ICAD-2014-16

Rotated Component

AXIOMATIC DESIGN MODEL TO ASSESS INFLUENCES AFFECTING PEDAGOGIC-LEARNING IN THE COURSES ENGINEERING MATERIALS I AND FLUID MECHANICS I (PART 2)

Mirzi D. Llego-Betasolo, Ph.D.

mbetasolo@gmail.com Department of Civil Engineering The Papua New Guinea University of Technology Taraka Campus, Independence Drive Lae 411, Morobe Province, Papua New Guinea

2.1.2 CE 221 Results of Factor Analysis & Multiple Regression Analysis (DP1's)

The factor analysis used Principal Component Analysis with Rotation and Varimax with Kaiser Normalization. The Rotation converged in 5 iterations, and the component value is rejected below 0.30. Kaiser-Meyer Measure of Sampling Adequacy is 0.936, Bartlett's Test of sphericity has approx. Chi square of 13047.557. The result of factor analysis for CE 221 by using SPSS is presented in Figures 2 (a, b).

Rotated Component Matrix

	¢	omponent	
	t	2	3
Q26	873	.373	
Q30	.844	.416	
Q25	.803	352	.419
Q46	.791	.334	.434
Q42	.788	342	,467
Q32	782	.546	
Q14	.780	.481	
Q24	779	.333	.458
Q23	776	.482	.321
80Q	.773	320	.472
Q21	767	.480	.331
Q13	.756	.461	376
Q15	.741	360	.511
Q06	.731	.494	.380
Q49	718	.574	300
Q27	.718	.554	
Q28	,715	455	.460
Q29	697	.611	
Q47	684	453	.526
Q44	.678	.504	.454
Q45	665	.629	
Q09	662	.593	.354
Q10	653	.616	343
Q33	.651	.520	.443
Q12	.620	.617	.403
Q40	.447	.791	.378
Q38	.435	.790	.387

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization

a. Rotation converged in 5 iterations.

Figure 2a. Rotated Component Matrix – CE 221

- 1	1	2	3
Q02	493	779	318
Q05	401	778	428
Q41	453	773	368
Q48	387	767	454
Q16	451	763	413
Q35	482	761	385
Q20	541	752	308
Q04	449	750	383
Q11	365	742	504
Q19	584	723	
Q34	581	709	
Q43	562	706	330
Q31	628	691	
Q01	410	689	510
Q17	372	684	567
Q18	609	682	311
Q03	381	668	588
Q36	552	664	423
Q22	418	656	535
Q07	418	471	749
Q39	403	480	742
Q37	.403	.479	708
Q50	383	520	683

Figure 2b. Rotated Component Matrix – CE 221

Figure 2 (a & b) shows the rotated component matrix for CE 221, in which three components comes of relevance on the Pearson R correlation. Interestingly, before the application of the rotation, the most striking behavior found in the study was that student's concentration is in disturbed mode. "Help improve listening skills" and "ability to concentrate" are the first two with the highest R. This shows that a big classroom with 118 students in lecturing mode is pretty good of a challenge to enhance learning without a microphone.

	Rotation Sun Look	is of Squared	
Component	% of Variance	Cumulative %	2
1	38.467	38.467	
2	36.183	74.650	
3	18.356	93.006	
-4	2010/01/12	120223201	
65	1		
	1		
7	1		
	1		
.0	1		
10	1		
£1	1		
12	1		
13	1		
1-4	1		
15	1		
10	1		
17	1		
1.0	1		
10	1		
20	1		
21			

Figure 3. Total Variance Explained on Rotation sums of squared loadings – CE 221

Figure 3 shows the percent of variance of the three (3) components as explained.

			Total Vari	Ince Explain	1ed		
		Initial Eigenvalu	85	Extractio	n Sans of Squar	ed Loodings	Rotation Sums of Squared Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
t.	43.364	66.729	66.729	43.364	85.729	86.729	19,234
2	2.036	4.072	90.801	2.036	4.072	90.801	18.001
3	1.102	2.205	93.006	1.302	2.205	93.006	9.178
4	682	1.384	94.370		0.000		1,000
5	392	.783	95.153				
6	.298	.596	95.749				
7	.289	577	96.326				
8	237	474	96,800				
9	188	.377	\$7.177				
10	183	365	97.542				
11	.155	310	97.852				
12	.133	.265	96.115				
13	105	213	98.330				
14	.101	202	96.532				
15	803	.t92	98,725				
16	672	144	96.869				
17	063	.126	96.995				
18	053	105	99.100				
19	047	.095	99.195				
20	041	081	99.276				
25	635	070	99.346				

Extraction Method: Principal Component Analysis

Figure 4. Total Variance Explained – CE 221

Figure 4 shows the total variance of the the 3 components in which component 1 and 2 are closely related. By assessing the influences, it was found a distinct behavior in which cultural values matters most to students followed by the educational values. With a diverse community, so rich in cultural values, the challenges now posed to the researcher is how cultural aspects are addressed and preserved while the education values are enhanced so as quality of learning is to achieve. The rest of the figures give visual reprepresentations of the behavior of the predictors.

