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ABSTRACT 
Traditionally, large complex system is evolved from an 

assemblage of  components to form a subsystem and from 
subsystems to system.  The approach invariably fails to capture 
the connectivity between various output measures and input 
variables.  This paper proposes to “connect the dots” by relating 
output measures to input variables through the transfer function.  
With the aid of  the transfer function, it becomes possible to give 
a mathematical treatment of  Axiomatic Design and robust design.  
The treatment clarifies such concepts as independence and 
information content in Axiomatic Design.  It extends robust 
design to design for multiple functional requirements. It unifies 
Axiomatic Design and robust design.  Examples are provided to 
illustrate the unification. 

 

1 INTRODUCTION 
Over the past two decades, the quality of  North American 

cars has improved significantly.  Robust design has played a 
major role in the improvement.  However, in spite of  the wide 
success enjoyed by robust design, the full potential of  robust 
design has yet to be realized.  This is because its applications 
thus far have been limited to component design involving single 
functional requirement (FR).  For large complex system such as 
automobile that involves numerous components and subsystems 
interacting in complex fashions, it is impractical to evolve a large 
complex system from an assemblage of  components, i.e., bottom 
up.  Robust components in and of  themselves can not guarantee 
robust system.  A large complex system has to be designed, not 
evolved, as a robust system top down.   

Axiomatic Design provides the theory to design a complex 
system top down, see Reference 1.  It deals with multiple FRs, 
single FR being a special case, and provides the connectivity 
between various FRs and design parameters (DPs) through the 
design matrix.  It is therefore natural to develop robust system 
from Axiomatic Design framework.  We shall do this in this 
paper through the introduction of  the transfer function.  With 
the aid of  transfer function, it becomes possible to give a 
mathematical treatment of  Axiomatic Design and robust design.  
The treatment helps clarify such concepts as independence and 
information content in Axiomatic Design.  It extends robust 

design to the design for multiple functional requirements. It 
unifies Axiomatic Design and robust design. 

 

2 TRANSFER FUNCTION FOR A SINGLE FR 
A transfer function relates the output, the functional 

requirement FR of  a design to its input, the design parameters 
{DP1, DP2,… DPm} which are collectively denoted by the vector 
DP +, 

 
 FR = f  (DP1, DP2 … DPm); 
       = f  (DP) 
 
The notation ( )•f  denotes the transfer function itself. 
For example, a design to achieve a joint of  a cast iron rod 

with aluminum tubing by press fitting will have the transfer 
function: 
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In the above, the FR is the radial pressure p developed at the 

interface that holds the rod and the tubing together.  The design 
parameters are the inner radius RAl and outer radius CAl of  the 
aluminum tubing, the radius RFe of  the cast iron rod and the 
Young modulus E and Poisson ratio µ, subscripts Al and Fe refer 
to aluminum and cast iron respectively.  For µAl=0.34, EAl= 71, 
000Mpa, µFe=0.29 and EFe= 120,000Mpa; the transfer function 
reduces to  
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 To design for a radial pressure of  p = 30Mpa, we may 
specify  

  RFe = 20.938mm,  
  RAl = 20.890mm, 
  CAl = 26.000mm. 
The above specifications yield the target radial pressure = 

30Mpa.  However, due to manufacturing error in components’ 
radius of  say ± 0.025mm, the actual radial pressure developed 
would be 30 ± 22.120Mpa.   

 By contrast, the same design with specifications of   
  RFe = 22.908mm,  
  RAl = 20.825mm, 
  CAl = 26.000mm; 
and in the presence of  the same manufacturing errors in 

components radius of  ± 0.025mm would yield a radial pressure 
= 30 ± 12.782Mpa.  There is a 50% reduction in error of  the 
radial pressure developed.  In other words, the second set of  
specifications yield a design that is on target and at the same time 
less sensitive to the manufacturing errors.  This example 
illustrates the two issues involved in design; tuning the design for 
a target value and rendering the design insensitive to errors.  A 
design must be specified in such a way that it is tuned to target 
and is insensitive, i.e., robust, to errors as well. 

