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ABSTRACT 
In recent years, the fields of reconfigurable manufactur-

ing systems, holonic manufacturing systems, and multi-agent 
systems have made technological advances to support the 
ready reconfiguration of automated manufacturing systems.  
While these technological advances have demonstrated robust 
operation and been qualitatively successful in achieving 
reconfigurability, their ultimate industrial adoption remains 
limited.  Amongst the barriers to adoption has been the 
relative absence of formal and quantitative multi-agent system 
design methodologies based upon reconfigurability 
measurement.  Hence, it is not clear 1.) the degree to which 
these designs have achieved their intended level of 
reconfigurability 2.) which systems are indeed quantitatively 
more reconfigurable and 3.) how these designs may overcome 
their design limitations to achieve greater reconfigurability in 
subsequent design iterations.  To our knowledge, this paper is 
the first multi-agent system reference architecture for 
reconfigurable manufacturing systems driven by a quantitative 
and formal design approach. It is rooted in an established 
engineering design methodology called axiomatic design for 
large flexible engineering systems and draws upon design 
principles distilled from prior works on reconfigurability 
measurement.  The resulting architecture is written in terms of 
the mathematical description used in reconfigurability 
measurement which straightforwardly allows instantiation for 
system-specific application.   

Keywords: multi-agent system, reconfigurability, reconfigura-
ble manufacturing systems, axiomatic design. 

1 INTRODUCTION 
Manufacturing has become increasingly characterized by 

continually evolving and ever more competitive marketplaces. 
In order to stay competitive, manufacturing firms have had to 
respond with a high variety products of increasingly short 
product lifecycle [Mehrabi et al. , 2002; Pine, 1999].  One 
particularly pertinent problem is the need to quickly and 
incrementally adjust production capacity and capability.  To 
fulfil the needs of enterprises with extensive automation, 
reconfigurable manufacturing systems have been proposed as 
a set of possible solutions [Mehrabi et al. , 2000].  

Definition 1. Reconfigurable Manufacturing System 
[Koren et al. , 1999]: [A System] designed at the outset for 
rapid change in structure, as well as in hardware and software 

components, in order to quickly adjust production capacity 
and functionality within a part family in response to sudden 
changes in market or regulatory requirements. 

Over the last decade, many technologies and design 
approaches have been developed to enable reconfigurability in 
manufacturing systems [Dashchenko, 2007; Setchi and Lagos, 
2004]. These have included modular machine tools [Heilala 
and Voho, 2001; Ho and Ranky, 1995; Landers et al. , 2001; 
Shirinzadeh, 2002; Townsend, 2000] and distributed 
automation [Brennan and Norrie, 2001; Vyatkin, 2007] 
[Lepuschitz et al. , 2011]. Additionally, a wide set of IT-based 
paradigms such as Multi-Agent Systems [Leitão, 2009; Leitão 
et al. , 2012; Leitão and Restivo, 2006; Ribeiro and Barata, 
2013a; b; Shen and Norrie, 1999; Shen et al. , 2003], Holonic 
Manufacturing Systems [Babiceanu and Chen, 2006; Ma�ík et 
al. , 2002; McFarlane and Bussmann, 2000; 2003], Evolvable 
Assembly Systems [Ribeiro et al. , 2010], and Fractal Factories 
[Tharumarajah and Wells, 1997] have emerged.  They include 
a number of notable reference architectures including PROSA 
[Van Brussel et al. , 1998], HCBA [Chirn, 2001] and 
ADACOR [Leitão and Restivo, 2006].  While these 
technological advances have demonstrated robust operation 
and been qualitatively successful in achieving reconfigurability, 
their ultimate industrial adoption remains limited [Marik and 
McFarlane, 2005].   

Amongst the barriers to adoption has been the relative 
absence of quantitative multi-agent system design 
methodologies based upon reconfigurability measurement.  
Hence, it is not clear 1.) the degree to which these designs 
have achieved their intended level of reconfigurability, 2.) 
which systems are indeed quantitatively more reconfigurable 
3.) how these designs may overcome their inherent design 
limitations to achieve greater reconfigurability in subsequent 
design iterations.  In short, without a quantitative framework 
for assessing the design, potential industrial adopters are 
unconvinced by the technology’s validation.  Furthermore, 
and in addition to reconfigurability measurement, such 
methodologies must make a straightforward link between 1.) 
high level design principles (e.g. bionic, holonic, fractal) 2.) a 
reference architecture that is sufficiently general to apply to 
the scope of manufacturing systems it seeks to address 3.) the 
associated instantiation as a system-specific architecture 4.) 
and a detailed implementation with connected hardware.  In 
short, even if a potential industrial adopter had confidence in 
a prototype implementation, there would be no certain to 
scale and transfer the knowledge of the prototype up to full-
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scale implementation. Rigorously derived reference 
architectures fill this gap because they provide they make all 
system-specific implementation simply instantiations of one 
design pattern.  

