
Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of The 10th International Conference on Axiomatic Design
doi: 10.1016/j.procir.2016.06.106

 Procedia CIRP 53 (2016) 44 – 49

ScienceDirect

The 10th International Conference on Axiomatic Design, ICAD 2016

An improved axiomatic design approach in distributed resource
environment, part 2: Algorithm for functional unit chain set generation

 Bin Chena,b,*, Jun Liua,b, Youbai Xiea,b

aState Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240,China
bSchool of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240,China

* Corresponding author. Tel.: +86-15800789240; fax: +0-000-000-0000. E-mail address: chenbinsun@outlook.com

Abstract

To technologically achieve the transformation from functional requirements (FRs) to design parameters (DPs) in the axiomatic design (AD)
theory, this paper employed the basic hypothesis, definitions and model developed in PART 1 of our study to establish an algorithm for
functional unit chain set (FUCS) generation. This algorithm is established on two mappings from the developed conceptual foundation to the
graph theory, i.e. treating functional units (FUs) as nodes, and treating connections between FUs as edges. With this two mappings, a graph
consisting of FUs can be created, which is called the functional unit graph (FUG). Based on the depth-first search (DFS) strategy in the graph
theory, the algorithm generating FUCSs from the FUG was finally established. As an additional function, a preliminary evaluation for the
generated FUCSs was also proposed. To prove the feasibility of this algorithm, a solar-powered wiper blades, and the load module of a friction-
abrasion testing machine were designed as illustrations.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of The 10th International Conference on Axiomatic Design.

Keywords: Generating algorithm, functional unit chain set, depth-first search, distributed resource environment

1. Introduction

As mentioned in the preceding paper PART 1, how to
transform FRs into DPs plays a key role in the AD theory, and
how to generate FUCSs from the distributed resource
environment consisting of FUs plays a key role in achieving
this transformation. However there is still no good
technological method to solve this problem. Therefore,
finding a similar circumstance with mature solution may be a
feasible study direction.

Some researchers used graph theory to describe and study
distributed resources, which might be inspiring to solve this
problem. Mei et al. studied the distributed containment
control problem for networked Lagrangian systems with
multiple dynamic leaders in the presence of parametric
uncertainties under a directed graph that characterizes the
interaction among the leaders and the followers. [1] Olfati-
Saber and Murray proposed a graph rigidity and distributed
formation stabilization of multi-vehicle systems. [2] Shen and

Tsai proposed a graph matching approach for solving the task
assignment problem encountered in distributed computing
systems. [3] Gonzalez et al. developed the distributed graph-
parallel computation on natural graphs. [4] Cheung proposed
graph traversal techniques and the maximum flow problem in
distributed computation. [5] Chen and Xie proposed a
computer-assisted automatic conceptual design system for the
distributed multi-disciplinary resource environment. [6]
Although these studies focused on other different disciplinary
domains, they can still prove the possibility to use graph
theory describing and studying distributed resource
environment consisting of FUs in our study.

If the FUs here are treated as nodes in graph theory, and
meanwhile, the connections of FUs here are treated as edges
in graph theory, the distributed resource environment can be
transformed into a graph consisting of FUs, which connect to
each other. So the problem, generating FUCS from the
distributed resource environment consisting of knowledge
services they providing different kinds of FUs via Internet

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of The 10th International Conference on Axiomatic Design

45 Bin Chen et al. / Procedia CIRP 53 (2016) 44 – 49

geographically located in the world, is transformed into
finding a path with given starting and ending points in a graph
under given conditions, which has been already solved with
mature technology. Kwan proposed this graph theory question
with the description of Chinese postman problem. [7] After
that, Benavent et al. studied this problem and found that with
the algorithm proposed by Dijkstra [8] this problem can be
solved. [9] Furthermore, Tarjan proposed a more efficient
algorithm called Depth-First Search (DFS) to solve this
problem successfully. [10] With the progress of
computational technology, this DFS method can be
successfully applied on many practical industrial domains
with computers. Gregor and Lumsdaine developed a generic
library for distributed graph computations. [11] Barooah and
Hespanha proposed a graph effective resistance and
distributed control. [12]