Figure 5. Component Transformation Matrix- CE 221

Figure 6. Scree Plot on Factor Analysis - CE 221

Figure 6 shows the scree plot of the influential patterns in linearity in which two (2) components prevail, as illustrated by the Eigenvalue of each component number of predictors.

The 3D component plot in rotated space is shown in figure 7, where x represents component 1 - the cultural aspect, y depicts component 2 - the educational aspects, and z is component 3. The plot in of figure 8 shows that only a component, the cultural aspect, is strong.

Figures 9 and 10 give a better insight in the problem under analysis.

Figure 8. Component Plot on Factor Analysis - CE 221

Figure 9. Normal P-P Plot of Regression Standardized Residual – CE 221

Figure 10. Regression Scatter plot – CE 221

Multi regression analysis was made to find out the relationship of the weighted means of each response with the rotated matrix of R values. The results are shown in figures 11 to 14.

Descri	ptive	Stati	stics

	Mean	Std. Deviation	N
Mean of Responses	4.4648	.20463	50
Influence Factor 1	.6007	.15621	50
Influence Factor 2	.5854	.14591	50

Figure 11. Regression Descriptive Statistics – CE 221

	Cor	relations		
		Mean of Responses	Influence Factor 1	Influence Factor 2
Pearson Correlation	Mean of Responses	1.000	-,671	,492
	Influence Factor 1	671	1.000	718
	Influence Factor 2	.492	718	1.000
Sig. (1-tailed)	Mean of Responses		.000	.000
	Influence Factor 1	.000		.000
	Influence Factor 2	.000	.000	
N	Mean of Responses	50	50	50
	Influence Factor 1	50	50	50
	Influence Factor 2	50	50	50

Variables Entered/Removed

Mode	Variables Entered	Variables Removed	Method
1	Influence Factor 2, Influence Factor 1		Enter

a. All requested variables entered.

b. Dependent Variable: Mean of Responses

Figure 13. Retained Variable – CE 221

				ANOVA ^b		
Model		Sum of Squares	đ	Mean Square	F	Sig.
1	Regression	.925	2	.462	19.280	.000 ^a
1	Residual	1.127	47	.024		
	Total	2.052	49			
a P	redictors: (Cons	tant), Influence Fa	ctor 2, Influe	nce Factor 1		

b. Dependent Variable: Mean of Responses

Figure 14. ANOVA – CE 221

Figures 13 and 14 show that the variable is a statistically significant *unique* contribution to the equation. This is very dependent on which variables are included, and how much overlap there is among the independent variables. The criterion is that if the Sig. value is less than .05, then the variable gives a significant unique contribution to the prediction of the dependent variable. Thus, if Sig. is greater than .05, then one can conclude the corresponding variable do not give a significant unique contribution and should be rejected. In this case, two components are retained and none is rejected.

2.1.3 CE 211-F Results of Factor Analysis & Multiple Regression Analysis (DP1's)

The factor analysis uses Principal Component Analysis as extraction method, while rotation method uses Varimax with Kaiser normalization. The rotation converged after 5 iterations. Kaiser-Meyer measures rotation above 0.30, the rest are rejected. The result of factor analysis for CE 211-F is presented below.

Total Variance Evolutined

		Initial Eigenvalu	es	Extractio	n Sums of Square	ed Loadings	Rotation Sums of Squared Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	44.807	89.614	89.614	44.807	89.614	89.614	24.264
2	1.657	3.314	92.928	1.657	3.314	92.928	22.200
3	.693	1.386	94.314				
4	.567	1.133	95.447				
5	.525	1.051	96.498				

Extraction Method: Principal Component Analysis.

Figure 15. Total Variance Explained – CE 211-F

Figures 15, 16 and 17 shows the total variance of the two components in which components 1 and 2 are closely related. By assessing the influences, it was found a distinct behavior where cultural values matters the most to students, followed by the educational values. Similar results were found for CE 221.

