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ABSTRACT 
In this paper the axioms, of Axiomatic Design, are 

extended to the non-probabilistic and repetitive events. 
The idea of information, in the theories of Fisher and 
Wiener-Shannon, is a measure only on probabilistic and 
repetitive events. The idea of information is larger than 
the probability. It is possible the formulation of an 
Extended Theory of Information for probabilistic and 
non-probabilistic events. As example is studied an 
application in which the number of DPs is less then the 
number of FRs, and the coupled design cannot be 
satisfied.  

 
Keywords: design, axiomes, information, non-probabilistic 
information  

1 INTRODUCTION 
The design process gives the structure necessary for 

the transformation of the qualitative needs, often stated in 
non engineering terms, to the real products.  

This transformation is achieved through the 
application of scientific knowledge to the problems. 
Using previous design databases the design process 
generate several alternatives to be evaluated frequently. 

Usually the design process is subdivided into a series 
of phases with specific, evaluations to make between 
these phases. Each evaluation determines whether the 
phase needs to be repeated, or if the designer needs to go 
back on one or more phase. 

Nam P. Suh (1990) proposes an axiomatic method for 
highly complex designs. The design process optimizes 
elements using a set { }iFR of functional requirements and 
a set { }jDP of physical parameter.  

He proposed two axioms that could help to have a 
good design. The relation of { }iFR  with the { }jDP

 
is 

mathematically expressed as 
( )i jFR f DP=  

The design process is reduced to a series of mappings 
from the design's functional requirements into the design's 
parameter space. The mapping process between the 
domains is repeated several times, with the results that 
previous design parameters determine the next set of 
functional requirements. 

 The domains are defined by the vectors: 
 

{ }    FR vector of functional domain=  

{ }DP vector of physical domain=  
{ }    PV vector of process domain=  

 
The relation between these two domain in matrix 

notation is written as 
 

{ } [ ]{ }  FR A DP=     (1) 

{ } [ ]{ }DP B PV=     (2) 

were [ ]A  and [ ]B  are the design matrices. 

 In the problems in which the { }iFR  depend from 
non linear functions, the equation (1) can be written in 
differential form 

 
{ } [ ]{ }dDPAdFR =  

 
The elements of design matrix can be written as 

ij i jA FR DP= ∂ ∂  and the design matrix is  
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A small change in any parameter may cause a 

deviation in the functional requirement  
 

i
i j

j

FRFR DP
DP
∂

∆ = ∆
∂

 

In linear design jiij DPFRA ∂∂=  are constants. We 
have  

∑=
=

n

i jiji DPAFR
1

 

In (1), the diagonal matrix is a special case. The 
design matrix [ ]A , in general, is a rectangular array of 
values.  

 
In the design process Nam P. Suh has indicated two 

axioms, on functional requirement, in order to examine 
the actions of planning. The axioms are: 

 
Axiom 1: The independence Axiom. Maintain the 

independence of functional requirement. 
 
Axiom 2: The information Axiom. Minimize the 

information contents of the design. 
  
The first axiom states that the independence of 

functional set { }iFR must be always maintained. The 
information axiom states that the best design has the 
minimum information and the minimum of functional 
requirements. For comparing two design, one can 
compare the information content of the two design which 
can satisfy the functionally parameters. The information 
content can be described by means similar to the Wiener-
Shannon’s theory. 

The elements of a design matrix [ ]A  can be constants 
or functions, with the consequence that the design may be 
non-linear. Mathematical techniques can transform a 

matrix, but the physical significance of the elements ijA  
can be lost. An ideal design matrix is a square diagonal 
matrix with each FR related one to one to a single DP. 
The uncoupled tolerance for a iDP  is i i iiDP FR A∆ = ∆ . 
The propagation of tolerance for a decoupled design with 
a lower triangular matrix n n× , is expressed as 

1*

n
i ij jj

i
ii

FR A DP
DP

A
=

∆ − ∆
∆ =

∑
 

From equation (2) it is evident that is *
i iDP DP∆ ≥ ∆ . 

