vacuum) valve that clamps the wafer to the turntable, preventing
lateral sliding of the wafer during rotation. Also contains a
vacuum sensor which confirms that the wafer is adequately
retained

DP.2.1.3: Wafer Edge Detector — acquires data from the
optical sensor, which is a linear array of optical detectors. The
raw sensor data is processed by the detector object and
transformed into form that represents the position of the wafer
edge as a function of rotational position

Copyright © 2000 by the Institute for Axiomatic Design

DP2.1.4: Wafer Geometry Analyzer — algorithmically
processes the wafer edge data from the detector object and
determines the angular location of the wafer notch

DP.2.1.5: Wafer Prealigner Calibrator — uses the other four
objects to rotate and acquire data from a special calibration disk,
then determines physical parameters such as spacing of the
optical sensor so that the analyzer can subsequently report the
notch location in calibrated units

Table 1 shows these FRs and DPs in condensed form. We
can see that the software DPs mimic and are closely coupled to
their corresponding hardware DPs. For example, if the hardware
engineer chooses to satisfy FR.2.1.2 by designing a pneumatic
clamp that holds the wafer by applying a vacuum to its back
surface, the corresponding software object is then responsible for
controlling the vacuum valve and sensing the vacuum pressure.
Alternatively, the hardware engineer might choose to use a
mechanical edge-gripping device, which would require a totally
different software object. Historically, we have found that
hardware design often precedes the design of software, resulting
in a domain-sequential design process. While this may be
appropriate in some circumstances, we believe that a superior
approach is to perform Axiomatic Design from a systems
perspective, addressing the FRs of both hardware and software at
each level. This holistic process can produce a more optimal
design, since co-dependencies and tradeoffs between hardware
and software can be recognized earlier in the design process [14].

Table 1: FRs and DPs for the wafer prealigner

software.
Functional Requirements Design Parameters
(FRs) (DPs)
Control prealigner rotaton Wafer prealigner

rotator

Pneumatic wafer holder
Wafer edge detector
Wafer geometry
analyzer

Calibrate prealigner hardware | Wafer prealigner
calibrator

Maintain lateral position
Detect wafer edge positions
Calculate notch location

The following equation displays the corresponding design
matrix for the wafer prealigner software. The off-diagonal
elements in the first four rows and columns of the coupling
matrix are zero, indicating that no coupling exists between these
FRs and DPs. The last row of the matrix is non-zero in all
positions, reflecting the fact that calibration of the prealigner
hardware requires use of all five software objects. Although a
calibration procedure normally precedes other operations, we
have positioned calibration in the last row to show that the design
equation represents a decoupled design.

275

FR2.11) [X O O O OJ]DP.2.11]
FR2.12| |O X O O O|DP.2.12
FR2.13{=|0 O X O O|DP.2.13
FR2.14| |O O O X O|DP.2.14
FR2.15/ |X X X X X|DP.2.15]

Just as the five lower-level FRs are an Axiomatic Design
decomposition of FR.2.1, the five lower-level software classes
(rotator, holder, detector, analyzer and calibrator) represent a
decomposition of the Wafer Prealigner class, ie. they each
represent a specific, modular portion of the wafer prealigner
object’s functional responsibility. Since they are contained within
and accessed only by the wafer prealigner object, they can be
hidden from the rest of the lithography tool control software,
simplifying the apparent complexity of the overall software. In
this way, a good object-oriented software design improves
maintainability. Since each object represents an encapsulated
body of functionality, the software objects can be reused on
other projects, reducing future software development costs.

The design of these classes as well as their interfaces and
coupling between classes has been documented using OMT
notation. A fully functional prototype of the design has been
coded in the Smalltalk programming language and has been
demonstrated to the project sponsors. An Axiomatic Design
decomposition of the lithography tool control system was
generated as part of this project and is now contributing to the
design of subsequent projects.

6 SUMMARY AND CONCLUSIONS

Object-oriented software design provides a powerful
improvement over traditional software development
methodologies by organizing and encapsulating data and
functionality into modular, reusable packages. Axiomatic Design
complements object-oriented design by providing a
straightforward, repeatable process for defining the functionality
of each software object. The result is an object design process
that is more provably correct and less dependent on the creative
judgment of the developer.

We have shown that the fundamental axioms of Axiomatic
Design can be interpreted within the context of object-oriented
software design, leading to a recursive design process in which
objects are hierarchically decomposed into smaller objects, with
each level of the hierarchy mapping to a set of independent
functional requirements. Documenting an object design in the
form of an Axiomatic Design equation quantifies the quality of
the design and documents traceability to the original functional
requirements.