With a diverse community, in which the country is so rich in cultural values, the challenges now posed are how cultural aspects are addressed and preserved while educationl values are enhanced so as quality of learning is to achieve. The rest of the figures give visual reprepresentations of the behavior of the predictors.

What was so intriguing in the data of the correlation matrix before they were rotated was the rejection of a predictor that requires the application of outlying principles and concepts in Engineering Fluid Mechanics. The strongest components show that the relevance of cultural aspects is greater than that of the educational aspects. However, when rotation is applied, the said predictor is included but with a reduced value for R. It is thus imperative that teaching Engineering Mechanics & Engineering Materials to a diverse group in which no one comes from Lae City, where the University is located, requires a strategy that best suit their particular preferences to motivate participation. Interestingly, it was found that the respondents do not like to be instructed by the lecturer because only 2.38 percent responded. Many of them said they wanted to prepare for their career as Civil Engineers, but they wanted to do it their own way, according to their own cultural beliefs. Indeed, teaching these groups of students is so challenging.

Figure 18 shows the scree plot of the influential patterns where two (2) components prevail, as illustrated by the Eigenvalue of each component number of predictors.

	Compor	vent
	1	2
247	874	.421
343	874	.410
332	.858	400
Q15	855	.459
Q21	826	.492
Q48	819	.507
Q44	818	.546
Q29	.817	525
Q41	.011	.476
Q30	811	.557
Q24	.809	.521
Q49	805	.558
Q26	.800	.574
G45	708	.559
Q46	.786	.587
Q42	.786	.564
Q40	785	.550
Q14	779	.600
Q12	.772	598
Q13	.772	.598
Q08	753	.619
Q33	.745	.617
022	:733	.010
Q34	732	625
Q27	727	.576
023	.717	.643
Q36	717	643

Figure 16. Rotated Component Matrix – CE 211-F

Rotated Component Matr

Rotated Component Matrix

	Compor	nent
	1	2
Q05	.705	.660
Q11	.696	.670
Q20	.683	.668
Q39	.678	670
Q19	.456	.857
Q10	485	.856
Q28	.476	842
Q07	.504	827
Q06	525	827
Q17	.443	.822
Q02	443	822
Q18	502	.814
Q03	.524	.813
Q50	.501	.602
Q09	571	.794
Q16	556	.791
Q01	.556	.791
Q35	.566	784
Q31	577	759
Q25	.610	.748
Q04	.625	744
Q38	.627	726
Q37	502	708

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 3 iterations.

Scree Plot

Figure 18. Scree Plot on Factor Analysis – CE 211-F

De	escriptive S	tatistics		
	Mean	Std. Deviation	N	
lean of Responses	4.1918	.32252	50	
actor Comp 1	.6840	.13422	50	
actor Comp 2	8542	12804	50	

Figure 19. Descriptive Statistics for Regression model – CE 211-F

Figures 19 and 20 show the descriptive statistics of the predictors for CE 211-F.

		Mean of Responses	Factor Comp	Factor Comp
Pearson Correlation	Mean of Responses	1.000	547	.484
	Factor Comp 1	- 547	1.000	- 968
	Factor Comp 2	.484	- 968	1.000
Sig. (1-tailed)	Mean of Responses	4	.000	.000
	Factor Comp 1	.000		000
	Factor Comp 2	.000	.000	
N	Mean of Responses	50	50	50
	Factor Comp 1	50	50	50
	Factor Comp 2	50	50	50

Figure 20. Regression Correlation – CE 211-F

Multi regression analysis was performed to find out the relationship of the weighted means of each response with the rotated component matrix R values. The results are shown in figures 21 to 29.

Mode	Variables Entered	Variables Removed	Method
1	Factor Comp		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= 100)

Figure 21. Retained Variable – CE 211-F

				ANOVA		
Mode	ai.	Sum of Squares	đ	Mean Square	E	Sig.
1	Regression	1.527	1	1.527	20.529	000 a
	Residual	3.570	48	.074		
	Total	5.097	49	20020		

a. Predictors: (Constant), Factor Comp 1

b. Dependent Variable: Mean of Responses Figure 22. ANOVA – CE 211-F

		Unstandardized Coefficients		Standardized Coefficients			Correlations	
Model	()	В	Std Enter	Beta	- t	Sq	Zero-order	Partial
1	(Constant) Factor Comp 1	5.091 -1.315	202 299	-547	25.173 4.531	000	-547	-547