The consequence is that decoupled design has less 
tolerance than an uncoupled design, and the increase of 
the order of design matrix makes the last iDP ’s tolerance 

smaller. If the number of  sDP  is greater than the number 

of sFR , then the design is redundant.  
When the number of  sDP  is less then the number of 

sFR , then the coupled design cannot be satisfied. 

Suppose that there is a set of three{ }1 2 3, ,FR FR FR  and a 

set of two { }1 2 , DP DP , then the equation in matrix 
notation is  

1 11 12
1

2 21 22
2

3 31 32

FR A A
DP

FR A A
DP

FR A A

⎧ ⎫ ⎡ ⎤
⎧ ⎫⎪ ⎪ ⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎩ ⎭⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎣ ⎦

    (3)  

In this equation 3FR cannot be always satisfied. The 
equation (3) can be written 

 
1 11 1 12 2

1 21 1 22 2

1 31 1 32 2

  
  
  

FR A DP A DP
FR A DP A DP
FR A DP A DP

= +
= +
= +

   (4) 

 
It is not possible to have a solution of system (4) 

without to make changes to functional requirements. 
 

2 DESIGN WITH THE NUMBER OF DPS LOWER 
THAN THE NUMBER OF FR2 

In ideal design each functional requirement must be 
linked to one design parameter, and vice versa each 
design parameter can satisfy one (or more) functional 
parameter. From the system of equations (4) it turns out 
obvious that with the number of  s sDP FR<  it is possible 
to have only approximate solutions. In this situation the 
number of DPs is insufficient to achieve all the sFR  in 
exact mode. A good design has the minimum information 
content. Analyzing the information of a design it is 
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possible to understand the physical influence of 
constraints. The information axiom states that the best 
design has then minimum information and the minimum 
of functional requirements. It is useful for to choose 
between two or more designs. In absence of solution we 
cannot compare anything: we need at least a solution. 

Using mathematical transformations it is possible to 
obtain an approximate solution. If a set of tolerances is 
imposed to the domain of sFR , then the tolerances are 
propagated from domain to domain and the set of DPs 
will be modified.  

If we use the idea of information in metric space, 
using the Laplace’s principle of insufficient reason, in 
according with Maximum Entropy Principle of Jaynes 
(MaxEnt Principle), we can select as solution the 
distribution that maximize the Shannon entropy measure 
and simultaneously is consistent with the values of 
constraints. With MaxEnt Principle it is possible to have a 
solution when the number of DPs is less than the number 
of FRs . 

Now it is important to understand the physical 
significance of mathematical transformations deriving 
from the use of the Jaynes’s principle  

The idea of information, in the theories of Fisher and 
Wiener-Shannon, is a measure only of probabilistic and 
repetitive events. The idea of information is larger than 
the probability and the axioms of Wiener–Shannon can be 
extended to the non-probabilistic and repetitive events. 
Let Ω  to be the field of all events ω  (Fig. 2), 
probabilistic or non-probabilistic, and ℑ  a class of parts 
of Ω , ( )Ω℘⊂ℑ arts . With ℑ⊂A  we can assume the 
next two axioms:  

AXIOM I: The value of information J(A) is always a 
number non-negative: 

 
( )J A +ℑ→   :    R   (5) 

 
AXIOM II: The value of information J(A) is 

monotonous in regard to inclusion: 
 

 )()(       ,          ,    , AJBJABBA ≥⊂ℑ∈∀   (6) 
 

Now it is possible the construction of new algorithms 
in terms of information, founded only on the first and 
second axioms [3]. For independent events it is opportune 
to assume a third axiom: 

AXIOM III: If the events ℑ∈BA,  are independent 
for all the values of information, we have:  

 

 )()( ) J(       , AJBJABBA +=∩ℑ∈∀  (7)  
 
The third axiom shows that when we are in presence 

of independent events it is possible to add up information.  