While a good object-oriented design consists of software
classes that are minimally coupled to each other, the software
classes representing hardware are strongly tied to the hardware
design. Our experience with applying the Axiomatic Design
process to object-oriented software suggests that the best

Copyright © 2000 by the Institute for Axiomatic Design

software designs are produced through concurrent engineering,
where the design of hardware DPs and software objects are
pursued simultaneously. Such a systems approach to design
results in an architecture where software functionality is
integrated into every level of the design hierarchy.

7 ACKNOWLEDGMENTS

The authors would like to acknowledge the many people at
SVG Lithography Systems, Inc., including Ed Duwel and the
engineers involved with the MAL program, that provided the
support and input necessary to make this effort possible.

In addition, the authors would like to acknowledge Professor
Nam P. Suh at the Massachusetts Institute of Technology for his
comments and insight.

8 ABOUT THE AUTHORS

Paul |. Clapis received a Ph.D. in physics from the University of
Connecticut, and holds several patents in software applications
for the semiconductor industry. He is president of Metacom
Inc, a software development and consulting firm based in
Connecticut which provides object-oriented training, mentoring
and software development in C++, Smalltalk and Java.

Jason D. Hintersteiner received a Bachelor of Science and Master of
Science in Mechanical Engineering at the Massachusetts Institute
of Technology. His experience includes research projects in
robotics, digital control, error modeling and compensation,
computer networking, as well as two years of postgraduate work
with Professor Nam P. Suh at MIT on the application of
Axiomatic Design to large-scale systems. He is currently a
Senior Staff Engineer at SVG Lithography Systems, Inc., and is
chiefly responsible for providing systems engineering support
and coordinating the implementation of Axiomatic Design
throughout the engineering organization.

9 REFERENCES

[1] Hintersteiner, J. D. “Addressing Changing Customer Needs
By Adapting Design Requirements”, Proceedings of the 4"
International Conference on Engineering Design and Automation,
Miami, FL. August 2000.

[2] Do, S.H. and Suh, N. P. “Design of Object-Oriented
Software Systems using the Axiomatic Design Framework”,
publication pending

[3] Kim, S.]., Suh, N. P., and Kim, S. K. “Design of Software
Systems Based on Axiomatic Design”, Annals of the CIRP,
Vol. 40, No. 1, pp. 165-170, 1991

[4] Park, G. J. “Axiomatic Design vs. Software Engineering”,
NSF Sponsored Axiomatic Design Workshop for Professors, MIT,
Cambridge, MA, USA June 1998

[5] Do, S. H. and Park, G. J. “Application of Design Axioms for
Glass-Bulb Design and Software Development for Design
Automation”, Third CIRP Workshop on Design and
Tmplementation of Intelligent Manufacturing, pp. 119-126, June 19-
22, Tokyo, Japan, 1996

276

[6] Do, S. H., Tate, D., Harutunian, V., and Suh, N. P.
“Axiomatic Design Software”, NSF Sponsored Axciomatic
Design Workshop for Professors, MIT, Cambridge, MA, USA
June 1998 (unpublished copyrighted software)

[7] Pressman, R. S. “Software Engineering, A Practitioner’s
Approach”, 4th edition, McGraw Hill, 1997

[8] Cox, B.]. “Object-Oriented Programming”, Addison-
Wesley, 1986].

[9] Booch, G. “Object-Oriented Analysis and Design With
Applications”, 2nd edition, The Benjamin / Cummings
Publishing Company Inc., 1994

[10] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. “Object-Oriented Modeling and Design”,
Prentice Hall, 1991

[11] Suh, N. P. “Principles of Design”, Oxford University Press,
1990, p. 28

[12] Ibid, p. 36

[13] Hintersteiner, J. D. “A Fractal Representation for
Systems”, Proceedings of the 1999 International CIRP Design
Seminar, Enschede, the Netherlands. March 24-26, 1999.

[14] Hintersteiner, J. D. and Nain, A. “Integrating Software into
Systems: An Axiomatic Design Approach”, Proceedings of the
3" International Conference on Engineering Design and Automation,
Vancouver, B. C. Canada. August 1-4, 1999.

[15] DelPuerto, S. and Garcia, J. “Axiomatic Redesign of Guide
Flexures: Improving product reliability and reducing
manufacturing cost”, Proceedings of the First International
Conference on Axiomatic Design, Cambridge, MA June 21-23,
2000.

Copyright © 2000 by the Institute for Axiomatic Design

277