Figure 23. Correlation Coefficients - CE 211-F

Looking at figures 21 to 23, one can see that the variables included in the model contributed to the prediction of the dependent variable. We find this information in the

output box labeled Coefficients, in the column labeled Beta under Standardized Coefficients. The standardized coefficients are used to compare the different variables, not the unstandardized ones. 'Standardized' means that these values for the different variables have been converted to the same scale so that one can compare them. If there is a need for constructing a regression equation, unstandardized coefficient values, which are labeled as B, should be used. In this case, the researcher is interested in *comparing* the contribution of each independent variable; therefore, we will use the beta values, in which the Beta column has the largest beta values (ignoring any negative signs). The largest beta coefficient is -.547, which is related to Component 1. This means that this variable makes the strongest unique contribution to explain the dependent variable when the variance explained by all other variables in the model is controlled. Coefficients

		Correlati ons	Collinearity	Statistics	
Model		Part	Tolerance VIF		
1	(Constant)				
	Factor Comp 1	547	1.000	1.000	
	Dependent Veriable	Mean of Pe	enoneae		

Figure 24. Collinearity Coefficients - CE 211-F

Figure 24 shows the collinearity of the coefficients of the predictors for CE 211-F, along with factor component 1, while figure 25 relates to the excluded variable.

Excluded Variables

						Collinearity Statistics		
Model		Beta In	t	Siq.	Partial Correlation	Tolerance	VIF	Minimum Tolerance
1	Factor Comp 2	710 ^a	-1.506	.139	214	.064	15.653	.064

a. Predictors in the Model: (Constant), Factor Comp 1

b. Dependent Variable: Mean of Responses

Figure 25. Excluded Variable – CE 211-F

Collinearity Diagnost								
	Dime			Variance Proportions				
Mode	nsio	Eigenvalue	Condition Index	(Constant)	Factor Comp			
1	1	1.982	1,000	.01	.01			
	2	018	10.392	.99	.99			

a. Dependent Variable: Mean of Responses

Figure 26. Collinearity Diagnostics - CE 211-F

Figure 26 shows the collinearity diagnostics for CE 211-F for the regression.

Figure 27 shows a statistically non-significant *unique* contribution to the equation. The criterion is if the Sig. value is less than .05 (.01, .0001, etc.), then the variable is a significant unique contribution for the prediction of the dependent variable. The criterion is if Sig. is greater than .05 (in this case Sig is 0.139), then one can conclude that that variable is not making any significant unique contribution and is rejected. In this case, one component is retained and one is rejected.

	Residuals Statistics						
	Minimum	Maximum	Mean	Std. Deviation	N		
Predicted Value	3.9419	4.5088	4.1918	.17652	50		
Std. Predicted Value	-1,416	1,796	.000	1.000	50		
Standard Error of Predicted Value	,039	:080	:053	011	50		
Adjusted Predicted Value	3.9213	4.5180	4.1925	17772	50		
Residual	- 66924	.44031	.00000	26992	50		
Std. Residual	-2.454	1.615	.000	.990	50		
Stud. Residual	-2.498	1.631	001	1.009	50		
Deleted Residual	- 69369	44931	- 00073	.28079	50		
Stud. Deleted Residual	-2.651	1.661	-,008	1.031	50		
Mahal Distance	,000	3.224	.980	.855	50		
Cook's Distance	.000	.114	.020	028	50		
Centered Leverage Value	000	.066	020	.017	50		

Figure 27. Residual Statistics – CE 211-F

To check whether an unexpected case has any undue influence on the results for our model as a whole, we can check the value of the Cook's Distance, which can be found close to the bottom of the Residuals Statistics table of figure 27. According to Tabachnick & Fidell (2001), cases with values larger than 1 are a potentially problematic. In our case, the maximum value for the Cook's Distance is 0.114, which suggests no major problems.

Figure 28. Normal P-P Plot of Regression Standardized Residual – CE 211-F

Figure 29. Regression Scatter – CE 211-F

Figures 28 and 29 give a better insight to the problem under analysis.

2.1.4 DP3 - Student Support Tools

From the results of factor analysis, two striking relationships of the students' influences were found for both courses: 1) cultural aspects (self-concept and self-efficacy belief) and 2) educational aspects (academic behavior and attitude). A support mechanism is needed to address these issues, taking into account that PNG students usually favor the cultural aspects rather than educational values.

As a background to understand the preferred support tools, a review on the Papua New Guinea people's daily lives is useful and can be found at Culture of Papua New Guinea (2014).