This paper provides a multi-agent system reference 
architecture for reconfigurable manufacturing systems driven 
by a quantitative and formal design approach.  In so doing, 
this paper makes four specific contributions.  First, it roots 
itself in an established engineering design methodology:  
axiomatic design for large flexible engineering systems.  
Second, the architecture's design is directly informed by 
design principles distilled from prior works in reconfigurability 
measurement.  Third, the resulting architecture is written in 
terms of the mathematical description used in 
reconfigurability measurement – thus facilitating its 
implementation.  Finally, the reference architecture and its 
associated mathematical description straightforwardly address 
instantiation for system-specific application.  These specific 
advantages have yet to be demonstrated in existing reference 
architectures such as PROSA [Van Brussel, Wyns, 1998], 
HCBA [Chirn, 2001] and ADACOR [Leitão and Restivo, 
2006]. 

The remainder of the paper proceeds as follows.  Section 
II qualitatively articulates the design strategy and rationale for 
the architecture.  Section III details the underlying 
mathematical description of the architecture. Section IV then 
details the architecture's data model implementation.  Finally, 
Section V brings the work to a conclusion.  

This paper restricts its reconfigurability discussion to the 
shop-floor activities of discrete-part automated manufacturing 
system as defined in Levels 0-3 of ISA-S95 [ISA, 2005] where  

Definition 2. Reconfigurability [Farid 2007]: The ability 
to add, remove and/or rearrange in a timely and cost-effective 
manner the components and functions of a system which can 
result in a desired set of alternate configurations; chosen here 
to be the addition/removal of new products and resources.  

2 ARCHITECTURE DESIGN STRATEGY AND 
RATIONALE 

The aim of this work is to develop an Axiomatic Design 
of a Multi-Agent Reconfigurable Manufacturing System 
(ADMARMS) Architecture.  To this end, the central goal of 
the design is to conceive a multi-agent (control) system 
architecture that enables a highly reconfigurable 
manufacturing system when it is integrated with its physical 
devices.  Here, reconfigurability is understood as the principle 
life cycle property which enables the desired behaviours 
described in the previous section.  It is dependent upon the 
characteristics of the production’s system structure [Farid, 
2007; Farid, 2014b]. That said, Axiomatic Design states 
generally [Suh, 2001] and previous works on this subject 
[Farid, 2007; Farid, 2014b] have discussed that a well 
conceptualized architecture is also a necessary prerequisite for 
excellent production system performance.  Furthermore, as a 
design methodology Axiomatic Design is able to highlight 
potential design flaws at an early conceptual stage; well before 
final implementation.   

The architecture design strategy and rationale is directly 
informed by recent work in the reconfigurability measurement 
of automated manufacturing systems [Baca et al. , 2013; Farid, 

2007; 2008a; Farid, 2008b; Farid, 2013; 2014b; Farid and 
Covanich, 2008; Farid and McFarlane, 2008; McFarlane and 
Farid, 2007].  These works showed that a high degree of 
reconfigurability could be achieved by fostering greater 
reconfiguration potential (i.e. the number of possible 
configurations of the system) as well as greater reconfiguration 
ease (i.e. the effort required to change from one configuration 
to another).  Therefore, the architecture design strategy and 
rationale presented in this section is being described as a set of 
qualitative design principles which have been distilled from 
these prior works on quantitative reconfigurability 
measurement.  The design principles for reconfiguration 
potential and reconfiguration ease are treated in turn and are 
actively used in the discussion of Section III. While a deep 
treatment of reconfigurability measurement is not feasible 
here, the interested reader is referred to these background 
references for the details of the mathematical developments in 
this work.  The necessary aspects of these mathematical 
developments are revisited in Section III.   

2.1 DESIGN PRINCIPLES FOR RECONFIGURATION 
POTENTIAL 

The aspects of reconfigurability measurement related to 
reconfiguration potential were founded upon axiomatic design 
theory in which reconfigurable manufacturing systems may be 
classified as large flexible engineering systems.   

Definition 3. Large Flexible Engineering System (LFES) 
[Suh, 2001]: an engineering system with many functional 
requirements (i.e. production processes) that not only evolve 
over time, but also can be fulfilled by one or more design 
parameters (i.e. production resources). 

