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Abstract 

Synthesizing dimensional tolerances of mechanical systems involves finding the values of the allowable variation of the functional dimensions. 
According to Axiomatic Design, the synthesis of mechanical tolerances can be described as a redundant decoupled design. This is why 
experienced engineers are proficient in solving this kind of problems, even if they never heard about Axiomatic Design and about the 
independence axiom. This paper presents an Axiomatic Design interpretation for the synthesis of dimensional tolerances. This interpretation 
shows that the traditional method for solving this class of problems implicitly obeys the independence and the minimum information axioms. 
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1. Introduction 

Mechanical systems are made of discrete parts. These parts 
may be manufactured through distinctive approaches, not only 
at sites that are geographically separated, but also through 
different production processes with dissimilar capabilities. 
This may involve developing distinct detail designs dedicated 
to each one of the aforesaid approaches.  

This challenge is typically outdone by using manufacturing 
setups that are based on the details of each approach, which 
includes the knowledge about the capability of the possible 
manufacturing processes. For each approach, designers must 
define dimensions and tolerances of the parts to ensure the 
required fits, taking into account the capabilities of the likely 
production processes. Notice that the tolerance allocation 
plays an important role in the development of mechanical 
products that can operate at increasingly better performance at 
affordable costs. 

Traditionally, designers deal with the tolerance issue by 
identifying independent dimensional chains. Hence, they qui-
etly use an important principle of Axiomatic Design (AD): 

keeping the independence of the dimensional chains, in which 
fits are seen as the functional requirements, while dimensional 
tolerances are regarded as the design parameters. 

The allocation of values to the tolerances of dimensions 
that form each dimensional chain is known as “synthesis of 
tolerances”. This paper discusses the synthesis of tolerances 
and uses the example of a simple mechanical system to make 
an interpretation of it in light of Axiomatic Design. 

 
Nomenclature 

fi                Fit of the ith dimensional chain 

                    Means clearance  

                    Means interference 

             Tolerance of the ith fit 

a, .., g         Dimensions of the parts 

  Tolerances of the dimensions a, .., g  

All dimensions in millimetres. 

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of The 10th International Conference on Axiomatic Design



90   João Fradinho et al.  /  Procedia CIRP   53  ( 2016 )  89 – 94 

2. The synthesis of tolerances 

The precise knowledge about dimensional tolerances of 
products is essential for their manufacture and the inspection 
that should follow. Tolerances impact the selection of manu-
facturing processes and the assembly methods, which, in turn, 
influence the functional quality of the products as well as their 
production costs. Thus, the specification of tolerances 
represents a key connection between design and production. 

It is well known that unduly tight tolerances lead to unac-
ceptable production costs, as shown in Fig. 1. 

 

Fig. 1. The impact of dimensional tolerances on production cost 

On the other hand, high performance usually requires tight 
tolerances, as depicted in Fig. 2. 

 

Fig. 2. The impact of dimensional tolerances on performance 

Fig. 1 and Fig. 2 illustrate what one can call “the designer’s 
dilemma”: high performance is attained through tight 
tolerances, but this increases the production costs. 

Tolerancing is twofold: analytic and synthetic. In analysis, 
individual tolerances are known and the functional condition 
(as expressed by a fit) is checked. In synthesis, the individual 
tolerances of the components are assigned, in order to ensure a 
predefined functional condition. 

Notice that in any mechanical multi-part system, the 
number of parts must be greater than the number of functional 
interfaces, which are pairs of mating surfaces. Otherwise the 
fine-tuning of the fits is not controllable because they are not 
independent. Additionally, the best solutions are the ones 
where the various tolerances are equally difficult to attain [1]. 

Many approaches to deal with analysis (models) and 
synthesis (methods) are known. The result of tolerance 
analysis is conditioned by the adopted mathematical model. 
Polini [2], classifies the major models for tolerance analysis 
as: Vector loop, Variational, Matrix, Jacobian, Torsor, 
Jacobian-Torsor and “T-maps”. As for the available tech-
niques for tolerance synthesis, Ye and Salustri [3] classifies 
them as traditional methods, methods focusing on manu-
facturing and methods focusing on quality. Nevertheless, the 
goal of this work is not about synthesis methods, rather 
presenting an AD interpretation of synthesis itself. 

3. Independence in Axiomatic Design 

Axiomatic Design (AD) is a general design framework 
based on two axioms: the independence axiom and the 
information axiom, and no counterexample has been found so 
far. At least, eight corollaries and some tenths of theorems 
were derived from these axioms. All of them constitute part of 
the Axiomatic Design framework. 

Axiomatic Design was created by Nam P. Suh in 1978 [4] 
and was spread along the worldwide engineering community 
through his seminal book “The Principles of Design” [5]. 

The independence axiom might be stated as: 

Axiom 1 (The Independence Axiom): Maintain the 
independence of the functional requirements (FRs) 

In 2007, Park [6], presented two alternative statements for 
the same axiom: 

Alternative Statement 1: An optimal design always main-
tains the independence of FRs. 