Inspired by these above researches, we proposed an
algorithm for FUCS generation based on DFS. The FUCS
generation is a necessary step in transforming FRs to DPs, and
is a FRs knowledge integrating process before DPs
knowledge integration, which aims in finding an ordered FUs
chain integrated from FUs on the basis of knowledge of FUs
to meet an indivisible FR in design. The whole work will be
introduced in 4 parts, i.e. functional unit graph (FUG),
algorithm for FUCS generation, preliminary evaluation for
FUCSs, and the application and implementation. All these
works will be concluded in the final of this paper.

2. Functional unit graph (FUG)

In the graph theory, a graph consists of many nodes
connected to each other. The connections are defined as edges.
This situation is suitable for the distributed resource
environment consisting of FUs. If we treat FUs as nodes, treat
their connections as edges, we can get a graph consists of FUs
and their connections as shown in Figure. 1. This graph is a
functional unit graph (FUG), and FUCSs are generated from

it.
Fig.1 An FUG with several kinds of connections as an illustrative example

3. Algorithm for FUCS generation

Based on DFS of graph theory, we proposed the algorithm
to generate FUCS from an FUG. Before introducing the detail
algorithm flow, some relevant assistant variables and the basic
principle of the algorithm should be introduced first.

3.1. Relevant assistant variables and the basic principle of the
algorithm

To generate an FUCS from the FUG, the first step is
finding the FUs which can be the first one in the chain, and we
call them head functional units (HFU). An HFU has the same
input as the input of the objective F which has already been
obtained by designers from the objective FR. After finding out
all the HFUs, we pick one of them, and search its successors
based on the edges. If one of its successors has the same
output as the output of the objective F, we find out an
objective FUCS. If none of the successors has the same output
as the output of the objective F, we pick one of the successors,
and keep on searching its successors, and repeat the above
process, until we find out all the objective FUCSs. During this
process, we set a maximum of the length of the objective
FUCSs, if the length of the generating FUCS exceeds the
maximum, we give up generating it.

Now, we introduce the following relevant assistant
variables to achieve the above algorithm principle.

Head functional unit tag.
It is a logic variable attached to the FU, if the FU is an

HFU, its value is 1, and if not, its value is 0. So, every FU has
an HFU tag, and the value of this tag is helpful for the
algorithm to determine if this FU is an HFU. Once this FU is
determined as an HFU, the generating process of a new FUCS
will begin from this FU.

Stack.
It is used to store the generating FUCS. Its bottom is an

HFU. If its top FU has the same output as the output of the
objective F, the FUs stored by the stack construct an objective
FUCS, from the bottom to the top. The FUs can only be
deleted and added to the stack from the top, which supports
the searching process of FUs.

Functional unit pointer.
This pointer points to the FU which is being tested.

Edge visiting tag.
It is used to record the visiting situation of an edge. If this

edge is visited, the value is 1, and if not, the value is 0.

Functional unit visiting tag.
It is used to record the visiting situation of an FU. If this

FU is visited, the value is 1, and if not, the value is 0.

The maximum of the length of functional unit chain set.
It is represented as lmax and is used to control the length of

the generating FUCS.

46 Bin Chen et al. / Procedia CIRP 53 (2016) 44 – 49

Fig.2 An operating example for illustrating the basic principle of the algorithm

The stack is the core viable, and it changes during the
process of the algorithm. As shown in Figure. 2, in the FUG,
there are 13 FUs, i.e. FU1-FU13. The algorithm will find
objective FUCSs from this FUG. The changing process of the
stack is shown in the figure. At the beginning, the stack is
empty. There are only two HFUs, i.e. FU1 and FU9. So there
may be two kinds of possible objective FUCSs which start
from FU1 and FU9 respectively, and the algorithm should try
to generate them respectively. Here, the algorithm will first try
to generate the possible objective FUCSs starting from FU1.
At this time, the bottom of the stack is always FU1. When the
generation of these possible objective FUCSs is completed,
the algorithm should empty the stack and push FU9 into it as
the bottom, so that, the generation of the other kind of possible
objective FUCSs can begin.

