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ABSTRACT 

Design matrices that are derived from physical laws are, 
in general, rectangular matrices with a larger number of  
design parameters than functional requirements. This paper 
explores some algebraic properties of  such matrices and uses 
them in order to find a diagonal square matrix, which is the 
ideal design required by the Independence and Information 
Axioms. Based on these properties, a measure of  the distance 
to the ideal design is proposed. Uncoupled, decoupled and 
coupled design matrices are explored. Finally, a rule for 
selecting the best design parameters for achieving a square 
design matrix is proposed. 

Keywords: design matrix, adjustment directions, ideal design, 
diagonalization theorem. 

1 INTRODUCTION 

Axiomatic Design [Suh, 1990; 2001] provides a solid 
structure for mathematically characterizing the design matrix 
associated with the best design. In addition to Axiomatic 
Design, the design matrices are subject to the laws of  algebra 
and must be derived from physical laws. Hence, at a first 
glance, Axiomatic Design, Algebra and Physics are the tools 
that the engineer has for achieving the best design. 

On one hand, physics is a rigid mathematical framework 
with a fixed set of  physical laws. Normally, the number of  
equations derived from the laws of  physics is much, much, 
lower than the number of  variables that must be used for 
describing a determined solution for a design problem. Hence, 
the design equations that are used by the designers have a lot 
of  parameters to be explored, and a question about what are 
the best parameters to be selected in first place appears. For 
reducing the impact of  this resource-consuming task, 
engineers require a criterion for doing that selection as quick 
as possible. On the other hand, the algebra is a rigid 
mathematical framework that allows the designer to extract 
information about the structure of  the design matrix. In this 
case, the difficult question to be solved is how to extract the 
required information. This paper proposes a criterion for this 
purpose. The criterion presented for selecting design 
parameters will be founded on Axiomatic Design Theory, and 
on Algebra, taking into account that the matrices derived from 
physical considerations are rectangular matrices. 

Although Axiomatic Design establishes a general 
procedure for obtaining an ideal design, the mathematical 

relationships that are embedded in the ideal design cannot 
always be implemented as a physical solution or device. In 
general, the result is a design that must satisfy r  functional 
requirements and that have q  with q r  design parameters. 

However, Axiomatic Design establishes that only r  design 
parameters must be selected as true design parameters and the 
other q r  must be discarded or frozen. Without additional 

information, there are a large number of  possibilities for this 
selection, but it is expected that only one set of  r  design 
parameters will be the best. Note that the number of  
possibilities is given by the combinatorial number 

!/ ( )!/ !N q q r r  which increases when q  increases. For 

this reason, if  the best set of  design parameters is not selected 
at the very moment of  writing the design matrix the cost 
derived from a later iteration could be huge. As said, the aim 
of  this paper is to propose a criterion for making this task 
easier. 

The paper is structured as follows. First, the design 
equations are presented in the framework of  a design 
environment. Second, a mathematical characterization of  the 
best design is given by using the obtained design equations 
and Axiomatic Design. Third, the algebraic properties of  a 
rectangular design matrix are presented. Fourth, based on 
these properties a criterion for selecting the best set of  
parameters is proposed. Then, the criterion is used for 
comparing uncoupled, decoupled and coupled designs. Finally, 
an example showing how the criterion discards a design 
parameter is presented.  

2 TRANSFER FUNCTION AND DESIGN 
MATRIX 

In engineering design problems, it is common to find a 
great variety of  needs, specifications or requirements that can 
be described as variables whose value must belong to an 
allowed range. For example, we can think on the position of  a 
given part, the concentration of  an additive, the temperature 
of  an infrared sensor, etc. In addition, for a great variety of  
specifications, this allowed range can be identified with an 
interval. Thus, a large number of  engineering needs or 
specifications can be defined by using only two values: the 
minimum allowed value and the maximum allowed value. 
Suppose that for a given design problem there are r  needs 
that can be specified by a set of  allowed intervals that define 
the hyper-volume of  acceptation D as: 
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 1 1 2 2[ , ] [ , ] ... [ , ] r

r rD l l l l l l  (1) 

then we can establish the success condition for the design 

process as 1 2( , ,..., )rl l l l D  and the fail condition as 

l D . In addition, the variables 1 2, ,..., rl l l  associated with the 

needs or specifications are considered to be a set of  functional 
requirements such as are defined by Suh [1990]: the functional 
requirements are the smallest set of  independent requirements 
that completely characterize the design objectives for a 
specific need. 