  The mathematical formulation for robust design is as 
follow.  To tune the design to the target value FR*, we choose a 
vector DP*={ }*

m
*
2

*
1 DP,DP,DP L  such that  

 
 f(DP*) = FR*.    (1) 
 
Once the design is tuned to the target value, any random 

variation in DP around DP*, which we denote as δDP, produces 
a random FR given by: 
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 is the sensitivity of  

the design to errors evaluated at DP*.  The squared errors of  
the FR is then given by, 

 
 
 

( )[ ] ( ) ( ) j
j

i
* DPDPfFR

2
δδ∑∑ ′′=−

i
ji ff ** DPDPDP        

(2) 
 
If  the transfer function f(DP*) is a nonlinear function of  

DP*, then the sensitivity ( )*DPif ′  would be a function of  DP* 
as well.  One can therefore specify the value of  DP* such that 
the design is tuned to target, i.e., f  (DP*) = FR*; and at the same 
time insensitive to error in DP, i.e., ( )*

j DPf ′  is low.   Thus, 

robust design stated in mathematical terms is the search for DP* 
that minimizes the squared error in Equation (2) subject to the 
equality constraint of  Equation (1).  This strategy of  exploiting 
the nonlinearity of  the transfer function to achieve a design that is 
on target and at the same time insensitive to error was first 
introduced by Dr. G. Taguchi to North America in the mid-1980, 
see Reference 2.  The transfer function and the robust design 
have since formed the core strategy for implementing Design for 
Six Sigma now widely practiced in the industries. 
 

3 TRANSFER FUNCTIONS FOR MULTIPLE FR 
  A design most likely will have multiple FRs involving 

multiple DPs.  There could be interdependence among the FRs 
arising from their dependence on the same set of  DPs.   Since 
Axiomatic Design provides the connectivity between various FRs 
and DPs through the design matrix, it is most natural to develop 
transfer functions for multiple FRs from Axiomatic Design 
viewpoint. 

 For multiple FRs wherein an FRi is a function of  some, 
but not all of  the DPs, the multiple functional relationships may 
be expressed as: 
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Or 
 
 FR = f (DP) 
 
A convenient representation of  above functional 

relationships, Equation (3), is the matrix notation: 
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Or, 
  
 FR = [DM] DP  (4)   
 
The “design matrix” [DM]++ above serves only to indicate 

the connectivity, whether an FR is a function (as indicated by 
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“X”) or not a function (as indicated by “O”) of  a DP.   It is not 
to be construed as a matrix.  Nor should Equation (4) be 
construed as a matrix equation following the rules of  algebraic 
matrix manipulations.  However, the structure of  the “design 
matrix” [DM] does indicate the degree of  coupling among the 
FRs through the DPs.  It provides a measure of  the difficulty 
with which we can tune a vector DP to achieve a target vector 
FR*.  For example, a diagonal design matrix, i.e., no coupling, 
implies that each FRi can be targeted solely by tuning the 
corresponding DPi independent of  other ij,DPj ≠  

 There are situations wherein FR can be expressed as a 
linear combination of  DP.  

Namely, 

 ∑
=

=
n

1k
kiki DPaFR .   

    
Or,  
  
 FR = [A] DP  (5) 
 
In these situations, the matrix [A] is in fact a matrix; and 

Equation (5) constitutes the transfer functions for multiple FR.  
It is a matrix equation following all the rules of  algebraic matrix 
manipulations.   

 If  DP* is the value of  DP that brings FR to its target 
value FR*=f  (DP*), any deviation in DP from DP*, which we 
denote as δDP, yields an FR that may be approximated by a 
Taylor series expansion of  the FR around FR*: 
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___________________________________ 
++ Bracketed upper case quantities are matrices. 
The deviation in FR from its target value FR* which we 

denote as δFR, is then given by: 
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And, the squared error of  FR is: 
 
 DPDPFRFR δδ=δδ ]B[]B[ TTT  (8) 
 
The [B] matrix evaluated at DP* is as follows. 
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(9) 
 
Based on Equations (5), (6) and (7), we may express FR as: 
  
 [ ] [ ] DPDPFR * δ+= BA   (10) 
 
Equation (10) above, derived from the Taylor series 

expansion of  the transfer functions, expresses succinctly the two 
issues in the design for multiple FR.  The first term on the RHS 
of  the equation relates to the tuning of  the design for multiple 
target values of  the FR.  The ease of  tuning is dictated by the 
structure of  the [A] matrix, a diagonal [A] matrix being the easiest.  
The second term relates to the robustness of  the design.  The 
robustness is dictated by the [B] matrix that amplifies the errors 
δDP. 