Furthermore, according to Axiomatic Design, this 
mapping of system processes to system resources requires 
adherence to the Independence Axiom.   

Axiom 1. The Independence Axiom: Maintain the 
independence of the functional requirements [Suh, 2001]. 

In practice, this means that each functional requirement 
(i.e. production process) must be related mathematically to a 
design parameter (i.e. production resource).  Ultimately, each 
match of production process to production resource is 
assigned an event (in the discrete-event sense) called a 
production degree of freedom [Farid and McFarlane, 2008] 
which individually and collectively have a number of 
interesting properties: 

• Individually, they represent all of the available capabilities 
of the physical production system.   

• Collectively, they represent the configuration of the 
production system. 

• Their (countable) number represents the production 
system's reconfiguration potential. 

• The production of any product can be described as a 
sequence of the production degrees of freedom.   
In this regard, production degrees of freedom adhere to a 

relatively strict analogy to the mechanical degrees of freedom 
in a purely mechanical system [Farid and McFarlane, 2008].   

Furthermore, it is important to recognize the difference 
between the existence and the availability of a production degree 
of freedom.  The former is the presence of a capability 
regardless of whether it is currently functional or not.  The 
latter addresses the condition of its functionality as a binary 
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state.  Therefore, the description of shop floor phenomena 
such as machine breakdowns may apply sequence-
independent constraints that limit the number of  production 
DOFs [Farid and McFarlane, 2008].  Additionally, there may 
exist sequence-dependent constraints that do the same 
between pairs of production degrees of freedom.  Sequence-
dependent constraints may arise from a rigidly implemented 
supervisory controller; although the relative (physical) 
geometry of resources always applies some sequence-
dependent constraints [Farid and McFarlane, 2008].   

With this production degree of freedom primer in mind, 
a number of design principles are distilled that maximize 
reconfiguration potential: 

Principle 1. Application of Independence Axiom:  
Explicitly describe the agent architecture in terms of the 
production system's production degrees of freedom.   

Principle 2. Existence:  As a decision-making/control 
system, the multi-agent system must maintain a 1-to-1 
relationship with the set of physical capabilities that exist on 
the shop floor.     

Principle 3. Heterogeneity:  The production degrees of 
freedom within the agent architecture must respect the 
heterogeneity of capabilities found within the shop-floor be 
they various types of transformation, transportation or storage 
processes.   

Principle 4. Physical Aggregation:  The agent 
architecture must reflect the physical aggregation of the 
objects that they represent.   

Principle 5. Availability:  The agent architecture must 
explicitly model the potential for sequence independent 
constraints that impede the availability of any given production 
degree of freedom.   

Principle 6. Interaction:  The agent architecture must 
contain agent interactions along the minimal set of physical 
sequence-dependent constraints.   

Principle 7. Maximum Reconfiguration Potential:  Aside 
from the minimal set of physical sequence-dependent 
constraints, the agent architecture should avoid introducing 
any further agent interactions (which may impose further 
constraints).   

Because the production of the entire production line can 
be described as sequences of individual production degrees of 
freedom, it is logical to describe the agents in terms of these 
same production degrees of freedom (Principle 1).  In that 
regard, production degrees of freedom are the quantitative 
equivalent of agent semantic ontologies.  The production 
degrees of freedom must also be necessary and sufficient; 
neither overstating nor understating the production system's 
capabilities (Principles 2 and 3).  The agents must also have a 
level of aggregation that mimics that of the physical entities 
that they represent (Principle 4).  Next, the agent architecture 
must distinguish between the existence and availability of its 
capabilities (Principle 5).  The existence of sequence-
dependent constraints on the physical shop floor suggests for 
the need for the same amongst the agents (Principle 6).    For 
example, a material handling process must end where another 
material handling process begins.  Finally, adding agent 
interactions beyond the ones on the physical shop floor is 
likely to introduce unnecessary constraints (Principle 7).   

2.2 DESIGN PRINCIPLES FOR RECONFIGURATION 
EASE 

The aspects of reconfigurability measurement related to 
reconfiguration ease were founded upon the use of the 
production design structure matrix [Farid, 2008a; McFarlane 
and Farid, 2007]. It encourages the design of maximally 
cohesive and minimally coupled modules within the 
production system.  To that end, three more design principles 
are added for reconfiguration ease.   

Principle 8. Physical Agents:  Align agents' scope and 
boundaries with their corresponding physical resources and 
their associated production degrees of freedom. 