 
If Ω  is a certain event and φ  the impossible event 

than, for an universal validity of )(AJ  and )(φJ , for all 
J   and  ,ℑΩ  must be: 

 
0)( =ΩJ  , +∞=)(φJ    (8)  

 
The expression 0)( =ΩJ  means that Ω  is a certain 

event without need of information. The expression 
+∞=)(φJ  means that if φ  is an impossible event with 

the need of infinite information. In a metric space Ω , if 
ω  is an event in ( )Ωarts℘⊂ℑ , its measure will be 
always incorrect. The knowledge of ω  is not given by its 
coordinates in Ω , but it is possible only to assert that ω  
is limited in a subset ℑ∈iA . If d( iA ) is the diameter of 

set iA , than, more is the precision of measures, less is the 

measure of diameter of event iA . If we assume that { }y,xP  
is a set of ideal data in a continuous closed bounded 
subset [ ]D∈Ω , given anyε  > 0, there is a set { }y,xM of 
values of measures with sufficiently high precision such 
that 

( ) Ω∈<− y,xMP y,xy,x for    ε    (9)  

 
But the probability p of an exact measure is in inverse 

proportion to the precision, so the ideal measure of 
point’s coordinates has null probability to be obtained: it 
is an impossible event. The impossible event φ and the 
certain event Ω  are always independent from J and A: 
they are universal values. All three axioms have 
correspondent axioms in Wiener-Shannon theory.  

With the axioms 0)( =ΩJ  and +∞=)(φJ  it is 
possible to construct models for information very useful 
in applications. In metric space Ω, for every event ℑ∈A  
we can have a measure of information using the 
mathematical expression : 
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)A(d
)A(J 1
=    (10)  

 
This definition of information has a natural 

application in metric space [3]. In a metric space Ω , if ω  
is an event in ( )Ωarts℘⊂ℑ , better must be the result of 

its measure than smaller is the diameter of iA , and larger 
will be J(A )[9]. If we assume that all the measures are 
made with equal care, and for any value of ω  the data 
have a normal distribution, the probability that the error 
d( iA ) will fall in a small interval yδ  is given for iω  

( ) ( )[ ] yii  )d(AP δσ
πσ

ω 22 2 exp
2

1
−=   (11)  

 
Similar expression can be written for all iω  in Ω . 

The standard deviationσ  is a measure of precision of the 
measurements and it is a constant for all the data. As the 
separate measurements are independent for all events, the 
probability for all is the product  

  

( ) ( )
1

2
2

00

1 1exp  
22

NN N

i i y
ik

P P d(A )ω δ
σσ π

+

==

⎧ ⎫⎡ ⎤⎛ ⎞= = −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
∑∏   (12)  

 
Maximum of P is the sign of the goodness of the 

measures of the diameters of subsets iA . This will occur 
when  

 ( ) minimum 
0

2 =∑
=

N

i
i  )d(A    (13)  

In general, the criterion that the sum of diameters 

∑
=

N

i
i  )d(A

0
 of sets iA must be as small as possible would 

have given the better result. We have that the same 
information can be valued by the probability and by the 
non-probabilistic measures of diameters. So we can have 
the measure of information from non-probabilistic data. 
Now, for to ascribe some information to the realized 
event iA , we can assume as measure of information a 
non-probabilistic function 

 

[ ]∑=Ψ )()( i

def

AdAJ  

 
)A(d

)A(J
i

i
1

∝     (14)  

 

Any vector ( )nx,,x,xx L21=  representing 
proportions of some whole is subject to the unit sum 
constraints ∑ =

i
ix 1. One of most usual dissimilarities 

and distance ( )ji x,xd  to measure the difference between 
two compositions are Minkowski's distances. In general, 
it is possible to have the measures of information for 
probabilistic and non-probabilistic events using empirical 
or non-empirical functions non-attached to the probability 
and to the repetitiveness.  

 It is possible to define a principle for metric space on 
the ground of the Theory of Information.  

 
On the analogy of MaxEnt principle, the name can be 

Max Metric Information Principle (MaxMetricInf). 
Instead of probability, it is possible to utilize a finite 
number of appropriate proportion subject to a set of 
constraints that add up to one. In observance of the 
Axioms, let nd,...,d,d 21  be n non-negative real numbers, 
let  

1 1 2

1

0 ; 
...