Alternative Statement 2: In an acceptable design, design 
parameters (DPs) and functional requirements (FRs) are 
related in such a way that a specific DP can be adjusted to 
satisfy its corresponding FR without affecting other functional 
requirements. 

The relationship between FRs and DPs is represented by 
the design equation 

              (1) 

where {FR} is the vector of functional requirements, [A] is the 
design matrix and {DP} is the vector of design parameters. 
The total numbers of FRs and DPs are expressed by m and n, 
respectively. 

The independence of FRs is guaranteed whenever the 
design matrix is diagonal (uncoupled designs). It is also 
assured when the design matrix is triangular (decoupled 
designs). Otherwise, independence is not achieved (coupled 
designs). According to theorem 4, in an ideal design, the 
number of DPs is equal to the number of FRs and FRs are 
always maintained independent of each other [7]. 

Some papers about using AD in the synthesis of tolerances 
have been published in the past: Campatelli [8] showed a way 
to include synthesis in the classical AD framework by 
introducing the concept of Tolerance Design Matrix (TDM), 
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which describes the relationships between the DPs of distinct 
levels of the design decomposition, as a means to facilitate the 
optimization of costs; Henriques et al. [1] proposed a method 
to increase the sigma level of a mechanical assembly through 
the appropriate allocation of tolerances, i.e. the values for the 
DPs. 

However, in a strict AD viewpoint on the synthesis of 
tolerances, the variation of the fits should be taken as 
functional requirements, while the tolerances of components 
should be taken as design parameters, and the independence 
axiom should be followed. Notice that this is the case of the 1-
FR problem studied by Henriques et al., which is uncoupled 
by nature. As it was already indicated, the number of parts of 
any mechanical assembly must be greater than the number of 
interfaces (n-Fr problem). Thus, according to AD’s theorem 3 
[7], tolerance synthesis always represent a redundant design. 
Therefore, after checking that the design solution is uncoupled 
or decoupled, designers should select suitable tolerances in 
order to conform to the required functionally. Otherwise, the 
solution must be revised. 

The next section details the case of the synthesis of a 
decoupled design. 

4. The synthesis of tolerances – a case study 

This section presents an example of synthesis of dimen-
sional tolerances of a mechanical system under the traditional 
point of view. Fig. 3 depicts that system, which has the four 
following dimensional chains. 

Chain #1 – Ensures the fit f1 and it is composed by the 
dimensions a, b and c. 

Chain #2 – Ensures the fit f2 and it is composed by the 
dimensions b, d and e. 

Chain #3 – Ensures the fit f3 and it is composed by the 
dimensions a, b, d and f. 

Chain #4 – Ensures the fit f4 and it is composed by the 
dimensions a, and g. 

All the fits are clearances with the following values: 

 

 

 

 
In addition, one knows that a = 120 and e = 55. Dimension 

b = 24 and 0  Δb 0.2, which relates to the width of the 
bearings shown in Fig. 3 and dimensions c, d, f and g must be 
appropriately set by the designer. 

Considering the worst-case condition, the equations of the 
dimensional chains and of the related tolerances are 

Chain #1             (2) 

              (3) 

Chain #2             (4) 

             (5) 

Chain #3            (6) 

             (7) 

Chain #4 

 

           (8) 

              (9) 

 

 

Fig 3. The mechanical system to be toleranced 
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The goal is to synthesize the tolerances, i.e., to assign 

values to Δa, Δb, Δc, Δd, Δf and Δg in order to satisfy the 
functional requirements Δfi. A typical approach is made of the 
following steps, based on the proportional approach to the 
allocation. 

Chain #1 

- Dimension c is computed through Eq. 2 for the given 
values a = 120 and b = 24. 

- Δa and Δc are interrelated trough the “standard tolerance 
unit”, i 

                                             

(10) 

where D is the dimension in mm. Because both tolerances Δa 
and Δc should be equally difficult to attain, then the following 
relation holds 

                                                     (11) 

which allows to compute Δa or Δc trough Eq. 3. 
- The tolerances of Δa and Δc are computed considering 

the tolerance zone h. Since a can be regarded as a shaft, then 
amax = a, and cmax, as well as cmin, are computed trough Eq. 2. 

Chains #2, #3 and #4 

- Solving Chains #2, #3 and #4 follow the same procedure 
that was used for Chain #1. 

Notice that, in Chain #2, d and e are external and internal 
dimensions, respectively. Thus, the following relation holds 

1 3

1 3

1 0.45 0.001

1.58 0.45 0.001

d d d

e e e
                                           (12) 

Therefore, the values of d, e, Δd and Δe are found by 
solving Chain #2 through Eq. 4 and 5, taking into account Eq. 
12. Then, Chain #3 allows determining the values of f and Δf 
through Eq. 6 and 7. At last, solving Chain #4 allows getting 
the values of g and Δg through Eq. 8 and 9. 