Principle 9. Encapsulation:  Production system 
information should be placed in the agent corresponding to 
the physical entity that it describes. 

Principle 10. Reconfiguration Method:  The same 
reconfiguration process can require significantly different 
effort (measured in time, cost, or energy) depending on the 
method used to conduct the reconfiguration (and not just the 
reconfigured resources).    

Principle 8 ensures that when a reconfiguration process 
occurs (i.e. addition, modification or removal of a production 
degree freedom), it does so simultaneously on the physical 
resource as well as on the corresponding agent.  Previous 
reconfigurability measurement work has shown that in many 
cases misaligned informatic entities such as centralized 
controllers lead to greater coupling of production degrees of 
freedom [Farid, 2008a]; thus hindering reconfiguration ease.  
Principle 9 recognizes that information is more often used 
locally rather than remotely and thus encourages greater 
encapsulation and modularity.   Principle 7 also serves to 
support the modularity of the production system agents.  
Finally, Principle 10 accounts for the potential for 
reconfiguration processes to be conducted manually or 
automatically.   

3 MATHEMATICAL DESCRIPTION OF THE 
ARCHITECTURE 

On the basis of the design principles described in the 
previous section, the Axiomatic Design Multi-Agent 
Reconfigurable Manufacturing System (ADMARMS) 
architecture is developed and is shown in Figure 1. It's high 
level structure is now discussed in terms of the mathematical 
treatment found in the reconfigurability measurement of 
automated manufacturing systems [Baca, Farid, 2013; Farid, 
2007; 2008a; Farid, 2008b; Farid, 2013; Farid and Covanich, 
2008; Farid and McFarlane, 2008; McFarlane and Farid, 2007]. 

3.1 PRODUCTION SYSTEM KNOWLEDGE BASE 
The production system knowledge base is the key matrix 

for describing a system's production degrees of freedom.  Its 
usage is a mathematically explicit adherence to Principle 1. 

Definition 4. Production System Knowledge Base [Farid 
and McFarlane, 2008]: A binary matrix JS of size σ(P)xσ(R) 
whose elements JS(w,v)∈{0,1} are equal to one when event ewv 
exists as a production process pw being executed by a resource 
rv.. 
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Figure 1. ADMARMS Architecture & Data Model 

By Principle 2, these physical resources have their 
informatic counterpart in the resource agent (RA).  It is 
decomposed into itself to allow a production system to be 
divided into a physical hierarchy of departments and cells 
(Principle 4). 

Resource agents are further classified into transformer 
agents (TFA) M, storage agents (SA) B, and transporter agents 
(TPA) H to differentiate between the inherently different 
types of production resources. R=M∪B∪H. The first is often 
considered “value-adding” while the other two are often 
intentionally minimized. The architecture also recognizes that 
the transformation and storage resources and their respective 
agents may be grouped into a set of buffer resources and their 
respective agents (BA); locations in which products remain 
stationary (Principle 3). BS=M∪B [Farid and McFarlane, 2008]. 

While the resource agent effectively describes the system 
form, the production process agent (PPA) effectively 
describes the system function. While it is common that 
physical resources have their associated agents, a novel aspect 
of the ADMARMS architecture is the decision to assign 
agents to each production process. They act as component 
slaves of their resource agent masters.  This serves to 
emphasize the distinction between the form of physical 
resources and the (potentially variable) set of behavioural 
production processes they can perform. 

As with resource agents, the production process agents 
must be classified to account for the different types of 
activities on the shop floor (Principle 3). These include the 

entry and exit processes agents (ENPA and EXPA) for 
crossing the system boundary and transformation processes 
(TFPA) for value-adding processes [Farid, 2014a]. 
Mathematically, they have often been lumped into a single set 
of production processes Pμ. Transportation process agents 
(TPPA) Pη are defined between individual buffers. 
σ(Pη)=σ2(BS) where σ() gives the size of a set. Notice that the 
only resource-agent-to-resource-agent interaction occurs here 
because a transporter agent needs to know the identity of the 
origin and destination buffers.  Holding process agents (HPA) 
Pγ account for the ability to fixture/hold a product during 
storage or transportation.  

The overall production system knowledge base JS can 
then be reconstructed straightforwardly.  The transformation 
system knowledge base JM relates Pμ to M.  The transportation 
system knowledge base JH relates Pη to R=M∪B∪H. M and B 
are included here to account for their “null-transportation” or 
storage processes where no motion occurs. The holding 
system knowledge base Jγ  relates Pγ to R.  Then JS becomes 
[Farid, 2013; Farid and McFarlane, 2008] 

JS =
JM | 0

JH

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (1) 

where [Farid, 2013] 

JH = Jγ ⊗1σ (Pη )⎡⎣ ⎤⎦ ⋅ 1σ (Pγ ) ⊗ JH⎡⎣ ⎤⎦   (2) 
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and  is the kronecker product and 1n is a column ones 
vector of length n. 