Because a design solution must be implemented in the 
physical domain [Suh, 1990; 2001], the design equations must 
relate the functional requirements to a set of  physical 
parameters. This set of  physical parameters has to include all 
the physical constants (such as material properties), descriptive 
parameters (such as geometrical dimensions), and operational 
parameters (such as rotational speeds, temperatures, and 
voltages). The designer has no reason for not using all these 
variables in the process of  seeking an adequate design point. 
From this point of  view, all these variables can be considered 
as design parameters. It is interesting to note that, defined in 
this way, the number of  design parameters is normally larger 
than the number of  functional requirements to be satisfied. 
Let q  (with q r  ) be the number of  design parameters. In 

addition, as it has been argued for the functional 
requirements, suppose that the design parameters can be 
defined by the interval where they can be established. Suppose 
that for a given design solution there are q  design parameters 

that can be specified by a set of  allowed intervals that define 

the hyper-volume of  variation C  as: 

 1 1 2 2[ , ] [ , ] ... [ , ] q

q qC m m m m m m  (2) 

then we can establish the design range as 

1 2( , ,..., )rm m m m C . 

It is useful to define the center of  the hyper-volumes D  

and C  as the following vectors: 

 
1 1 2 2

, ,...,
2 2 2

r r r

o

l l l l l l
l  (3) 

 1 1 2 2, ,...,
2 2 2

q q q

o

m mm m m m
m  (4) 

The engineer implements the laws of  physics that relate 
the vector of  functional requirements to the vector of  design 
parameters in the following function: 

 : rf C  (5) 

This is the map that transfers the decisions adopted by the 

designer in the space C  (parameters of  design) to the space 

D  (functional requirements). For this reason it can be 
considered a transfer function. Function f will be considered a 
differentiable function, and hence, by applying the Taylor 
theorem, we can write: 

 ( ) ( )( ) ...o o ol l m J m m m  (6) 

The structure of  Eqs. (1), (2) and (6) advises the following 
changes of  variable [Benavides, 2012]: 

  
2 ; 1,2,...,

2

j j

j

j

j j

l l
l

y j r
l l

 (7) 

 
2 ; 1,2,...,

2

j j

j

j

j j

m m
m

x j q
m m

 (8) 

As a result of  these changes of  variable, the hyper-volumes 

D  and C  transform respectively to: 

 [ 1,1] [ 1,1] ... [ 1,1] r

rE  (9) 

 [ 1,1] [ 1,1] ... [ 1,1] q

qE  (10) 

The substitution of  Eqs. (7) and (8) into Eq. (6) leads to: 

 ( ) (0) ...y x y Ax  (11) 

In this expression, the matrix A  is a rectangular matrix of  
size r q : 

 

11 1

1

q

r rq

A A

A

A A

 (12) 

 
( )j j j j i o

ij ij

ji i i i

m m m m f m
A J

ml l l l
 (13) 

This expression of  an element of  the design matrix was 
deduced by Benavides [2012] and gives a rational way for 
obtaining dimensionless design matrices. 

3 IDEAL DESIGN 

The conditions 
qx E  and ry E  assure that the 

maximum deviation of  the functional requirement i  can be 

written as: 

 
max

1

(0) 1
q

i i ij

j

y y A  (14) 

 
min

1

(0) 1
q

i i ij

j

y y A  (15) 

The substraction and the addition of  Eqs. (14) and (15) lead 
respectively to: 

 max min

1

1
2

q
i i

ij

j

y y
A  (16) 

 max min(0)
2

i i

i

y y
y  (17) 