In the next section, tolerance synthesis for this case is 
interpreted under an Axiomatic Design viewpoint. 

5. An AD interpretation of the synthesis of tolerances 

Eq. 13 derives from Eq. 3, 5, 7 and 9. It depicts the AD’s 
design equation for the system of Fig. 3, and one can see that 
the corresponding design matrix is of rank 4x7, 

                     (13) 

subjected to the constraints represented by Eq. 11 and 12. 
With its right-trapezoid design matrix, Eq. 13 depicts a 
redundant decoupled design as per AD’s theorem R1 [9].  

From Eq. 3, one can write 

                                             (14)

 Taking into account Eq. 11, one has 

                                   (15)
 

and Eq. 14 becomes 

            (16) 

A similar reasoning can be used for Chains #2, #3 and #4. 
For Chain #2 one has 

                                               (17) 

Next, taking into account Eq. 12, one has 

                                                       (18) 

Using Eq. 18 to eliminate Δe in Eq. 17 yields to 

                                          (19)

 
Concerning to Chains #3 and #4, one can write 

                                         (20) 

                                                   (21) 
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Now, combining Eq. 16, 19, 20 and 21 we can rewrite Eq. 
13 as an equation with a design matrix of rank 4x5. 

             (22) 

At last, making 

                                                               (23) 

                                                                 (24) 

                                                                 

(25) 

one can rewrite Eq. 22 as an equation with a design matrix of 
rank 4x4 

                 (26)

 

subjected to the constraints denoted by Eq. 11 and 12. 
With its triangular design matrix, Eq. 26 clearly depicts the 

case of Fig. 3 as a squared matrix decoupled design, so 
confirming the conclusion that was already made through Eq. 
13. However, Eq. 26 is much easier to use than Eq. 13. 

First, Eq. 23, 24 and 25 are used to compute * *
1 2,f f  and 

*
3 .f This can be promptly done because one knows the values 

of Δf1, Δf2, Δf3 and Δb. Then, Eq. 26 is used to compute Δa, 
Δd, Δf and Δg. Next, Eq. 11 is used to compute Δc and, at last, 
Eq. 12 allows computing Δe. 

6. Discussion 

Eq. 13 describes Fig. 3 and denotes a decoupled design 
because its design matrix is populated according to a right-
trapezoid arrangement, thus conforming to theorem R1 [9]. In 
other words, well-solved problems of synthesis of tolerances 
implicitly obey the independence axiom. 

Solving Eq. 13 implies making two early assumptions for 
the design parameters because the first line of the corre-
sponding design matrix contains three non-zero elements. 

The easiest assumption to make is taking Δb = 0.2, because 
for the selected bearings one knows that 0  Δb 0.2. Now, 
taking into account Eq. 11, one can simultaneously compute 
the values of Δa and Δc from Eq. 13 because the value of f1, is 
known. Eq. 11 implicitly uses the minimum information 

axiom because it prescribes that the difficulty of attaining the 
dimensions a and c (i.e., their probability of success) should 
be equal. Subsequently, one tackles the functional requirement 
f2. The fulfilment of this functional requirement depends on 
finding the values of Δd and Δe because the value of Δb is 
already known. However, Δd and Δe are interrelated through 
Eq. 12, which, once more, is an implicit call to the minimum 
information axiom that allows simultaneously finding the val-
ues of the aforementioned design parameters. At last, one can 
promptly find the value of Δf that satisfies f3 and the value of 
Δg that satisfies f4. 

A much more straightforward procedure for solving the 
synthesis of tolerances of Fig. 3 is offered by Eq. 26, which 
results from Eq. 13 and contains a squared, triangular design 
matrix: first, Eq. 26 is used to find the values of Δa, Δd, Δf 
and Δg using the well-known technique for solving decoupled 
design equations; next, Eq. 11 is used to find Δc and, at last, 
Eq. 12 allows finding Δe. 

7. Conclusions 

This paper presents an interpretation of the synthesis of 
mechanical tolerances in light of Axiomatic Design, on the 
basis of a case study. 

The number of parts of any mechanical multi-part system 
should be greater than the number of functional interfaces, 
which always makes any dimensional synthesis problem a 
redundant design. This is because every mechanical fit, being 
it a clearance or interference, clearly depends on at least two 
dimensions 

Our interpretation shows that the synthesis of tolerances 
involves the solution of a redundant decoupled design equa-
tion. In fact, the tolerance equation is represented by Eq. 13 
that can be also expressed by Eq. 26, which triangular matrix 
confirms the decoupled nature of the problem. As a result, the 
process of synthesis always involves some assumptions are 
needed to establish the values of the tolerance chains. Thus, 
tolerance synthesis concerns should be integrated in the design 
structure, instead of being done in the final steps of the design. 

At last, one can stress that Axiomatic Design easily allows 
systematizing the synthesis of tolerances. 

In the future, the authors are planning to work on a holistic 
roadmap applicable to the process of tolerances synthesis 
under an AD viewpoint. 
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