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ABSTRACT

The information content of uncoupled designs can be computed
by summing the information content of each functional
requirement. This paper proves that information cannot be
summed for decoupled designs due to correlation among the
functional requirements. To overcome this problem, this paper
presents two algorithms for computing information content of
decoupled designs. One algorithm is applicable to any joint
density function for the design parameters. The second, more
computationally efficient algorithm, applies only to uniformly
distributed design parameters. The algorithm for uniform
distributions is based on a recursive procedure for computing the
volume of a convex polytope in 7 dimensional real space where #
is the number of design parameters. An engineering application
of the algorithms is presented. The example demonstrates that
summing information content can significantly overestimate total
information when compared to an algorithm that accounts for
correlation. The example also demonstrates that decoupled
designs can have lower information content than uncoupled
systems with the same functional requirements and similar
components.

1 MOTIVATION

The second axiom proposed in Suh’s The Principles of Design [1]
states that engineers should minimize the information content of
their designs. In order to do this, it is essential that designers
have means to calculate (or at least estimate) the information
content of design alternatives. Theorem 13 [1] provides a simple
means to compute information content of a system under certain
conditions. The theorem states that information content for a
system is the sum of the information content associated with
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each functional requirement #f the events are probabilistically
independent. This paper will show that these conditions are not
met for decoupled designs even when the design parameters of
the system are probabilistically independent.

When the functional requirements are not independent, as noted
by Suh [1], the appropriate conditional probabilities must be
considered. However, none of the literature provides specific
guidance on how to account for these conditional probabilities.
This paper helps to fill this gap by providing algorithms to
compute information content for decoupled designs. These
algorithms should be useful to any designer who must evaluate
several alternatives, some of which are decoupled rather than
uncoupled.

2 BRIEF REVIEW OF AXIOMATIC DESIGN

In the Axiomatic approach, design is modeled as a mapping
process between a set of functional requirements (FRs) in the
functional domain and a set of design parameters (DPs) in the
physical domain. This mapping process is represented by the
design equation.

{FR} =[A]{DP} @
where
_OFR, @
" oDP,

Suh defines an wncoupled design as a design whose A matrix can be
arranged as a diagonal matrix by an appropriate ordering of the
FRs and DPs. He defines a decoupled design as a design whose A
matrix can be arranged as a triangular matrix by an appropriate
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ordering of the FRs and DPs. He defines a coupled design as a
design whose A matrix cannot be arranged as a triangular or
diagonal matrix by an appropriate ordering of the FRs and DPs.

X 0 O X 0 O X X X
0 X O X X 0 X X X
0 0 X X X X X X X
uncoupled decoupled coupled

Figure 1. Categories of design based on the structure of
the design matrix

In Axiomatic Design, the probability that a product can satisfy a//
of its FRs is called the probability of success (p). Based on the
notion of probability of success, information content I is defined
as

| ~log®/p.) ®)

In the case that the probability density function over DP is
uniformly distributed over the system range, and given that the
tolerance on the functional requirements determines a tolerance
range on the DP, then the information content can be expressed
as

| — log| _Systenrange ®
commonrange

where the common range is the intersection of the system range

and the design range (Figure 2.
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Figure 2. Information in the case of uniformly distributed
variation

If a set of events are statistically independent, then the
probability of the union of the events is the product of the
probabilities of the individual events. From these facts follows a

+] 11
UTCOTCIIT T

Theorem 13 (Information Content of the Total System) — If
each FR is probabilistically independent of other FRs, the
information content of the total system is the sum of information
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of all individual events associated with the set of FRs that must
be satisfied.

This section outlined the basics of Axiomatic Design which are
required to understand the developments of the subsequent
sections of this paper. The following section will present related
work on the subject of information content in Axiomatic Design.

3 RELATED WORK

Shannon [2] first proposed entropy as a measure of information
in communications. The entropy of a discrete random variable

Xis
H(X) = - p(x)log p(x) O

xeX

where p(x) is the probability mass function of the random
variable X defined over its support set X. Shannon also defined
the joint information of two random variables X and Y as

H(X,Y)==2_2" p(x,y)log p(x, y) ©)

xe X yeY

and showed that the joint entropy of two random variables obeys
the inequality

H(X,Y)<H(X)+H(Y) )

with equality only if the wvariables are probabilistically
independent. So, since the beginnings of Information Theory, it
has been recognized that information can only be summed under
the condition of probabilistic independence of the relevant
variables or events.