Briefly, PNG people lives vary enormously because their great majority of the population lives in diverse rural landscapes in villages or hamlets. Rituals to ensure success and prosperity accompany many of their activities. The clan forms the major unit of social organization. Almost all Melanesian societies are patrilineal, and even matrilineal societies remain patriarchal, i.e., male-dominated. In some areas, lineage and land rights can be claimed through either parent, so people can belong to both their parents' clans. Large tribes are not usual, but when they exist, they have a certain degree of political unity and they can be viewed as federations of clans. They may share origin myths, and in such cases clans can be seen as being like "brothers," sons of a founding father. These social structures form the lines of conflicts expressed in the inter-clan warfare that persists in the Highland provinces, and in those areas they often form the lines of political competition in contemporary elections.

When people migrate from rural villages to urban areas or to rural resettlement areas, they carry their languages and traditions with them and re-create their original social structures. Social bonds and obligations form the so-called *wantok* system, which can provide support for struggling in their new locations and create heavy demands to the more wealthy people who feel obliged to support their kin. The demands of wantok are often considered as root cause of corruption. Intergenerational tensions reflect the stresses of rapid social change in rural and urban contexts. In both villages and cities, music and dance celebrations often mark important life-cycle events such as birth, death, initiation, menarche, economic transactions (even the opening of a roadway), peacemaking, and religious observances. It is in this context that mapping the PV's from the DP's is essential as it addresses relevant facts that support the students' effective pedagogic learning. How the PV's are applied will be shown in the following discussion.

2.2 APPLICATION OF PV'S

The intervention applied during the study time is the merit system or extra marks scheme to support the students' needs of escalating self-efficacy. The results are shown in figure 30 and were used as means to increase the percentage of passing without the content wise of the coursework. Thus, applications of the best strategy or solution to the challenges revealed by this study inspired on the Axiomatic Design approach.

Figure 30. CE 211-F Assessment

The figure shows the students' difficulty in understanding the course is relevant. To raise the students' performance, an intervention was incorporated in the assessment process, as shown in figure 31.

Figure 31. Intervention Mechanism

Section 2.2.1 below shows the result of the intervention.

2.2.1 The students' performance

2.2.1.1 CE 221 – Engineering Materials

The results of student performance in the Engineering Materials class are presented in figure 32.

Figure 32. Engineering Materials (CE 221) Student Performance

The graph of figure 33 shows the achievements (A's, B's, C's, D's, E's and F's grades). The result is pretty good, but the researcher finds that it is not content rich, thus another intervention should be sought.

Figure 33. Engineering Materials (CE 221) Student Achievement

2.2.1.2 CE 211-F – Fluid Mechanics

The Engineering Fluid Mechanics (CE 211-F) class achievement result is shown in figure 34.

Figure 34. Fluid Mechanics (CE 211-F) Student Achievement

2.2.2 Course Content Bridging Framework

Figure 34 depicts the conceptual framework of the challenge posed by the assessment of the students' pedagogic learning using the AD Model. In this case, the PV's are part of the AD Model. The conceptual framework has the shape of a funnel that induces the learner to achieve the maximum pedagogic learning in content-wise courses such as Engineering Materials and Engineering Fluid Mechanics, in culture-friendly environments, without sacrificing the quality of the required educational wealth that usually results from the use of the inductive technique.

Figure 34. Culture-Educational Paradigm Shift Framework

The cultural value of the figure is over the course content and above the educational values. This illustration describes the findings of the study. Students want an experience where their self-concept and self-efficacy is maintained, and where behaviors are supported by cultural values, and the academic behavior and attitude is embodied in the educational values. The researcher will call this phenomenon as cultureeducational paradigm shift since it best describes the figure.

Two very distinct and opposing instructional approaches are the inductive and the deductive ones (Inductive and Deductive Instruction, 2014). Both approaches can offer certain advantages, but the biggest difference is the role of the teacher. In a deductive classroom, the teacher conducts the lessons by introducing and explaining concepts to the students (this is the instructional method used by the researcher, of which most of the students responses are opposing), and then expecting students to complete tasks to practice the concepts; this approach is very teacher-centered. Conversely, inductive instruction is a much more student-centered approach and makes use of a strategy known as 'noticing'. Instead of explaining a given concept and following this explanation with examples, the teacher presents students with many examples showing how the concept is used. The intent is that the students "notice", by way of examples, how the concept works.

