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Abstract

This paper integrates nonlinear deep knowledge with an axiomatic design method for supercritical rotor dynamics in order to overcome the
limitation of rotor dynamic design for supercritical rotating machineries. Design methods based on linear theory usually lead to shafting failures
in engineering practice, since nonlinear theory has not been well incorporated into rotor dynamic design. This method realizes a four-level
decomposition of the functional requirements and mapping of the corresponding design parameters in nonlinear dynamic design for a
supercritical rotor-bearing system. In total, 20 design parameters are integrated into the system. A 20x20 axiomatic design matrix is then
developed, which is used to obtain a dynamic design flowchart of the system. Under the guidance of the design flowchart, a single span flexible
symmetric rotor-bearing system with a single disk is dynamically designed and analyzed. The results show that the axiomatic design method

for superecritical rotor dynamics optimizes the design process, the design efficiency and the design results.
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1. Introduction

Due to the effect of nonlinear oil-film forces on journal
bearings, rotor-bearing systems are strongly nonlinear
dynamic systems. Linear theory of rotor-bearing systems has
already been developed and has been widely applied to rotor
dynamic design. Linear theory is simple and easy to
understand, and it can accurately reflect the objective laws of
system vibration in most cases when the amplitude is small
enough. Therefore, current rotor dynamic design methods are
still based on linear theory, and nonlinear theory is mainly
used for particular types of handling after failure of rotating
machineries. However, rotating machineries are now being
developed for high speed operation in supercritical rotating
machinery applications such as turbines, compressors and
pumps. These rotors all have working speeds that are far
higher than the first critical speeds and thus will produce
strong self-excited vibrations, leading to system instabilities
and even generating complicated nonlinear phenomena such
as bifurcations, chaos and subharmonic resonances. Therefore,
it is extremely inappropriate to adopt linear theory for the

dynamic design of these systems, as it usually leads to
shafting failures in engineering practice. Fortunately, there is
currently a lot of research into rotor-bearing systems based on
nonlinear theory, and a number of achievements have been
made, particularly in relation to the nonlinear dynamic
behavior and stability analysis of these systems [1,2].
However, nonlinear deep knowledge is complicated and
difficult to understand, and has not yet been adequately
incorporated into rotor dynamic design. It is hard to manage
the fact that introduction of nonlinear deep knowledge
increases the complexity of rotor dynamic design in
comparison with general design theories. Since axiomatic
design theory has distinct advantages for handling
complicated design propositions, this paper builds a design
method for supercritical rotor dynamics based on axiomatic
design theory.

Axiomatic design theory was first proposed by Suh, a
professor at Massachusetts Institute of Technology. It is a
scientific design methodology which can be applied to a wide
range of fields and is based on logical and rational thinking
[3,4]. The theory has shown good applicability in the design
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of complex systems and dynamics [5-10]. In order to
introduce nonlinear theory of rotor-bearing systems into rotor
dynamic design and integrate nonlinear deep knowledge
research, an axiomatic design method for supercritical rotor
dynamics is adopted. In contrast with prevalent rotor dynamic
designs which are based on linear theory, this method can
genuinely reflect the critical speeds, threshold speeds and
various complex nonlinear phenomena that may appear in
rotor-bearing systems under actual working conditions, and
provides reference value that can be used by designers to
select optimal design schemes. Taking axiomatic design
theory as a guide and nonlinear theory as a basis, the paper
realizes nonlinear dynamic design for supercritical rotor-
bearing systems. The main works of this paper are organized
as follows: 1) The four domains of the design world and the
two axioms of axiomatic design theory (the independence
axiom and the information axiom) are introduced. ii) The
independence axiom is adopted to realize nonlinear dynamic
design for a supercritical rotor-bearing system. A four-level
decomposition of the functional requirements and mapping of
the corresponding design parameters are achieved within this
design. A 20x20 axiomatic design matrix is developed, which
is used to obtain a dynamic design flowchart of the system. iii)
Under the guidance of this design flowchart, a single span
flexible symmetric rotor-bearing system with a single disk is
dynamically designed and analyzed. iv) The calculation
results of the design example and the design results of the
critical speed and threshold speed based on linear and
nonlinear theories are discussed.