So, first pick FU1 into the stack. After that, along the
corresponding edges, FU2, FU3, FU5, and FU6 are pushed
into the stack one by one, but none of them has the same
output as the output of the objective F. So, keep on push FU7
into the stack. At this time, the length of the generating FUCS
exceeds the maximum, so FU7 is directly removed. And the
top FU will be tested. Both FU8 and FU6 have no successor,
so they are removed. As the new top, FU5 has a successor
FU8, so push FU8 into the stack. The output of FU8 meets the
objective F, so output the FUs of the stack from the bottom to
the top as an objective FUCS. Keep on testing the top FU of
the stack. FU3 and FU5 both have no unvisited successor, so
they are removed. As the new top, FU2 has an unvisited

successor FU4, so push FU4 into the stack. But the output of
FU4 cannot meet the objective F, so put its successor FU5 into
the stack. And as the same situation, FU8 is pushed into the
stack. The output of FU8 meets the objective F, so output the
FUs of the stack from the bottom to the top as another
objective FUCS. After that, keep on testing the top FU of the
stack. FU8, FU5, FU4, FU2, and FU1 all have no unvisited
successor, so they are all removed one by one.

At this time, the stack is empty again, push the other head
functional unit FU9 into the stack, and keep on the above
process. FU10, FU11, and FU12 are pushed into the stack one
by one. Now, the output of FU12 does not meet the objective
F, and FU12 has no unvisited successor, so it is removed. As
the new top, FU11 an unvisited successor FU13, so push
FU13 into the stack. The output of FU13 meets the objective
F, so output the FUs of the stack from the bottom to the top as
another objective FUCS. And then, keep on testing the top of
the stack. FU13, FU11, FU10, and FU9 all have no unvisited
successor, so they are removed one by one. Now the stack is
empty again, and there is no more other HFU, so the algorithm
ends. There are three objective FUCSs generated in total.

3.2. Flow of the algorithm

Based on the assistant variables and basic principle, we
built the computer program for the algorithm. Its flow diagram
is shown as follows.

47 Bin Chen et al. / Procedia CIRP 53 (2016) 44 – 49

Fig.3 General flow diagram of the computer program of the algorithm

The detail steps of this program are shown as follows.
Step 1, start.
Step 2, in the FUG, determine whether there is any FU has

the same input as the input of the objective F. If yes, turn to
step 3, and if no, turn to step 8.

Step 3, find out all the FUs having the same input as the
input of the objective F, in the FUG.

Step 4, set the functional unit pointer pointing to one of the
FUs found in step 3, which is not signed as an HFU. Sign this
FU as an HFU. Put this FU into the stack.

Step 5, for the FU pointed by the functional unit pointer,
determine whether its output is the same as the output of the
objective F. If yes, turn to step 6, and if no, turn to step 10.

Step 6, output the FUs in the stack from down to top.
Remove the top FU from the stack.

Step 7, among the FUs found in step 3, determine whether
there is any one not signed as an HFU. If yes, turn to step 4,
and if no, turn to step 9.

Step 8, output “There is no suitable FUCS found, please
consider changing the objective F, and then try again.”

Step 9, end.
Step 10, for the FU pointed by the functional unit pointer,

determine whether it has any unvisited successor edge. If yes,
turn to step 12, and if no, turn to step 11.

Step 11, remove the top FU from the stack.
Step 12, sign the FU pointed by the functional unit pointer

as visited. Put this FU into the stack.
Step 13, for the FU pointed by the functional unit pointer,

determine whether its output is the same as the output of the
objective F. If yes, turn to step 15, and if no, turn to step 14.

48 Bin Chen et al. / Procedia CIRP 53 (2016) 44 – 49

Step 14, determine whether the FU pointed by the
functional unit pointer has any unvisited successor edge
connecting to unvisited successor. If yes, turn to step 20, and
if no, turn to step 17.

Step 15, output the FUs in the stack from down to top. Sign
the top FU of the stack as unvisited and remove it from the
stack.