3.2 PRODUCTION SYSTEM SCLERONOMIC 
CONSTRAINTS MATRIX 

Each of the resource and process agents (and their 
specific types) can potentially be unavailable due a physical 
fault or some rigidity in the control system (Principle 5). To 
account for this, the agents have an “on-off” status. These are 
described mathematically in the production system 
scleronomic (i.e. sequence-independent) constraints matrix.   

Definition 5. Production System Scleronomic 
Constraints Matrix [Farid and McFarlane, 2008]: A binary 
matrix KS of size σ(P)xσ(R) whose element KS(w,v) ∈{0,1} is 
equal to one when a constraint eliminates event ewv from the 
event set.   

It is calculated analogously to the production system 
knowledge base [Farid, 2013; Farid and McFarlane, 2008]: 

KS =
KM | 1

KH

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (3) 

where [Farid, 2013] 

KH = Kγ ⊗1σ (Pη )⎡⎣ ⎤⎦ ⋅ 1σ (Pγ ) ⊗KH⎡⎣ ⎤⎦  (4) 

 
From these definitions of JS and KS, follows the definition 

of sequence-independent production degrees of freedom.   
Definition 6. Sequence-Independent Production 

Degrees of Freedom [Farid and McFarlane, 2008]: The set of 
independent production events ES that completely defines the 
available production processes in a production system.  Their 
number is given by: 

 
DOFS =σ (ES ) = JS KS[ ]

v

σ (R)

∑
w

σ (P )

∑ (w,v)  (5) 

where the A B operation is boolean subtraction.  

3.3 PRODUCTION SYSTEM RHEONOMIC 
CONSTRAINTS MATRIX 

Once the individual agents have been defined around 
production system degrees of freedom, the design of the 
architecture turns to defining the resource-agent-to-resource-
agent interactions.  In that regard and as mentioned 
previously, the only such interaction occurs because 
transporter agents need to know the identity of the origin and 
destination buffers (Principle 6).  These minimal interactions 
are reflected in the production system rheonomic constraints 
matrix.   

Definition 7. Rheonomic Production Constraints Matrix 
Kρ  [Farid, 2013; Viswanath et al. , 2013]:  a square binary 
constraints matrix of size σ(P)σ(R)xσ(P)σ(R) whose elements 
Kρ (ϕ1,ψ1)∈{0,1} are equal to one when string zϕ1ψ2 = ew1v1ew2v2 
is eliminated and where ψ=σ(P)(v-1)+w.   

Previous work has shown that Kρ must be non-zero so as 
to account for basic rules of continuity; the destination of one 
production degree of freedom must occur at the same 
location as the origin of a subsequent one [Farid, 2013; Farid 
and McFarlane, 2008].  This includes transformation degrees 

of freedom which explicitly state where the corresponding 
transformation process must occur.  Aside from these 
minimal constraints, the architecture does not introduce any 
other resource-agent-to-resource-agent interactions on the 
resource side (Principle 7). 

3.4 PRODUCTION MODEL 
The design of the ADMARMS architecture then includes 

product agents (PA) as the informatic counterpart of the 
physical products (Principle 2).  A product agent maybe 
decomposed into itself to allow a physical hierarchy of 
subassembly and component products (Principle 4).  It is also 
important to note that the product agent must have some 
awareness of how it should be produced.  This has been 
achieved previously with a product net. 

Definition 8. Product Net [Farid, 2008b; McFarlane and 
Farid, 2007]: 

Given product li, it may be described as:  
Nli={Sli, Eli, Fli}  (6) 

where Nl is the product net, Sl is the set of product places, Eli 
is a set of product events, and Fl is set of product flow 
relations. 

Definition 9. Product Event [Farid, 2008b]:  A specific 
transformation process that may be applied to a given 
product. 

In addition to the events, places and flow relations all 
have physical meaning. Each of the places represents a 
product or component at a raw, work-in-progress, or final 
stage of production. Finally, the flow relations describe which 
products or components receive which product events.  

The presence of an instantiated product agent in the 
production system is achieved by the entry and exit process 
agents found within a given storage agent (Principle 5).     