2. Key concepts of axiomatic design theory

The axiomatic design world is composed of four domains:
the customer domain, the functional domain, the physical
domain and the process domain. A structural diagram of the
domains is shown in Fig.1. The domain on the left represents
what we are trying to achieve, while the domain on the right
represents how we want to achieve it.

In order to analyze and evaluate a design activity,
axiomatic design theory provides two basic axioms — the
independence axiom and the information axiom.

The first axiom, known as the independence axiom,
requires that a design result must be able to meet each of the
functional requirements (FRs) without affecting any of the
other requirements when there are two or more FRs. This
means that a set of correct design parameters (DPs) must be
chosen to meet the FRs and maintain their independence. For
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Fig. 1. The four domains of the axiomatic design world.

a given design level, the functional requirement (FR) set that
determines the specific design objectives forms a FR vector in
the functional domain. Similarly, the design parameter (DP)
set that has been selected to meet the FRs forms a DP vector
in the physical domain. The relationship between the two
vectors can be written using the following equation:

{FR} =[A]{DP} (1)

where [A] is the design matrix and Formula (1) is the
design equation.

In order to meet the independence axiom, the design matrix
must be a diagonal matrix or a triangular matrix. When [A] is
a diagonal matrix, each FR can be satisfied by one DP and the
design is an uncoupled design. When [A] is a triangular matrix,
if, and only if, the DPs are determined in a proper sequence,
the independence of the FRs can be guaranteed and the design
is a decoupled design. Any other forms of design matrices
will lead to a coupled design. When there are three FRs and
DPs, one type of [A] in the decoupled design can be expressed
as:

[A)-

X 0 0
0 X 0 2
X X X

where X indicates that there is a coupling relationship
between the FRs and the DPs and 0 means that there is no
coupling relationship between the FRs and the DPs.

The design is a mapping process from the functional
domain to the physical domain at the highest level. To
complete the overall design activity, the FRs and the DPs at
the highest level need to be decomposed and iterated at each
level until the design can be enforced. The concrete process of
decomposition and iteration is shown in Fig.2. The final
decomposition result is represented by the green frames.

The second axiom, known as the information axiom,
requires that the design possessing the minimum amount of
information is the best design of all the designs that meet the
independence axiom. The information content l; of FR; is
defined by the success probability P; of satisfying FR;.

_ Functional domain ) U Physical domain )

Fig. 2. The process of decomposition and iteration between the functional
domain and the physical domain.
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In the actual design, the success probability is determined
by the intersection between the design range stipulated by the
designers and the system range offered by designers to satisfy
the FR. Fig.3 shows the probability density function of a
system within a system range that satisfies FR;. The overlap
between the design range and the system range is called the
common range, and it is the only area that satisfies FR;.

»
»

2
2]
S
(] .
< Design range
2 "
= Common
S o range
e
(a9
A
P System range - FR;

Fig. 3. The probability density function of a system within a system range
that satisfies FR;.

The success probability P; of satisfying FR; can be written
as:

R = [ T (FR MFR, = A, @

where f (FRj) is the probability density function of the
system satisfying FR;, a is the lower limit of the design range,

b is the upper limit of the design range, and A is the area of
the common range (the dark area in Fig.3).

3. Axiomatic design method for supercritical rotor
dynamics
The first axiom of axiomatic design theory, the

independence axiom, has been adopted to realize nonlinear
dynamic design of a supercritical rotor system. Nonlinear
dynamic design of the supercritical rotor-bearing system has
been realized in order to calculate the stability, the critical
speed and the unbalanced response of the system [1].