The information axiom in Axiomatic Design was first introduced
in a paper by Suh et. al. [3] in a paper entitled “On an Axiomatic
Approach to Manufacturing Systems.”  In this paper, the
information axiom was simply stated as “minimize information
content” where information content was defined as the
instructions necessary to describe the parts of a product, the
processes for making them, and the procedures for assembling
them. Information content in Axiomatic design was later given a
mathematical definition by Wilson [4] as the logarithm of the
inverse of the probability of satisfying a tolerance. Wilson
acknowledged that information defined in this way could be
summed only if the relevant dimensions were independent, but
his thesis simply left this as an area for future research. The text
later published on Axiomatic Design [1] also acknowledged that
summation of information requires probabilistic independence of
the relevant variables. However, most of the subsequent
applications of the independence axiom such as those published
in Albano and Suh [5], Suh [1, 6] simply sum information content
assuming that the relevant dimensions are independent.

In his most recent book, Suh presented a means for propagating
tolerances in decoupled designs [6]. He showed that if the

specified tolerances on a set of FRs are ZAFR1, £AFR2, and
+AFR3, then the tolerances on the DPs may be expressed as
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aDp1 = AFRL
All
AFR2-|A21-AD
ADP2 = | i ®)
A22
ADp3 = AFR3-|A31- ADPY - [A32: ADP2

A33

This procedure is useful for defining “worst case” tolerances for
decoupled designs. Those designs in which the values of the
DPs can be guaranteed to lie entirely within the ranges as
specified above will have zero information content. However,
this procedure does not allow one to compute the information
content for decoupled designs in which the tails of the
probability distributions over the DPs extend beyond their
specification widths as is most often the case in industrial
practice.  The algorithms in this paper will enable one to
compute information content for these important cases.

El-Haik and Yang [7] addressed the issue of correlation in
axiomatic design. They defined a measure of complexity which
is composed of three aspects: variability, correlation and
vulnerability.  Vulnerability relates to the design’s size,
interdependency of design parameters (i.e. correlation), and the
FR’s sensitivity to changes in design parameters. This division of
complexity in three parts gives, together with Boltzman’s entropy
measure, a formula for complexity. See equation 9.

H6l0P) -5 3 {2200 g ak>)+m[<zﬂe>pﬁa.2

El-Haik and Yang have therefore proposed a new measure of
complexity which accounts for correlation among DPs. Equation
9 is not used in the presented research and is therefore not
further defined. In contrast to equation 9, this paper presents a
means to compute information content as defined by Suh [1]
while accounting for correlation.

Although there has been substantial progress in Axiomatic
Design, no one has yet devised a way to compute the
information content of decoupled designs. One problem may be
that the need has not been clearly articulated. The following
section establishes this need with a proof that decoupled designs
do not meet the criteria for summing information as listed in

Theorem 13 in The Principles of Design [1].

4 INFORMATION CANNOT BE SUMMED FOR
DECOUPLED DESIGNS

Before presenting an algorithm to compute information content
in decoupled designs, it seems appropriate to prove that the
simpler procedure of summing information content will not be
adequate. As noted in Theorem 13 [1], information can be
summed if the functional requirements are probabilistically
independent. The theorem below establishes that this condition
fails to hold for decoupled designs under most conditions.
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Proposition — If the design matrix A is decoupled and the DPs
are probabilistically independent with non-zero variance and the
on-diagonal elements of A are non-zero, then the FRs CANNOT
be probabilistically independent and the information content
cannot be summed.