Inequality (16) shows that not all the design matrices 
produce an acceptable design. Indeed, the restriction that the 
hyper-volume of  acceptance imposes over the elements of  the 
design matrix is even more exigent. This new restriction 
comes from the inequalities (14) and (15) and can be 
condensed in the following inequality: 
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1

min 1 (0),1 (0)
q

ij i i

j

A y y  (18) 

The range where this inequality is satisfied reaches a 
maximum when the following conditions are achieved:  

 (0) 0iy  (19) 

  0 1,2,...,ijA j q  (20) 

Note that this is a mathematical formulation of  the 
Information Axiom that states that the best design must have 
a minimum value of  the information content, i.e., a maximum 
value of  the probability of  success [Suh, 1990]. Note also that 
condition (19) converts the inequality (18) into the inequality 
(16). On the other hand, the tendency given in (20) leads to 
the following tendencies [see Eq. (13)]: 

 
( )

0i o

j

f m

m
 (21) 

 0j jm m  (22) 

 i il l  (23) 

Note that the tendency given by (23) is the mathematical 
formulation of  the Corollary 6 given by Suh [1990]. However, 
the tendency given by (22) contradicts the tendency given by 
(23) because due to the hierarchy of  the design process the 
design parameters of  one level become the functional 
requirements of  the following level [Suh, 1990]. Hence, when 

jm  is considered a design parameter of  the first level, 

j jm m  should be as low as possible [see Eq. (22)]; and when 

jm  is considered a functional requirement of  the second 

level, 
j jm m  should be as large as possible [see Eq. (23)]. 

For this reason, the tendency given by (22) will make an 
acceptable solution in the following level of  the hierarchy of  
design impossible. In addition, the designer in any level of  the 
hierarchy wants to get a formulation of  the functional 
requirements that fulfill the condition (23). Therefore, it is an 
objective of  the designer to increase as much as possible the 
intervals of  acceptance for both the functional requirements 
and the design parameters. This allows us to write that the 
following tendency must be observed during the design 
process: 

 
j jm m  (24) 

 Since the first functional requirement is fixed by the 
customer, the condition (23) cannot be completely satisfied, 
but the designer has to be creative enough for achieving the 
condition (24). If  we assume that we have created the best 
design, which in this case is the one that increases as much as 
possible the length of  the acceptance intervals for the next 
step, we can conclude that the following tendency is a 
necessary characteristic of  the best design: 

 
j j

i i

m m

l l
 (25) 

On the other hand, the tendency given by (21) cannot 
represent a real physical device. In effect, if  all the derivatives 
in the design matrix are zero, there would not be any 

relationship between the functional requirements and the 
design parameters. For this reason at least one derivative 
cannot be zero: 

 
( )

0i o

j

f m
Kte

m
 (26) 

The conditions (25) and (26) lead to 

 
ijA  (27) 

for some j. This contradicts the condition (20), and hence the 
inequality (18) cannot be fulfilled. Thus, the designer must 
seek that the condition (20) holds for the major number of  
elements in one row of  the design matrix. On the other hand, 
the designer must try to obtain the condition (27) for at least 
one element of  the row, but this fact is forbidden by inequality 
(18). In addition, Eq. (19) must be imposed by the designer in 
Eq. (18), and hence the maximum allowable value on the right 
hand side of  that inequality is 1. Putting all this information 

together (i.e., 
1

1
q

ij

j

A , 0ijA  for almost all the elements, 

and 
ijA  for at least one element) and taken into account 

the Independence Axiom (and, if  necessary, permuting rows 
and permuting columns) we obtain the following formulation 
for the design matrix of  the best design (i.e., the design matrix 
of  the ideal design): 

 (0) 0y  (28) 

  
0

1
ij ij

i j
A

i j
 (29) 

4 QUANTITATIVE STUDY OF THE DESIGN 
MATRIX 

In general, the design matrix obtained by the designers 
during the creative process is not the ideal one. So, it is 
convenient to find a general procedure to convert the non-
ideal design into an ideal design. A general description of  the 
algebraic properties of  this matrix can be found in Benavides 
[2012]. This section provides the minimum required algebra 
for doing this task. 