3 CONCLUSION

The conclusion is that the pedagogical framework should include four groups: *Recognition of Difference* and *Social support* were rated 'very important' influencing factors to students both in CE 221 and CE 211-F. In addition, *Connectedness* and *Intellectual quality* were rated 'very important' and 'essential' for CE 221 and CE 211-F respectively. Because of the diversity of the population, the students who are enrolled in the above mentioned courses perform differently. However, when a multivariate analysis was applied, the pedagogical framework earlier posed was changed to address the challenge of the culture-rich and educational-poor values. In addressing these challenges, a new concept is realized and come up with a Culture-Education Paradigm Shift Framework by adopting the Inductive Instructional Methodology.

It is hereby recommended that the next delivery of the courses should be conducted in a Culture-Educational Paradigm Shift framework to address the challenges that were found by using the Axiomatic Design Model in the assessment of the pedagogic-learning results of Engineering Materials (CE 221) and Engineering Fluid Mechanics I (CE 211-F).

4 ACKNOWLEDGEMENT

Sincere thanks is accorded to Dr. Enrico Mina, Senior Lecturer at the Department of Business Studies of The Papua New Guinea University of Technology, Lae Morobe Province, for the help given to researcher in making use of his personal SPSS software version 16 and assistance in the preparation of the Multivariate Statistical Method.

5 REFERENCES

 Angelo, T. A., & Cross, K. P. Classroom assessment techniques: A handbook for college teachers (2nd ed.). San Francisco: Jossey-Bass, 1993.

- [2] Asian Development Bank (ADB). Education Policy and Strategy, Asian Development Bank, Philippines, 2003.
- [3] Axiomatic design. In Wikipedia. Retrieved Apr 7, 2014 from http://en.wikipedia.org/wiki/Axiomatic_design.
- [4] Culture of Papua New Guinea. (n.d.). In Wikepedia. Retrieved Jul 6, 2014 from http://en.wikipedia.org/wiki/Culture_of_Papua_New_G uinea.
- [5] Gore, J.M., Griffiths, T., Ladwig, J.G. Towards better teaching: productive pedagogy as a framework for teacher education. *Teaching and Teacher Education*, 20(4):375–387.
- [6] Hill, G.W. Making use of pedagogic models as reflective catalyst for investigating pedagogic practice. In: The 5th International Inquiring Pedagogies Conference (iPED 2010), Sep 15, 2010, Coventry, U.K. Retrieved Mar 4, 2013 from http://eprints.qut.edu.au/.
- [7] Human Development: PNG Rank Last in Asia Pacific. Retrieved Jul 18, 2013 from http://emtv.com.pg/newsapp/item/humandevelopment-PNG-Rank-Last-in-Asia-Pacific.
- [8] Inductive and Deductive Instruction. Retrieved Jul 6, 2014 from http://www.educ.ualberta.ca/staff/olenka.bilash/best%2 0of%20bilash/inductivedeductive.html.
- [9] Karim, R. Teaching and Learning of fundamentals of mechanics in an innovative way to maximize students' understanding, Proc. 2nd WIETE Annual Conference on Engineering and Technology Education, Pattaya, Thailand, Jan 25-28, 2011.
- [10] Knowledge. In Wikipedia. Retrieved Jun 5, 2013 from http://en.wikipedia.org/wiki/Knowledge.
- [11] Knowles, M. The modern practice of adult education. N.Y.: Cambridge. The Adult Education Company, 1980.
- [12] Rachal, J.R. The andragogy-pedagogy debate: Another voice in the fray. *Life Long learning: The Adult Years*, 6(9), 1983, pp. 14-15.
- [13] Ravinder Rena. Challenges for Quality Primary Education in Papua New Guinea — A Case Study. Education Research International Vol. 2011 (2011), Article ID 485634, 11 pp.
- [14] Suh N.P., The Principles of Design, New York: Oxford University Press, 2001.
- [15] Thompson, M. K. A Classification of Procedural Errors in the Definition of Functional Requirements in Axiomatic Design Theory. Proc. 7th International Conference on Axiomatic Design, pp.107-112, 2013.
- [16] Tabachnick, B. G., Fidell, L. S. (2001). Using multivariate statistics (4th ed.). New York: HarperCollins.
- [17] Teacher Matters: Understanding Teachers' Impact on Student Achievement. Rand Corp. Retrieved Jul 6, 2014 from

http://www.rand.org/education/projects/measuring-teacher-effectiveness/teachers-matter.html 1/

[18] Webb, Ivan. Pedagogy & Technology. Retrieved Mar 4, 2013 from http://www.educ.utas.edu.au/users/ilwebb/Research/pe dagogy.htm