N

+In[[A] ©)

Proof

Let the covariance among the DPs be represented by the
covariance matrix Kpp. If the DPs are probabilistically
independent, then the covariance matrix Kpp must be diagonal.
If the DPs are related to the FRs by the design matrix (Equation
1), then the covariance matrix of the functional requirements is

K FR — AK DPAT (10)

Without loss of generality, we may assume that A is lower
triangular rather than upper triangular since an upper triangular
matrix may be rearranged into a lower triangular matrix by
inverting the order of the FRs and DPs. If A is lower triangular
and Kpp is diagonal, any element of the covariance matrix of the
functional requirements is

i an
K FRij =K FR ji :Z;Aij DPppAip
p:

For the functional requirements to be
probabilistically independent, it is a necessary
condition that Kgr is diagonal. From Equation
11, we will now show that Kgr is diagonal if and
only if A is uncoupled rather than decoupled.

If the matrix Kgr is diagonal, then all the off-diagonal elements
in its first row must be zero. For the first row, this implies

that K gy = A K ppyy Ay =0for all j>1. the

Since

proposition stipulates that the on-diagonal elements of A and
Kbpp are non-zero, we know that K opP1L * Oand A11 #0. It
follows therefore that all the off-diagonal elements in the first
column of A must be zero (i.e. Aj1 =0 for all >1). So,

probabilistic independence of the FRs demands that the off-
diagonal elements of the first column of A are zero.

The argument in the paragraph above can be extended to the
second row. If the matrix Kgr is diagonal, then all the off-
diagonal elements in its second row must be zero. For the second
row, this implies

KFRZj:AleDP11A21+Aj2KDp22A22:0. But we

have established that the off-diagonal elements in the first row of
A must be zero, so the expression simplifies to

Keryy = A 2K pppAn =0. the

elements of A and Kpp are non-zero, it follows that all the off-
diagonal elements in the second row of A must be zero. So,
probabilistic independence of the FRs demands that the off-
diagonal elements of the second row of A are zero.

Since on-diagonal
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The argument above extends naturally to all » rows of the design
matrix establishing that Kgr is diagonal 4 and only if A is
uncoupled rather than decoupled. Therefore, since A is not
uncoupled, the matrix Kgr cannot be diagonal, the FRs cannot be
probabilistically independent, and the information content of the
design is NOT the sum of the information content of the FRs. []

In the proposition proven above, the requirement that the design
matrix must have non-zero on-diagonal elements is not very
restrictive. In Axiomatic design, it doesn’t make sense to have
diagonal elements equal to zero since that would imply that a DP
provides no control over its corresponding FR. If any on-
diagonal element is zero in an uncoupled or decoupled design,
the design matrix will be rank deficient and it will generally not
be possible to satisfy all the FRs.

This section proved that information content cannot simply be
summed for decoupled designs. This motivates the need for the
more sophisticated algorithms presented in the following
sections.

5 COMPUTING THE INFORMATION CONTENT OF
DECOUPLED DESIGNS

This section will present a means for computing information
content of a decoupled design without assuming any specific
form of the distribution of the design parameters. In the most
general case, the probability of success of a design is the integral
of the joint density function of a vector of design parameters
fDP) over the design range

p,= [ f(DP)dDP (12)

design range

The design range is the set of points in design parameter space
that satisfy 4/ the tolerances on the functional requirements. Let
the bi-lateral tolerance on the /” FR be represented as OFR; and
the center of the tolerance range (or target value) of the // FR be
represented as TFR,. If the design is nearly linear within the
system range, then the design equation (Equation 1) can be
modeled as a linear mapping between design parameters and
functional requirements.  Under these conditions, the design
range is a set defined by a system of linear inequality constraints.

A Op< FR + SFR
-A T |-FR+FR|[ 13

The matrix on the left hand side of the inequality in Equation 13
is formed by stacking the design matrix and the negation of the
design matrix. Similatly, the vector on the right hand side of the
inequality in Equation 13 is formed by stacking a vector of upper
limits on the FRs and the negation of a vector of lower limits on
the FRs.

designrange= {DP

If the design is decoupled and its design matrix is reordered into
lower triangular form and the on-diagonal entries are all positive,
it is possible to rearrange Equation 13 into a more useful form in

Copyright © 2000 by the Institute for Axiomatic Design
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which the linear inequality constraints are applied directly and
separately to the DPs

Equation 14 can be adapted to designs with negative on-diagonal
elements by switching the constraint for the two corresponding
rows of the matrix from “less than or equal to” to “greater than
or equal to.”