Let us establish a set of  r  functional requirements as a 

vector in r  using its coordinates in the canonical basis. Let 
us establish a solution characterized by a set of  q  design 

parameters that can be varied independently. As seen in the 
previous section, the design parameters can be identified using 

the coordinates of  the vector qx . As discussed in the 

previous sections, q r  holds. In addition, the rank of  the 

design matrix 
r qA  must be r  [see Eq. (29)] and hence, 

its row vectors 
1 ,...,t t

ra a  must be linearly independent. For 

the same reason, the vector set 1,..., rAa Aa  is a basis of  

r . This set of  vectors can be written in matrix notation as 
t

r rAA , which is invertible. Thus, 

1( )t t

r rI AA AA  holds. Therefore, the column vectors 

in the matrix 
1( )t t

q rA AA  are a combination of  design 

parameters that enable us to vary the functional requirements 
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independently. The kernel of  the linear map A  is the 
subspace generated with the column vectors of  the matrix 

( )q q rB , which has to verify 0AB . Let us define an 

arbitrary matrix 
( )q r r

, and construct the matrix 

 
1( )t t

q rX A AA B  (30) 

This matrix contains in its columns all the combinations 
of  the linear parameters that keep the functional requirements 
independent. For this reason they are called adjustment 

directions [Benavides, 2012]. The arbitrary matrix  can be 

chosen for eliminating the influence of  a design parameter (or 
a linear combination of  design parameters). Because matrix 

 has q r  column vectors, designer can remove the 

influence of  q r  design parameters (or specified directions). 

Let designer define a matrix 
( )' q q rX  whose column 

vectors are the directions in the space of  the design 
parameters that the designer wants to remove. The removing 
of  these directions requires to solve the linear system 

' 0tX X , which leads to 

 1 1( ' ) ' ( )t t t tX B X A AA  (31) 

Note that, as it is remarked in Benavides [2012], the 

matrix ( ) ( )'t q r q rX B  could not be invertible. The 

substitution of   leads to 

 1 1( ' ) ' ( )t t t tX I B X B X A AA  (32) 

This result lets us assume that there is a vector re  that 

represents a new set of  design parameters. In effect, if  this is 
assumed, then the transfer function can be written as: 

 

1 1( ' ) ' ( ) ...

...

t t t ty A I B X B X A AA e

e
 (33) 

Note that in this equation the designer has reduced the 
number of  design parameters from q  to r  and has achieved 

an ideal design. This result was used by Benavides [2012] to 
prove the diagonalization theorem that states that the ideal 
design always exists. For other interesting algebraic results, 
such as the spectral decomposition of  the design matrix, 
please refer to Benavides [2012]. This expression shows also 
that, if  the designer acts on the design parameters by 
following the strategy of  varying several of  them at the same 

time, as indicated by the column vectors in matrix X , it is 
always possible to maintain the independence between the 

requirements. By taking the column vectors of  X  as a basis, 
the linear map takes the form of  the ideal design given by Eq. 
(29).  

Eq. (33) shows that the existence of  the ideal design 
comes from the following property of  the design matrix: 

 AX I  (34) 

In addition, Eq. (34) shows that all the relevant information 
for obtaining an ideal design from a given (rectangular or not) 

design matrix is collected in the matrix X  defined by Eq. (32) 
which defines the adjustment directions.  

5 MEASSURE OF THE GOODNESS OF THE 
DESIGN MATRIX 

The vector X  collects the relevant information from the 
design matrix required for transforming a general design into 
an ideal one. Eq. (34) states that the column vectors of  the 

matrix X  collect the values of  the design parameters that 
move the functional requirements to the point 1.0, which is 
the maximum value accepted by the customer. But because 
the ideal design matrix is the identity matrix, it states also that 

each column vector of  X  moves one and only one functional 
requirement from the value 0.0 to the value 1.0. 

From Eq. (30) we can obtain the following matrices: 

 
1( )t t t t

r qX AA A B  (35) 

 1( )t t t t

r rX X AA B B  (36) 

Eq. (36) shows that the condition for the ideal design is 
tX X I  (note that when A I  holds, 0B  also holds). 