3.5 PRODUCT FEASIBILITY MATRICES 
Once the individual product agents have been defined, 

the design of the architecture turns to defining the product-
agent-to-resource-agent interactions.  These are absolutely 
necessary operator-to-operand relations (Principle 6).  The 
relationship between product events to transformation 
degrees of freedom is achieved with the product transfor-
mation feasibility matrix.   

Definition 10. Product Transformation Feasibility Matrix 
Λμi [Farid, 2008b; Farid, 2013]: A binary matrix of size 
σ(Eli)xσ(Pμ) whose value Λμi(x,j) = 1 if exli  realizes transfor-
mation process pμj.   

The relationship between products and the required 
holding/transportation processes is similarly defined.   

Definition 10. Product Transportation Feasibility Matrix 
Λγ i [Farid, 2008b; Farid, 2013]: A binary row vector of size 
1xσ(Pγ) whose value Λγi(g) = 1 if product li can be held by 
holding process pγ g. 

3.6 PRODUCTION DESIGN STRUCTURE MATRIX 
The subsections above collectively address the 

reconfiguration potential of the production system and so the 
attention now turns to reconfiguration ease.  In that regard, 
the production system design structure matrix (PDSM) shown 
in Figures 2 &3 [Farid, 2008a] has been previously used for 
measurement. It captures the physical, energy, and informatic 



An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture 
The Eighth International Conference on Axiomatic Design 
Campus de Caparica – September 24-26, 2014 
 

160  Copyright © 2014 by ICAD2014 

couplings between production system entities. While the 
PDSM is highly sparse, it does have heavy coupling on both 
sides of the main diagonal[Farid, 2008a]. As a result, this 
paper advocates heuristic-based approaches to usage rather 
than optimization.  The latter being extremely computationally 
intensive (e.g. NP-hard job-shop NP-hard scheduling 
problems.)    
 

 
Figure 2. Production System Design Structure Matrix 

 
Figure 3. Production System Design Structure Matrix 

(with centralized controllers) 

In the case of multi-agent systems in production systems, 
the scope of each agent aligns with the underlying production 
system resource or product (Principle 8).  In such a case, the 
coupling between production degrees of freedom can be 
minimized.  In contrast, centralized controllers introduce new 
blocks to the production system design matrix which appear 
as off-diagonal coupling between resources and their 
associated production degrees of freedom.  As this 
architecture is developed to include the specific behaviours of 
agent-to-agent interactions and negotiations, care will be taken 
to demonstrate that each agent is maximally cohesive and 
minimally coupled (Principle 9). 

3.7 RECONFIGURATION PROCESSES 
The final element of the ADMARMS architecture is to 

specify the method of conducting reconfiguration processes 
(Principle 10).  In that regard, the reconfiguration agent (RCA) 
is an automatic way of changing the production degrees of 
freedom of a given resource agent. Mathematically, it is 
responsible for conducting the reconfiguration process [Farid 
and Covanich, 2008; Farid and McFarlane, 2008]:   

  (7) 
Examples of reconfiguration agents are automatic tool 

changers (change of transformation degree of freedom), 
automatic fixture changers (change of holding degree of 
freedom) and conveyor gates (change of transportation degree 
of freedom).   

4 ARCHITECTURE DATA MODEL 
IMPLEMENTATION 

As shown in Figure 1, the previous section provided a 
high level mathematical description of the ADMARMS so as 
to identify its member agents.  This section now discusses the 
contents of these agents from an implementation point of 
view.  It is understood that these agents would be 
implemented in a multi-threaded programming language such 
as JAVA and adhere to the latest multi-agent standard 
platforms (e.g. FIPA, JADE) [Bellifemine et al. , 2007].   

4.1 RESOURCE AGENT (RA) 
The RA is an abstraction for all the potential manufactur-

ing entities in the system. It encapsulates the common features 
of the specialized classes. Its parameters are described as 
follows: 
-resourceType : int - a type that identifies the implementa-
tion class. 
-resourceID : String - a unique identifier in the form of a 
serial number. 
-location : pair<int,int> - a coordinate to keep track of its 
location. 
-negotiationBehaviour : Behaviour - a negotiation behavior 
to mediate the interaction between the RA and a PA. 
-commitments : Product Agent [0..*] - a list of commit-
ments to various production agents.  
-hal : hardwareAbstractionLayer - a hardware abstraction 
layer (HAL) that mediates low-level execution. 
-selfManagementBehaviour : Behaviour - a persistent be-
havior that generically allows for self-management. 
-resourceState : int - a state of the resource linked to its 
availability in the scleronomic constraints matrix.   
-processes : Production Process Agent [0..*] - a list of 
production process agents that are associated with resource 
agent.   
-subordinates : ResourceAgent [0..*] - a list of resources 
that are under the control of a specific resource in a master-
slave relation. 
Additionally, the resource agent has a single method: 
# manage() : int - an abstract management method invoked 
by the selfManagementBehavior parameter that monitors 
and updates the resource state. 