In order to better understand the design range as expressed by
Equation 14, it is useful to plot the design range for the case of a
design with 2 FRs and 2DPs. In Figure 3, the space of the
design parameters is represented as a plane. For a lower
triangular design matrix, the tolerances on FR; will plot as lines
perpendicular to the DP; axis. By contrast, the tolerances on
FR; will be parallel to neither the DP; nor the DP; axis. The
design range (over which the probability density must be
integrated) is the set of points satisying all four linear inequality
constraints. This set of points will be a parrallelpiped in R2 if
each FR has both upper and lower bounds. In the more general
case that there ate » FRs and # DPs, the design range will be a
convex polyhedron in RN. See Figure 3.

From the expression for the design range given in Equation 14,
one can define, in closed form, the upper and lower bounds of
integration required to evaluate Equation 12.

Equation 15 below applies only if all the on-diagonal elements of
the design matrix ate positive. For any negative on-diagonal
elements, the upper and lower limits of integration for the
cotresponding DP must be switched.
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Figure 3.The representation of the design range as a
convex polyhedron in R2.

To evaluate the integral in Equation 15 numerically, any of the
commonly used numerical algorithms may be employed
including Simpson’s rule or Gaussian quadrature. Note that the
order of integration is essential. For example, DP; must be the
outermost integral since it is the only integral whose limits are a
function of known quantities -- the target value TFR; and the
tolerance SFR; and the first element of the design matrix Ay.
Each of integrals nested within are functions of all the DP values
in the outer integrals.

Equation 15 allows one to numerically compute the probability
of success for any joint distribution function over the DPs. The
equation will automatically account for any correlation among
the DPs. Once probability of success has been propetly
calculated, it is simple to compute the information content of the
design using the log transform (Equation 8).

The computational complexity of deterministic numerical
integration of Equation 15 grows non-polynomially with the
number of DPs. If information content of a design with many

Copyright © 2000 by the Institute for Axiomatic Design

n,n

DPs is to be computed, it is often more computationally efficient
to use a non-deterministic integration technique such as the
Monte Carlo method.

Unfortunately, Equation 15 does not admit closed form solutions
even for the simplest cases such as independent, normally
distributed DPs. However, there does exist a more efficient
calculation procedure than Equation 15 for the special case of
uniformly distributed DPs. This algorithm is discussed in the
next section.

6 UNIFORMLY DISTRIBUTED DESIGN
PARAMETERS

The information content of a design whose DPs are uniformly
distributed can be expressed as the log of the ratio of the
volumes of two 7 dimensional polytopes where # is the number
of DPs

—lo V (system range) (16)
- V (common range)

where 17(#) denotes the volume of a set in # space. This
expression can be viewed an extension into 7 dimensional space
of the one dimensional Equation 4 as given by Suh [1].

To explain the meaning and use of Equation 10, let us consider a
case in which there are just two DPs which are probabilistically
independent and uniformly distributed within their specifications.
In this case, the joint probability density function is uniformly
distributed within the system range. If the bi-lateral specification
on the 7/ DP is represented as ADP, the system range is a

rectangle with sides of length 2ADP,, (see Figure 4).

If the bi-lateral tolerance on the /’ FR is represented as 8FR/
then each tolerance can be represented by two linear inequality
constraints. These inequality constraints together define the
design range which will be an » dimensional polyhedron — it may
or may not have finite volume. The intersection of the system
range and the design range is the common range which will be an
n dimensional polytope -- it will have a finite volume less than or
equal to that of the system range.
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DP,
<——— 2ADP,

— Design Range

I:l System Range
- Common Range

Figure 4. The representation of the system range and
common range as convex polytopes in two dimensional
space.

To evaluate Equation 16, one must compute the volume of both
the system range and the common range. The volume of the
system range can be seen by inspection to be

n )
V (systenrange)= [ | 2ADP,
i=1
To automatically compute the volume of the common range, one

may use the following theorem by Lasserre [8]. Given a convex
polyhedron defined by the set of linear inequalities

Ax <b (18)

the volume of the convex polyhedron satisfying those
inequalities is

1 b ~ ~
V(nAb)==> —2V(n-LAb) 9
p=1‘A

p.q‘

where AX < b is the system resulting from removing X, from
the system Ax <b by casting the pt inequality as an equality.