However, in general, this condition cannot be reached and 
hence, it is convenient to define the matrix:  

 1( )t t tE AA B B I  (37) 

Note that E  is a symmetrical matrix that should be 
identical to the zero matrix for the ideal design. If  any 

element in the matrix E  is not zero, then the norm of  the 
respective column vector will not be zero. This fact allows us 
to construct a real positive number that measures how much 

the matrix E  deviates from the zero matrix. This number is: 

 2 2trace( ) trace( )tE E E  (38) 

where 2E  is given by the following expression 

 

2 1

1 1

2

( )

( ) ( )

( )

t t

t t t t t t

t t

E AA AA I

AA B B B B AA

B B

 (39) 

Therefore, the ideal design ( A I ) meets the condition 
=0. The calculation of  this deviation is quite hard because 

the designer should explore all the possible values of  the 

matrix . Eq. (30) gives the adjustment directions for a given

. When  is calculated with Eq. (31) the calculation of   

is reduced to the adjustment directions that result from 
removing existing design parameters. In any case, the 
adjustment directions that produce the minimum value of   

constitute the new set of  design parameters that achieves the 
ideal design. However, as it is well discussed by Suh [1990], 
these new parameters are not always feasible in the real world 
because there could have some limitations, for example 
creativity, that avoid such implementation. When design 
parameters cannot be combined and the adjustment directions 
cannot be followed, a more practical criterion exits. This is the 

one where the designer checks if  the column vectors of  X  
have a maximum component with an absolute value close to 
1.0 and the other components remains between 0 and +1. In 
this case, the deviation function given by Eq. (38) could be 
substituted by: 
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2

1

max 1
r

ij
i

j

D x  (40) 

This merit function was proposed, together with other 
additional measures of  the degree of  independence, by 
Benavides [2012] for detecting which one is the best set of  
parameters to be selected in a design matrix (an ideal design 

meets the condition 0D ). The condition 0D  indicates 

if  at least one design parameter has reached its maximum 
range of  variation. For situations where the design parameters 
cannot be physically combined, D from Eq. (40) is more 

suitable than  from Eq. (38). 

6 APLICATION TO UNCOUPLED, 
DECOUPLED, AND COUPLED DESIGNS 

Suh [1990] clearly defines uncoupled, decoupled and 
coupled designs. Uncoupled and decoupled designs are those 
that have, respectively, a diagonal design matrix, and a 
triangular design matrix. Finally coupled designs are those that 
do not belong to the previous categories. In this section we 
will collect some simple examples of  these categories in order 
to calculate the matrices and merit functions defined 
previously. These examples are illustrative and for this reason 
are kept as simple as possible: all the calculations [see Eqs. 

(37) and (38)] will be done for full-rank ( B =0) square design 
matrices and for three functional requirements.  

Table 1. Comparison between designs. 

 Uncoupled Decoupled Coupled 

A  

1 0 0

0 1 0

0 0 1

 

1 0 0

0 1 0

1 1 1

 

1 0 1

0 1 0

1 1 1

 

X  

1 0 0

0 1 0

0 0 1

 

1 0 0

0 1 0

1 1 1

 

1 1 1

2 2 2

0 1 0

1 1 1

2 2 2

 

E  

0 0 0

0 0 0

0 0 0

 

1 1 1

1 1 1

1 1 0

 

1
0 0

2

1 1
0

2 2

1 1
0

2 2

 

2  0  8  
5

4
 

D  0  0  
1

2
 

 
This example shows that a decoupled design can be worse, in 
terms of  the deviation , than a coupled design. The reason 

is that a decoupled design can have the adjustment directions 
near parallel. But both, the decoupled and the coupled 
designs, are worse than the uncoupled design, such as the ideal 
design requires. 

7 APLICATION TO THE SELECTION OF 
DESIGN PARAMETERS 

The first proposed example is a coupled design with the 
following rectangular matrix: 

1 0 1 1

0 1 0 1

1 1 1 0

A  

The main results for different values of  the matrix 'X  are 
collected in the Table 2. 

Table 2. Selection of  design parameters. 