Furthermore, the commitment parameter gives a 
measurement of the anticipated load on a resource and is 
fundamental to robust system operation when making further 
negotiations.  It is necessarily updated after each successful 
execution of a production process.  Also, the HAL serves as a 
generic interface that enables resources of the same type to 
operate similar physical devices regardless of the specific low-
level implementation details. Therefore, the HAL decouples 
the agent environment from controller specific implementa-
tions [Ribeiro and Barata, 2013a]. 

4.2 SPECIALIZATIONS OF THE RA 
As shown in Figure 1, the RA is specialized as a BA, 

TFA, SA and a TPA.  These are discussed in turn.   
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4.2.1 BUFFER AGENT (BA) 
The BA is a specialized resource that denotes a resource 

with the ability of storing PAs.  It has a single additional 
parameter: 
-capacity : int - a finite capacity of PAs. 

The TFA and SA stand as specializations of the BA. 

4.2.2 TRANSFORMER AGENT (TFA) 
The transformer agent abstracts shop-floor entities with 

transformation capabilities and therefore hosts both trans-
forming and holding process agents (inherited from the BA).  
It has a single additional parameter. 
-transformerType : int - a parameter that identifies the 
various types TFAs be they assembly, additive and subtractive 
in nature.   

4.2.3 STORAGE AGENT (SA) 
The Storage Agent is the implementation of the buffer 

concept. It is responsible for the storage, introduction, and 
removal of a PA within, into and from the system.  Subse-
quently, it hosts the corresponding production processes.  It 
also has a single additional parameter: 
-storageType : int - a parameter that identifies the various 
types of SAs be they passive or active.   

4.3 TRANSPORTER AGENT (TA) 
The TA is responsible for moving a PA between buffer 

agents.  Consequently, it has two parameters: 
-origin : BufferAgent - the identity of the origin BA. 
-destination : BufferAgent - the identity of the destination 
BA. 

It hosts transportation process and holding process 
agents as it executes the motion between these buffers.   

4.4 PRODUCTION PROCESS AGENT (PPA) AND ITS 
SPECIALIZATIONS 

The PPA abstracts the different production processes 
hosted by the system's resources.  It has the following 
parameters: 
-processID : String - a unique identifier that identifies the 
process and its instance. 
-processType : int - a type that defines the specialized class 
to which the PPA belongs. 
-processState : int - a state of the PPA linked to its 
availability in the scleronomic constraints matrix. 
-selfManagementBehaviour : Behaviour - a persistent 
behavior that generically allows for self-management. 

Additionally, a production process has a single method: 
# manage() : int - a management method invoked by the 
selfManagementBehaviour.   

This method, whose implementation must be provided 
by the specializing classes, is responsible for updating the state 
of the PPA and embodies the PPA's proactive behavior 
towards the emergence of constraints.   

The PPA class has five specializations: the transformation 
process agent (TFPA), the transportation process agent 
(TPPA), the holding process agent (HPA), the entry process 
agent (EPA) and the exit process agent (EXPA).  Collectively 
PPAs, Resource Agents and their associated specializations 
define the production system knowledge base.   

4.4.1 TRANSPORTATION PROCESS AGENT (TPA) 
The TPPA has a single method that is hosted by the 

TPA: 
-transport() : void - a method responsible for executing the 
displacement of parts between buffers.   

4.4.2 TRANSFORMATION PROCESS AGENT (TFPA) 
The TFPA has a single method that is hosted by the 

TFA: 
-transform(parameters : objective) : void - a method 
responsible for the transformation of a part. 

TFPAs execute differently depending on their parameter-
ization to accommodate the distinct transformation require-
ments.  

4.4.3 HOLDING PROCESS AGENT (HPA) 
The HPA has two parameters that relate to the product 

agent: 
-holdable : product agent [1..*] - a parameter to define 
which parts can be held. 
-orientation : int - a parameter to define the orientation of 
that part.   
In addition, the holding process agent has two methods: 
# hold() : void - a method to allow the PA to be held. 
# release() : void - a method to allow the PA to be released. 

The HPA is hosted conjointly with either a TFPA or a 
TPPA by a TFA or TPA respectively.   