To use Equation 19 to compute the volume of the common
range, it is necessary to formulate a mathematical representation
of the common range as a set of inequality constraints. This can
be accomplished by adding the constraints that define the system
range to Equation 14 which defines the design range

Copyright © 2000 by the Institute for Axiomatic Design

Computing the Information Content of Decoupled Designs
First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

A R + FR
-A -R + FR (20)
commonrange= 4 DP -DP <
I uDP + ADP
-1 — uDP + ADP

where I is the n by n identity matrix and pDP is a vector of the
mean values of the DPs.

This section provided a conceptual overview of an algorithm for
computing information content for decoupled systems with
uniformly distributed design parameters. Equations 16-20 are
sufficient in principle to enable the reader to carry out the
necessary  calculations. In practice, there are many
implementation  details required for correct numerical
computation of information content of decoupled designs with
uniformly distributed DPs. These details are provided in the
Appendix. The next section presents a case study of the use of
the two algorithms.

6.1 EXAMPLE APPLICATION — PASSIVE FILTER
DESIGN

This case study is an adaptation of Example 4.2 from Suh [1]
concerning the design of an electrical passive filter. The example
was also discussed by Bras and Mistree [9] who noted some
errors in the originally published formulae. We have adopted the
corrected formulae for this paper. The two proposed circuit
designs are given in Figure 5 as Network a and Network b. The
variable values that define the model of the displacement
transducer / demodulator and galvanometer are in Table 1. We
chose to analyze the design options that employ (as a transducer)
the strain gauge bridge rather than the LVDT (Linear-Variable
Differential Transformer). The expressions for D and @, in

terms of the design parameters and the transducer and
galvanometer characteristics are from Suh [1] and are presented
in Table 2.

The functional requirements of the system have been specified
as:

FR1: @, = Design a low-pass filter with a filter pole at 6.84 Hz
or 42.98 rad/sec.

FR2: D =Obtain D.C. gain such that the full-scale deflection
results in +3 in. light beam deflection.
The two design parameters are:

DP1: C = capacitance.

DP2: R=resistance. The design parameter for network a is R2.
The design parameter for network b is R3.

One may solve for the nominal DP values that place the FRs
precisely on their target values. Using the formulae in Table 2
and values in Table 1, the DP values that satisfy the FRs are
given in Table 3. Taking the appropriate partial derivatives of
the equations in Table 2 about the target values of the DPs in
Table 3 yields the design matrices in Table 4.

156



It is clear from inspection of Table 4 that both designs are
decoupled. However, it is also true that network A is much
more neatly uncoupled than network B. This can be
demonstrated by computing the Reangularity of the two designs
(Table 4). The Reangularity of network A is neatly unity which
is characteristic of a completely uncoupled design. The lower
values of Reangularity of network B indicate a higher degree of
coupling. Please note that the Reangularity of a matrix depends
on the scaling of the rows. To compute the figures in Table 4,
which are the same as those published in Suh [1], one must first
normalize the rows of the matrix by the nominal values of the
FRs.

Now, let us consider the information content of the two designs.
To do this, we must specify the tolerances on the FRs and the
distribution of the DPs. Let us assume that the tolerances on the
FRs are 5% of their nominal values. Let us further assume that
the specification for the resistors is £10% of their nominal values
and that the specification for the capacitor is *15uF. Let us
further assume that the DPs are probabilistically independent.
For the distribution shape of the DPs, let us consider two cases —
For normally distributed DPs, let us
assume that the tolerance represents £36 of the distribution and
that the mean is on target. For uniformly distributed DPs, let us
assume that the probability density is uniformly distributed
throughout the entire specification range.

normal and uniform.