'X  X  E  2  D  

0

0

0

0

 

1 1 1

2 2 2

1 1 1

6 2 6

1 1
0

3 3

1 1 1

6 2 6

 

7 1 1

12 4 12

1 1 1

4 4 4

1 1 7

12 4 12

 

145

144
 

3

2
 

1

0

0

0

 

Design matrix becomes singular 

0

1

0

0

 

1 1 1

2 2 2

0 0 0

1 1 1

2 2 2

0 1 0

 

1 1
0

2 2

1 1
0

2 2

1
0 0

2

 
5

4
 

2

2
 

0

0

1

0

 

1 1 1

2 2 2

1 1 1

2 2 2

0 0 0

1 1 1

2 2 2

 

1 1 1

4 4 4

1 1 1

4 4 4

1 1 1

4 4 4

 
9

16
 

3

2
 

0

0

0

1

 

1 1 1

2 2 2

0 1 0

1 1 1

2 2 2

0 0 0

 

1
0 0

2

1 1
0

2 2

1 1
0

2 2

 
5

4
 

2

2
 

 
The results in Table 2 show that, in the studied case, the initial 
design matrix does not allow obtaining an ideal design by 
removing design parameters. When the DPs can be combined 
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to obtain new DPs, the table shows that the best selection for 
the design parameters is {DP1, DP2, DP4} ( =9/16), which 

means that DP3 should be removed or frozen. The results 
also show that this option is better than not removing any 
design parameters. However, when the DPs cannot be 
combined, this is not the best option and the best selections 
will be {DP1, DP3, DP4} or {DP1, DP2, DP3} ( D =1/21/2). 
It is also interesting that DP1 cannot be removed: it is an 
essential part of  the design because it is a key element for 
maintaining the rank of  the design matrix. 

The second proposed example is the design of  a faucet 
that must control the flow rate and the temperature of  a liquid 
flow: {FR1, FR2}={flow rate, temperature} and {DP1, DP2, 
DP3, DP4, DP5}={pressure1, pressure2, area1, area2, hot 
temperature}. The design matrix for this problem is [Benavides, 
2012]: 

1 1 1 1
0

4 4 2 2

1 1 1 1
1

4 4 2 2

A   

This matrix is interesting because represents a real device with 
a coupled (select, for example, {DP1,DP2} as the design 
parameters) or decoupled (select, for example, {DP4, DP5}) 
design matrix that cannot be uncoupled by means of  a 

straightforward procedure. Results for 
tX , 2  and D  are 

presented in Table 3 for different values of  the matrix 'tX . 
In this case, the best selection of  the design parameters is 

{DP3, DP4} for both criteria, minimum  and D . This 

means that: 1) because D  is minimum, the option of  
controlling the areas is better than controlling the pressures or 
the temperature; and 2) because  is minimum, the option of  

combining the areas is better for achieving an ideal design 
than combining the pressures and the temperature. 
Uncoupled physical solutions, obtained by doing this 
combination of  areas, can be found in Suh [2001] and 
Benavides [2012]. 

8 CONCLUSION 

It is possible to derive an indicator, based on the 
deviation of  the design matrix from the ideal one, from the 
algebraic properties of  the design matrix. This indicator 
allows the designer to select the best set of  design parameters 
when the design matrix is not a square matrix. The indicator 
also establishes that reconfiguring the PDs could be more 
difficult for a decoupled design than for a coupled design. 
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Table 3. Selection of  design parameters. 

'tX  
tX  

2  D  

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 
0 0 0 2 1

0 0 0 0 1
 18 1 

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

 
0 0 2 0 1

0 0 0 0 1
 18 1 

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 
0 0 1 1 0

0 0 1 1 0
 2 0 

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

 
0 4 0 0 1

0 0 0 0 1
 258 3 

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

 Design matrix becomes singular 

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 
0 2 1 0 0

0 2 1 0 0
 50 1.4 

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 
4 0 0 0 1

0 0 0 0 1
 258 3 

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 
2 0 0 1 0

2 0 0 1 0
 50 1.4 

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

 Design matrix becomes singular 

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
2 2 0 0 0

2 2 0 0 0
 98 1.4 

 
 
 
 
 
 
 
 
 
 

 