4.4.4 ENTRY & EXIT PROCESS AGENTS (ENPA & 
EFPA) 

The ENPA and the EXPA create and destroy product 
agents with their respective methods. 
-createProductAgent( product : Product Agent ) : void - 
allows for a new order to spawn a new product agent. 
-destroyProductAgent( product : Product Agent ) - allows 
a completed product to be registered as a fulfilled order.   

4.5 PRODUCT AGENT (PA) 
The PA abstracts each active product under production 

in the system and has the following parameters:  
-productID : String - a serial number as a string.  
-location : pair<int,int> - a location coordinate. 
-executionState : int - a state variable that captures the 
condition of the overall process. 
-subordinates : Product Agent [0..*] - a list that is used 
when the PA has subordinate PAs.  From a structural point of 
view, each product may be composed of other subordinated 
products.  This composition models sub-assemblies and 
component parts.   
-parent : Product Agent - a string that is used when the PA 
is subordinate to another PA. This string mirrors the 
composition relationship with the aggregation relationship.  
Parent product agents can proceed to complete their product 
events only after the completion of the subordinate PA's 
product events.   
-productionProcessDescription : product net - captures 
the flow of product events. Its hierarchical decomposition 
encourages a similar decomposition of the resulting product 
nets hence creating different views, with levels of abstraction, 
over the entire set of product events that define the 
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production of a product. Each PA establishes an identity with 
a final form of an assembly, sub-assembly, part or material. 

The autonomy of the PA is defined by its main persistent 
behaviour: 
-selfProduceBehaviour : Behaviour - a behaviour that 
controls the production process of the PA. It has two main 
phases: configuration and runtime.  

The configuration phase is responsible for initialization 
routines, evaluation and instantiation of the PA's production 
process. These are carried out by different methods:  
-spawn() : void - a method that spawns all the PA's 
subordinates. 
-instantiateProductionSequence() : void - a method that 
evaluates and instantiates the production process description 
and subsequently populates the product net's associated 
production processes. 
-productionProcess : product net - a net that stores the 
association between product events and production processes. 
It provides the required information to devise the path 
connecting all the resources allocated in this process. 
-negotiationBehaviour : Behaviour - a behaviour that 
encapsulates the communication and negotiation logic 
between the PA and the system's resources. It is activated in 
the configuration phase to ensure the initial association of 
processes and resources and later, in runtime, as a response to 
disturbances. 

The runtime phase controls and monitors the production 
process and disturbances. These actions are implemented in 
the execute method. 
-execute() : void - this method implements a supervisory 
state machine that governs: resource activation, agent 
unification/termination and re-negotiation. It describes all the 
PA to PA and PA to RA interaction logic. This state machine 
is therefore supported by three methods: 
-unify() : void - a method that signals the parent PA that this 
subordinate PA has successfully terminated its process and the 
resulting sub-product can be integrated in the parent's 
process. 
-fail() : void - a method that signals the parent PA that this 
subordinate has encountered an unrecoverable fault and 
cannot be integrated in the parent's process. 
-terminate() : void - a method that removes a subordinate 
PA from the system in a clean way or removes the top level 
PA at a resource hosting an exit process agent. 

4.6 RECONFIGURATION AGENT (RCA) 
The RCA's behaviour is mainly defined by one function: 

-Reconfigure( resource : Resource ) : void - reconfigures 
the process agents in a specific resource and ensures that the 
instantiation of new process is conflict free. 

The reconfiguration occurs on request from a RA and 
through a negotiation procedure whereby the RA asks the 
RCA to enable new processes or re-parameterize existing 
ones. The RCA will then assess the availability and potential 
reconfiguration conflicts on the desired processes and 
reconfigure the RA accordingly. 

5 CONCLUSION 
To our knowledge, this paper is the first multi-agent 

system reference architecture for reconfigurable manufactur-

ing systems driven by a quantitative and formal design 
approach.  This is in contrast to existing reference architec-
tures (e.g. PROSA, HCBA, ADACOR) which were 
qualitatively developed on the basis of experienced design 
intuition.  The ADMARMS architecture is rooted in an 
established engineering design methodology called axiomatic 
design for large flexible engineering systems and draws upon 
design principles distilled from prior works on reconfigurabil-
ity measurement.  The resulting architecture is written in 
terms of the mathematical description used in 
reconfigurability measurement which straightforwardly allows 
instantiation for system-specific application.   Future work will 
seek to 1.) implement this architecture in virtual and hardware 
testbeds and measure the consequent reconfigurability and 2.) 
benchmark this reference architecture with respect to the 
existing alternatives.    
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