) Network a
Displacement Galvanometer
transducer CoTTTTTTTIR IS
1 RZ H
1
y CFWVL P : %
s : |
R O | a
o
Displacement Galvanometer
transducer Network b

Figure 5. Two proposed network designs for passive
filters (adapted from [1])

Table 1. Variable values for the displacement transducer
and galvanometer.

Variable Nominal Value
R, 120 Q
g 0.015V
in
98 QQ

Ry

G 657.58 uV/in.

sen
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Table 2. Equations for Networks A and B.

Network A

Network B

o, (rad/sec)

RS+Rg+R2

CRSiRg +R2)

(R, +R; R, +R;R

9

CR,R,R,

D (incheg

RV

g " in

RRVin

q4&+@+@

) GulR+

R)R +RR,]

Table 3. Design parameter values for networks A and B.

Network A Network B
Mean Tolerance Mean Specification
Capacitor | C=231uF | £15uF C=1474pF | £15pF
Resistor | R,=527Q | +10%-R, | R,=223Q |+10%-R,

Table 4. Design matrices for networks A and B.

Network A Network B
-1.86x105 -1.10x102 -3.00x104 -1.38
rad rad rad ( rad j
secF sec seck sec Q)
0 ) -4.03x103 0 ) 9.50x10-2

in in in ()
F Q F Q

Reangularity Reangularity
=0.982 =0.707

The result of applying the algorithms presented in this paper to
the passive filter designs under the assumptions outlined above
are summarized in Table 5. In all instances, the probability of
success and information content of the designs computed by
Equation 15 or 16 were confirmed by Monte Carlo simulation
over the non-linear equations in Table 2. This lends evidence
that the algorithms are free of error. It also shows that it was
reasonable to assume linearity of the FRs within the range of the
variability of the DPs.
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Table 5. Information content and coupling for networks A

and B.
Network A Network B
I (bits) )2 I (bits)  p,
Information Integration of
" 0

content for pdf (Equation | 0.084 94.4% | 0.059 96.0%
normally 15)
distributed

Monte Carlo 0.095 93.6% | 0.063 95.7%
DPs

Summing

information 0.084 0.107 92.9%

94.4%

of each FR
Information Ratio of
content for volumes

0.880 54.4% | 0.576 67.1%

uniformly (Equation 17-
distributed 20)
DPs

Monte Carlo 0.844 55.7% | 0.593 66.3%

Summing

information 0.887 541% | 1.038 48.7%

of each FR

The algorithms of this paper reveal that network B has lower
information content than network A and therefore is to be
preferred according to the Information Axiom. B was preferred
to A regardless of the distribution shape although the uniform
distribution led to higher information content in all cases since it
is a more pessimistic assumption. This is notable since network
B is more coupled than network A. Network B is decoupled and
therefore is still an acceptable design according to the
Independence Axiom. This suggests that when both uncoupled
and decoupled alternatives exist, it is important to evaluate the
information content of all the designs before discarding any
alternatives. The higher probability of success of a decoupled
design may more than compensate for the requirement of
selecting the DPs in proper order.
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The process of summing information content provided excellent
estimates of the information content for network A. The degree
of coupling of network A is low enough, as indicated by its high
Reangularity, that the FRs can be considered probabilistically
independent. When all the design alternatives being considered
are fully uncoupled and the DPs are probabilistically
independent, the procedure of summing information is reliable.

On the other hand, the process of summing information content
provided poor estimates of the information content for network
B due to its higher degree of coupling. More importantly, these
poor estimates would lead to the wrong choice of design. In both
the normally distributed and uniformly distributed cases, the sum of
information content incorrectly indicates that network A is superior fo
network B. It is essential to design decision making that the
information content of decoupled designs is computed correctly
and not simply summed.

7 CONCLUSIONS

This paper has proven mathematically that the information
content of a decoupled design is never exactly the sum of the
information of the functional requirements (FRs). Decoupled
designs always induce some correlation among the functional
requirements even when the design parameters (DPs) are
independent.

We presented two algorithms for properly computing the
information content of decoupled designs. One is a general
procedure applicable to any form of distribution of the DPs.
The key innovation of the algorithm is the proper computation
of the limits of integration based on the tolerances on the FRs,
specifications on the DPs and the design matrix. The other
algorithm is applicable only if one assumes that all the DPs are
uniformly distributed. The technique is based on calculation of
the volumes of convex polytopes.