  

4 TRANSFER FUNCTIONS OF A WATER FAUCET, 
AN EXAMPLE     

 We now illustrate the above mathematical treatment with an 
example. Consider the transfer functions of  a water faucet.  The 
two functional requirements are to control the water flow rate Q 
and to control its temperature T:  
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 Mass and energy conservation govern the mixing of  

hot and cold (subscripts h, c) water to yield a certain water flow 
rate Q and temperature T: 
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 To achieve the {Q, T}, we create a design that involves 

rotational angle θ of  two valves that control separately the flow 
of  hot and cold water.  The design, a physical embodiment 
described in terms of  the design parameters, is Qh = kI θ1, Qc = 
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kI θ2; with kI being a proportional constant and {θ1, θ2} the 
design parameters.  With such a design, Equations (11) and (12a) 
are arranged into equations that map the input variables {θ1, θ2} 
into the output quantities {Q, T} as follows.  
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The above matrix equation is the transfer functions of  the 

faucet.  Per Equation (5), the [A] matrix is: 
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 Every design has unique transfer functions.  For 

example, an alternate faucet design is to use the vertical and 
horizontal angles of  a lever to control the flow of  water: (Qh+Qc ) 
= kII θv , Qh /Qc = kII θh ;  kII being a proportional constant.  
With this design, Equations (11) and (12b) are arranged in a 
different way, giving rise to strikingly different transfer functions:  
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The [A] matrix in this case is diagonal:  

  

 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
θ+

−

h1
cThT

0

0k

A
II

 

 
 The water faucet example reveals an insight into 

transfer functions.  Although the governing physics in both 
designs are the same, different physical embodiments of  design 
parameters bring about different transfer function architectures 
that affect in a different way, the ease of  tuning for target and the 
robustness of  a system.  In other words, the transfer functions 

of  a design is not determined by the governing physics but by the 
conception of  the design and the physical embodiment of  the 
concept. 
 

5 A TRANSFER FUNCTION PERSPECTIVE OF 
AXIOMATIC DESIGN AND ROBUST DESIGN      

Axiom I in Axiomatic Design deals with the independence 
of  FR; and Axiom II; with information content necessary to 
satisfy the FR.  In the past, the design matrix [DM] that relates 
the FR to the DP has been used to indicate both the 
independence and the associated information content.  From a 
transfer function perspective as expressed by Equation (10), it is 
more logical to indicate independence and information content 
separately with matrices [A] and [B] respectively.  A design with 
an [A] matrix that is diagonally dominant would indicate strong 
independence among the FR and therefore easy to tune.  Since 
the system range of  a design is directly proportional to the 
squared error of  FR, then according to Equation (8), the [B] 
matrix is the logical indicator for information content.  For the 
same amount of  error ∆DP, a design whose [B] matrix is 
diagonally dominant and with smaller trace would have less 
information content to satisfy the FR.  

 A mentioned earlier, robust design exploits nonlinearity 
of  the transfer functions to achieve a design on target at a 
reduced sensitivity.  Therefore, implementation of  robust design 
requires that the [A] matrix be a function of  DP and that it be 
diagonally dominant.  While it appears that [B] matrix is 
primarily responsible for the design sensitivity, it is in fact the [A] 
matrix that plays the major role.  This is because the [B] matrix is 
derived from [A] matrix as follows.  From Equation (9), an 
element of  [B] matrix is:   
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If  matrix [A] is a constant, then the [B] matrix is also a 

constant.  In this case, there will be no opportunity to 
implement robust design.  In other words, the conception of  a 
design and the physical embodiment of  the concept determine 
the [A] matrix and consequently the opportunity and ease for 
implementation of  robust design. 
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