1 ;          ;        0        

n
i

i i
i n
n

i i
i

dd
d d d

i

ρ

ρ ρ

=

=

≠ =
+ + +

= ∀ ≥

∑

∑

  (15)  

We can use as the measure of information the relation  

J(ρ)= ( )nJ ρρρ ,....,, 21 = i
1

lnρρ∑
=

−
n

i
i   (16)  

So that: J(ρ) is maximum when n.... ρρρ === 21  
J(ρ) is minimum when: i∀ only one number is ≠  

zero  
In metric space, using Euclid’s distances, the 

information maybe 
 

( )
( )

*

* *

,

,

l o g

i j
i j

i j
i j

i j i j
i j

d x x

d x x

J

ρ

ρ ρ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

= −

∑

∑

   (17) 

 
The value of information J(ρ) is a measure of equality 

of numbers among themselves. Appling the same 
formalism of MaxEnt Principle it is easy to define the 
MaxInf Principle on the basis of so-called Laplace’s 
Principle of insufficient reason. 

 
Max Metric Information : Out of all knowledge, 

choose the solution nearest to the uniform distribution of 
information. 
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 In the situations in which we do not have reasons to 
prefer a solution, it is better choose the solution with 
uniform distribution, or the closet to the uniform 
distribution of information. 

3 APPLICATION TO AXIOMATIC DESIGN 
One application of the MaxMetricInf principle is in 

problems of approximation as criteria to find polynomials 
for to represent a given set ( ){ },.., ii yxE =  of empirical 
data. Ideally, this process should take in account the 
reliability of the data, so the more reliable data will have 
grater weight on approximating function. In absence of 
knowledge, on basis of MaxInf principle, we must use a 
polynomials, which in representing data, the deviation 
from them choose the solution closet the uniform 
distribution of information.  

In axiomatic method the design is obtained from a set 
{ }iFR of functional requirements and a set { }jDP of 

physical parameter. The set FRs is function of the set 
DPs : ( )i jFR f DP=  

The design process is made with a series operations, 
with which the design's functional requirements are 
mapped into the design's parameter space. The mapping 
process has as result that the previous design parameters 
determine the next set of functional requirements. 

Let be ( )i jFR f DP=  the approximating function 

from which we obtain, from the data, the n deviation 
( )i i iFR FR f DP∆ = − . The estimator vector is 

( )1 2, ,.., T
id FR FR FR= ∆ ∆ ∆   (18)  

From (15) we have  

( )
( )

( )
i i

i
i i

i

FR f DP
FR f DP

ρ
−

=
−∑

 

From (10) as function for to measure the information 
we can use the function  

1
( )i i i

J
FR f DP

=
−∑    (19)  

 
From MaxInf we have the max value for J when  

1 2 ... nJ J J= = =  
1 1

1 1.....       
( ) ( )i i

i
FR f DP FR f DP

= = ∀
− −

  (20)  

 
The max of information is obtained when the 

approximating function ( )i jFR f DP=  has the same 

error . 

1 1( ) .... ( )n n TFR f DP FR f DP FR− = = − =∆   (21) 

   
The estimator vector has the distributions  
 

,   ,  .. ,  

T

T T T

n

d FR FR FR
⎛ ⎞
⎜ ⎟= ∆ ∆ ∆
⎜ ⎟
⎝ ⎠
14444244443

   (22)  

 
If the function is ( )i jFR f DP=  

 
ij

i ijij
ij

FR
FR DP

DP
∂

=
∂∑   (23)  

 
The deviations of ( )i jFR f DP= evaluated at certain 

abscissa and the given ordinate corresponding to the same 
abscissa:  

 
ij

i ij Tij
ij

FR
FR DP FR

DP
∂

− = ∆
∂∑   (24)  

    
From the solution of the linear system bxA =  

[ ]
1 1

2 2

n T

FR DP
FR DP

A

FR FR

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪∆⎩ ⎭⎩ ⎭

M M
  

 
 we have the value of TFR∆  from which can be 

valuated the approximation with the max information.  