The example application demonstrated that, in some cases, the
Information Axiom requires that decoupled designs are to be
preferred to uncoupled designs. Decoupled designs induce
correlation in the FRs which, all other things being equal, tends
to reduce information content of the design. However, the only
reliable means for making decisions consistent with the
Information Axiom is to accurately estimate the information
content of all the feasible design alternatives.

Most importantly, the example application shows that the
information content of decoupled designs can sometimes be
significantly different from the sum of information of the FRs
and that these differences can sometimes critically affect
engineering decision making. To ensure that one’s design
process is consistent with the Information Axiom one absolutely
requires algorithms such as those presented in this paper which
propetly account for correlation among FRs.
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APPENDIX -- IMPLEMENTATION DETAILS OF THE ALGORITHM
Equation 19 is a recursive algorithm which Lasserre used to find symbolic expressions for the volume of a polytope. The algorithm was

adapted to create a numerical solution technique by recognizing that the reduced system AX <D can by an equality constraint and a set
of inequality constraints

Xl
X (1)
_ 4 ~
A X = b and A d < b
p p X
q+1
X,
where
A jifj<q
'& — A A P j+1 otherwis 22
i iifi<p jifi<q - iifi<p A
i+1 otherwise’| j+1 otherwis i+1 otherwis 4 p.q
and
b (23)

—A P

iifi<p
{i+1otherwisJ’q A p.q

b

i ifi<p =b i ifi<p
i+1 otherwise| i+1 otherwise|

wherei e1.2m-19, je1.4n-L

The implementation of the recursive algorithm defined by Equation 19 requires some care in implementation. On each evaluation of
(n,Ab), any duplicate inequality constraints must be removed. That is, if two rows of A are identical and the corresponding elements
of b are also the same, then one of the rows must be removed from the system. If not, the algorithm will sum the volume of a single face
more than once. It also requires care in selecting which x, to remove for any given / since if A, is zero (or very small) an overflow will
result.

A Mathcad implementation of the recursive algorithm appears in Figure 6. The first two arguments of the function V(m,n,C) are the
number of rows and columns respectively in the matrix A. The third argument is the matrix A and vector b augmented into a single

matrix C= [A b] . Note that the function calls itself making the algorithm recursive.

Note that if the polyhedron is unbounded, then the function will return a very large number. This cannot occur in computing the

volume of the common range as defined in Equation 20. Also note that if the volume of the 7 face as computed by the algorithm below

. ) . .
is zero, then the /” constraint is redundant.

The Mathcad implementation in Figure 5 was used for computing values for the example application. It has been validated by
reproducing results from the open literature and by comparison to results from Monte Carlo simulations.
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V(m,n,C):= |if n>1
for ie2. m
i-1 .
same- nat I_I no{[[<cT><l>]-‘ <CT
i2=1
for jel. n+ 1| if same
Ci,j(_o >

for j_elime 1. n
break if Q’Le“mzo

Sle

['m
i=1
0if C =0

i,j_elim
otherwise
for i2e 1. m

Cp, ,«C C

i2n+ 1

forjel.n-1

Chy ¢ Ciz,[

C.
(L*l-vmn— 1,Cp)
‘ i,jfelim‘

0 otherwise

otherwise

EMPTY<0

for Lel. m

(EMPTY«1) if (cL’1=o>-<cL’2<o>
. CL,z .

cL,l
101°

L,2
cL,l

pos « if CL’1> 0
otherwise

neg« if CL 1< 0

] -10' otherwise ]

D-not( EMPTY)

o
min(pog - max ney

><i2>

i2,j_elim’ c

j if j<j_elim
(j+1) otherwise
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. <CT><i>

]

” <CT><i2>

[<CT><i2> ” <CT><i>

ci,n-'-l

i,j_elim,

j if j<j_elim
(j+1) otherwise

B

~-C.. .
i2,j_elim
] ci,jfelim

if C =0

i,j_elim

Figure 6. Mathcad code for computing the volume of a convex polyhedron.
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