3.1. Decomposition of FRs and mapping of corresponding
DPs at the first level

To achieve the supercritical rotor dynamic design, the
rotor-bearing system vibration has firstly been calculated and
the characteristics of the system have then been extracted so
that designers can easily observe and analyze the vibration. A
reasonable design scheme has finally been selected by
designing the performance of the system under different

parameter conditions. To finally obtain the overall FRs, the
FRs at the first level can be decomposed as follows:

e FR;: Calculate the vibration of the rotor-bearing system
e FRy: Extract the characteristics of the rotor-bearing system
e FR3: Design the performance of the rotor-bearing system

In order to meet these three FRs, three DPs can be chosen
as follows:

e DP;: The mathematical models of the rotor-bearing system

e DP;: The graphs that reflect the characteristics of the rotor-
bearing system

e DP;: The graphs that reflect the nonlinear performance
laws of the rotor-bearing system under different parameter
conditions

The design equation of the first level can be written as:

FR,] [X 0 o0](DP,
FR,!=|X X 0 |{DP, (5)
FR,] |[X X X||DP,

The design matrix is a lower triangular matrix, which
illustrates that the first level design is a decoupled design and
satisfies the independence axiom.

3.2. Decomposition of FRs and mapping of corresponding
DPs at the second level

For DP;, the dynamic oil-film forces on the journal
bearings and the kinetic equations of the rotor vibration need
to be calculated. FR; can be decomposed as follows:

e FRyi: Calculate the dynamic oil-film forces on the journal
bearings
e FRyy: Calculate the rotor vibration

In order to meet these two FRs, two DPs can be stipulated
as follows:

e DP;;: The mathematical model based on Reynolds
equation
e DPy,: The finite element model of the rotor

The design equation can be written as:

FR,| [X 07(Dp,
FR,|[ |X X||Dp,

The design matrix is a lower triangular matrix, which
illustrates that this is a decoupled design.

For DP,, the time domain waveform, frequency
spectrogram, axes track chart and Poincare mapping diagram

of the rotor-bearing system need to be calculated. FR, can be
decomposed as follows:

(6)
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e FRy;: Calculate the time domain waveform of the rotor-
bearing system

e FRy: Calculate the frequency spectrum of the rotor-
bearing system

e FRys3: Calculate the axis track of the rotor-bearing system

e FRy4: Calculate the Poincare mapping of the rotor-bearing
system

In order to satisfy these four FRs, four DPs can be selected
as follows:

DP»;: The vertical and horizontal displacement-time curves

DP,,: The Fast Fourier transform

e DP,3: The vertical displacement-horizontal displacement
curve

e DPy4: The vertical displacement-horizontal displacement

point graph for every other period

The design equation can be written as:

FR,] [X 0 0 07(DP,
FR,| |0 X 0 0|/DP, o
FR,[ |0 0 X o0 ||DP,
FR,,|] |0 0 0 X||DP,

The design matrix is a diagonal matrix, which indicates
that this is an uncoupled design.

For DPs, the critical speed and the threshold speed of the
rotor-bearing system needs to be designed and the parameter
regions where the system generates subharmonic resonances
need to be identified by varying the characteristic parameters
of the system. FR; can be decomposed as follows:

e FRj: Design the critical speed of the rotor-bearing system

e FRi3;: Design the threshold speed of the rotor-bearing
system

e FR33: Design the subharmonic resonance parameters of the
rotor-bearing system

In order to meet these three FRs, three DPs can be chosen
as follows:

e DP;;: The amplitude-speed curves of the system in the
critical speed range

e DPj3;: The frequency spectrum of the system

e DPs3: The amplitude-speed curves of the system at twice
the critical speed range

The design equation can be written as:

FR,) [X 0 0](DP,
FR,+=/0 X 0 |{DP, (8)
FR,| |0 0 X||DP,

The design matrix is a diagonal matrix, which illustrates
that this is an uncoupled design.

Therefore, the second level design meets the independence
axiom.

3.3. Decomposition of FRs and mapping of corresponding
DPs at the third level

For DPyj, the calculation precision and speed both need to
be improved when solving Reynolds equation, but there are
some difficulties in simultaneously improving the precision
and the speed. FR; can be decomposed as follows:

e FRyii: Improve the calculation precision
e FRy;p: Guarantee this precision and then improve the
calculation speed

In order to meet these two FRs, two DPs can be chosen as
follows:

e DPyy;: Finite element method
e DPj,: The nonlinear oil film-force database based on the
Poincare transformation [11]

The design equation can be written as:

FR,,| | X 0|[DP,, ©)

FR,,/ [X X]|DP,,

The design matrix is a lower triangular matrix, which
indicates that this is a decoupled design.