4 EXAMPLE 
The example is a case study of the path of the point P 

which go from A to B (or to C), and from B to C using a linear 
path, with the condition that the three points, A,B and C, are 
not on one straight. 

The FRs are 
 

FR1:  Possibility   of one linear path from A to B
FR2:  Possibility   of one linear path from A to C 
FR3: Possibility    of one linear  path from 
        A to B and from B to C. 

⎧
⎪
⎪
⎨
⎪
⎪⎩

   (25) 

 
 The FR3 cannot be mapped in physical domain: it is 

impossible to go, using a liner path, from A to C, including B. 
Design parameter satisfying the functional requirements can be 
only two: FR1 and FR2. 

The DPs are 
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DP1: Design of path from A to B: vector AB
DP1: Design of path from A to C: vector AC
⎧
⎨
⎩

  (26)  

 
When the number of  sDP  is less then the number of 

sFR , then the coupled design cannot be satisfied. There are 

three{ }1 2 3, ,FR FR FR  and two { }1 2 , DP DP . The equation 

in matrix notation is  
 

{ } [ ]{ }1 2 3 1 2, , ,T TFR FR FR A DP DP=    (27)  
 
In this equation 3FR cannot be always satisfied. In linear 

dependence of sFR  from  sDP  the jiij DPFRA ∂∂=  are 

constants. We have  

∑=
=

n

i jiji DPAFR
1

 

 
It is possible a solution with the introduction of a tolerance 

on the presence of points on the path. If it is introduced an 
unknown tolerance TDP∆  in the design domain then a 

tolerance TFR∆  is propagated to the functional domain and on 

sFR . If, for the Max Metric Information Principle, is imposed 

that TFR∆  is equal for all the elements of { }sFR  then the 

relationship between the two vectors { }sFR  and { }sDP  can be 

written  
( )
( )
( )

1 11 12 21

1 21 22 21

1 31 1 32 2

  +   
  
    

T

T

T

FR A DP A DP FR
FR A DP A DP FR
FR A DP A DP FR

− = ∆
− + = −∆
− + = ∆

  (28)  

 
The equation (5) may be written in matrix form  

  
1 11 12 1

2 21 22 2

3 31 32

1
1

1
 

T

FR A A DP
FR A A DP
FR A A FR

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ∆⎩ ⎭ ⎣ ⎦ ⎩ ⎭

   (29)  

 
The equation (29) can be easily solved for obtaining the 

vector of solution under tolerance { }1 2 , T
TDP DP FR∆ , .The 

solution is in figure 3. The value of Design Parameter is the 
tolerance  TFR∆  . 

* * *
3

DP1: Design of path from A to B: vector AB
DP1: Design of path from A to C: vector AC

: Design of path from A  to B  to  C
           with a  tolerance  = T

DP
FR

⎧
⎪
⎪
⎨
⎪
⎪ ∆⎩

 

 

5 CONCLUSION 
Using the idea of information, in a larger way than 

the idea of probability, it is possible the formulation of an 
Extend Theory of Information for probabilistic and non-
probabilistic events. To the question on what happens 
when the number of DPs is less than number FRs it is 
possible to answer that exist a solution in which function 
requirement can be satisfied in approximating way.  

When number of  s sDP FR< , then the DPs are 

insufficient to achieve all the sFR . If is imposed to the 

domain of sFR  a set of tolerance, it is possible to carry 
out a mathematical transformations from which it is 
possible to obtain all lacking values of DPs.. The physical 
significance of mathematical transformation is analyzed 
with the MaxEnt Principle of Jaynes.  

The solution, consistent with the values of constraints, 
is obtained selecting the solution that maximize the 
Wiener-Shannon information.  

In conclusion it is possible to assert that: 
When number of  s sDP FR< , using MaxEnt Principle, 

it is possible to obtain an approximate solution 
compatible with boundary conditions. 
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