Step 16, determine whether the stack is empty. If yes, turn
to step 7, and if no, turn to step 19.

Step 17, sign all the successor edges of the top FU of the
stack as unvisited. Sign this top FU of the stack as unvisited.

Step 18, remove the top FU from the stack.
Step 19, set the functional unit pointer pointing to the new

top FU of the stack.
Step 20, set the functional unit pointer pointing to one of

the unvisited successor. Sign the successor edge connecting to
this successor as visited.

Step 21, determine whether the length of the stack is larger
than lmax. If yes, turn to step 18, if no, turn to step 13.

4. Preliminary evaluation for the FUCSs

For the objective FUCSs obtained by the algorithm, they
can be preliminarily evaluated and chosen.

Fig.4 An example of the preliminary evaluation of an objective FUCS

As shown in Figure. 4, this FUCS is made of FU1-FU5.
And each of the FUs has several features, like cost, weight,
emission, life time and so on. Through these features, we can
calculate the corresponding features of the whole FUCS. For
example, the cost of the whole FUCS can be calculated by
summing up the costs of all its FUs. And for its weight and
emission, we can use the same method to calculate. And there
is not only one method of summing features up. Like the life
time of the FUCS, it can be calculated by finding the
minimum of the life times of all its FUs.

In this approach, we don’t give these features close
restraints for the consideration of flexibility. This preliminary
evaluation is not a kind of constraint, but just a preference for
helping the designers to make the decision which alternative
should be the chosen one.

5. Application and implementation

5.1. Design a kind of solar-powered wiper blades

Assume that we need to design a kind of solar-powered
wiper blades. So, for the objective F, its input can be described
by keyword “Light”, and its output can be described by two
keywords, i.e. “Reciprocating” and “swing”. Now, assume the
FUG is made up of 12 FUs, i.e. solar-battery, solar-heater,
photographic-film, DC-motor, electric-heater, DC-light,
electromagnet, crank-rocker, pulley-belt, gear-pair, cam, and
crank-slider. So, the objective FUCSs should be generated
with them.

Fig.5 Illustration of the solar-powered wiper blades designing

As shown in Figure. 5, the input of the objective F is
described by keyword “Light”. So search the FUs whose input
describing keyword is “Light” in the FUG. Three FUs can be
found, i.e. solar-battery, solar-heater, and photographic-film.
Their output describing keywords are {“electricity”, “DC”},
{“heat”}, and {“image”}, all having no intersection with the
output describing keywords of the objective F, {“Swing”,
“Reciprocating”}. So all these three FUs cannot meet the
objective F alone, we need to keep on generating FUCS. The
output describing keywords of both solar-heater and
photographic-film have no intersection with the input
describing keywords of the rest of FUs, which means both of
these two FUs have no successor. So, they have to be given
up.

As for the solar-battery, its output describing keywords are
{“Electricity”, “DC”}, having intersections with the input
describing keywords of DC-motor, electric-heater, DC-light,
and electromagnet. So these 4 FUs are all its successors.
Testing their output describing keywords, they all cannot meet
the objective F, so the FUCS needs to be extended. Among
these 4 FUs, there is only DC-motor has successor, so we just
use it in the next step.

Now, the end of the generating FUCS is DC-motor, its
output describing keywords are {“Rotation”, “Constant”},
having intersections with crank-rocker, pulley-belt, gear-pair,
cam, and crank-slider. So these 5 FUs are all its successors.
Their output describing keywords are {“Swing”,
“Reciprocating”}, {“Rotation”, “Constant”}, {“Rotation”,
“Constant”}, {“Translation”, “Reciprocating”}, and
{“Translation”, “Reciprocating”}, which means only the
output describing keywords of crank-rocker meet the objective
F. So there is an objective FUCS generated, solar-battery
DC-motor crank-rocker. As for pulley-belt, gear-pair, cam,
and crank-slider, they all have no successor, so they should be

49 Bin Chen et al. / Procedia CIRP 53 (2016) 44 – 49

given up, and there is no more other FU in the FUG, so the
program ended with the one objective FUCS.

5.2. Design the functional module of a friction-abrasion
testing machine

Additionally, if the design goal consists of several FRs or
Fs, the design process should be divided into several
corresponding parts. During every part of design process, just
one FR or F can be considered, and an objective FUCS will be
generated for it. Finally, all the objective Fs can be met by the
corresponding FUCSs.

Assume that we need to design a friction-abrasion testing
machine with four functional requirements, i.e. load module
for producing the pressure between the two samples, driver
module for producing the linear motion between the two
samples, heating module for heating the samples, and
measuring module for the measuring the target variables.

Fig.6 FRs of the target friction-abrasion testing machine

As shown in Figure. 6, there are 4 FUCSs need to be
generated. Here, we just consider generation of the FUCS1 to
save the paper length. Now, assume the FUG is made up of 10
FUs, i.e. DC-motor, electric-heater, DC-light, electromagnet,
crank-rocker, pulley-belt, gear-pair, screw-nut, spring and
crank-slider. The generating approach is the same as the case
of the solar-powered wiper blades mentioned before, and the
detail process is as shown in Figure. 7. The generated FUCS is
DC-motor screw-nut spring.

6. Conclusion

Based on the hypothesis, definitions and model developed
in PART 1, this paper established an algorithm for FUCS
generation. FUs are treated as nodes, and connections of FUs
are treated as edges, so the FUs in distributed resource
environment and their connections construct the FUG. We
applied DFS of graph theory to generate FUCSs from FUG.
Based on this, we established the algorithm and built the
corresponding computer program, and we also established an
additional function to preliminarily evaluate the generated
FUCSs. A kind of solar-powered wiper blades, and the load
module of a friction-abrasion testing machine were designed
as illustrations to prove the feasibility of this algorithm.

Acknowledgements

The authors are most grateful to the Key Project of State
Key Laboratory of Mechanical System and Vibration
(MSVZD201401), and the National Natural Science
Foundation of China (51205247, 51575342).

Fig.7 Illustration of the load module designing

References

[1] Mei J, Ren W, Ma G. Distributed containment control for Lagrangian
networks with parametric uncertainties under a directed graph[J].
Automatica, 2012, 48(4): 653-659.

[2] Olfati-Saber R, Murray R M. Graph rigidity and distributed formation
stabilization of multi-vehicle systems[C]//Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on. IEEE, 2002, 3: 2965-2971.

[3] Shen C C, Tsai W H. A graph matching approach to optimal task
assignment in distributed computing systems using a minimax
criterion[J]. Computers, IEEE Transactions on, 1985, 100(3): 197-203.

[4] Gonzalez J E, Low Y, Gu H, et al. Powergraph: Distributed graph-parallel
computation on natural graphs[C]//Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12). 2012: 17-30.

[5] Cheung T Y. Graph traversal techniques and the maximum flow problem
in distributed computation[J]. Software Engineering, IEEE Transactions
on, 1983 (4): 504-512.

[6] Chen B, Xie Y B. A computer-assisted automatic conceptual design
system for the distributed multi-disciplinary resource environment[J].
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 2016: 0954406216638886.

[7] Kwan M K. Graphic programming using odd or even points[J]. Chinese
Math, 1962, 1(273-277): 110.

[8] Dijkstra E W. A note on two problems in connexion with graphs[J].
Numerische mathematik, 1959, 1(1): 269-271.

[9] López E B, Aucejo V C, Salvador Á C, et al. Problemas de rutas por
arcos[J]. Questiió: Quaderns d'Estadística, Sistemes, Informatica i
Investigació Operativa, 1983, 7(3): 479-490.

[10] Tarjan R. Depth-first search and linear graph algorithms[J]. SIAM
journal on computing, 1972, 1(2): 146-160.

[11] Gregor D, Lumsdaine A. The parallel BGL: A generic library for
distributed graph computations[J]. Parallel Object-Oriented Scientific
Computing (POOSC), 2005, 2: 1-18.

[12] Barooah P, Hespanha J P. Graph effective resistance and distributed
control: Spectral properties and applications[C]//Decision and control,
2006 45th IEEE conference on. IEEE, 2006: 3479-3485.