The rotor motion equation built by DPi» is a high-
dimensional nonlinear kinetic equation with multiple degrees
of freedom, which results in an extremely low solution
efficiency. Therefore, dimension reduction of the high-
dimensional nonlinear system must be obtained before solving

the kinetic equation by numerical methods. FRj, can be
decomposed as follows:

e FRyy: Reduce the dimensions of the high-dimensional
nonlinear system
e FR2: Solve the kinetic equation by numerical methods

In order to meet these two FRs, two DPs can be chosen as
follows:

e DP,: Fixed interface modal synthesis method
e DP: Runge-Kutta-Fehlberg method

The design equation can be written as:

FR,, | | X 0|[DP,

FR,,| | X X]|DP,

The design matrix is a lower triangular matrix, which
indicates that this is a decoupled design.

For DP3; and DPs,, the vertical and horizontal critical
speed and the threshold speed of the rotor-bearing system

need to be calculated for different levels of imbalance,
because typically the nonlinear phenomenon is seen at

(10)
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different critical speeds and threshold speeds of the rotor for
different levels of rotor imbalance. FR3; and FRs can be
decomposed as follows:

e FRj3j;: Calculate the critical speed of the system under a
low level of imbalance

e FRij: Calculate the critical speed of the system under an
allowable level of imbalance

e FRjj3: Calculate the critical speed of the system under a
high level of imbalance

e FRiy;: Calculate the threshold speed of the system under a
low level of imbalance

e FRix: Calculate the threshold speed of the system under an
allowable level of imbalance

e FRj3: Calculate the threshold speed of the system under a
high level of imbalance

In order to satisfy these FRs, DPs can be chosen as follows:

e DP3j;: The amplitude-speed curve of the system under a
low level of imbalance

e DP;3p»: The amplitude-speed curve of the system under an
allowable level of imbalance

e DP;3j3: The amplitude-speed curve of the system under a
high level of imbalance

e DP3y;: The frequency spectrum of the system under a low
level of imbalance

e DPsy»: The frequency spectrum of the system under an
allowable level of imbalance

e DP33: The frequency spectrum of the system under a high
level of imbalance

The two design equations can be written as:

FR,,, X 0 0 |[Dp,
FR312 = 0 DP3|2 (11
FR; 5 L 0 X | DP,,,
FR,,| [X 0 07](DP,
FR,, o= 0 |1DP,, (12)
FR,,, L 0 X 1 DP,,,

The two design matrices are both diagonal matrices, which
indicates that they are uncoupled designs.

For DPs3, the speed range when subharmonic resonances
occur in the rotor-bearing system and the impact of different
system characteristic parameters such as imbalance, bearing
types and lubricating oil viscosity on the subharmonic
resonances of the system need to be considered. FR33 can be
decomposed as follows:

FR33;1: Consider the impact of the rotor speed

FR33,: Consider the impact of the rotor imbalance

FR333: Consider the impact of the bearing types

FR334: Consider the impact of the lubricating oil viscosity

In order to meet these four FRs, the rotor’s amplitude at
different speeds needs to be calculated under conditions of
different system characteristic parameters. The four DPs can
be chosen as follows:

e DPs3;: The amplitudes of the system at different speeds

e DPs3: The amplitude-speed curves of the system under
different levels of imbalance

e DPs33: The amplitude-speed curves of the system under
different bearing type conditions

e DPs34: The amplitude-speed curves of the system under
different lubricating oil viscosity conditions

The design equation can be written as:

FR,,,] [X 0 0 0][DP,
FR., | _[X X 0 0]|DP, 13
FR,,[ [X 0 X o0 ||DP,
FR.,| [X 0 0 X|(DP,

The design matrix is a lower triangular matrix, which
illustrates that this is a decoupled design.

Therefore, the third level design meets the independence
axiom.

3.4. Decomposition of FRs and mapping of corresponding
DPs at the fourth level

For DPsy, it is feasible to consider the impact of
parameters such as the bearing ellipticity and the lubricating
oil viscosity on the threshold speed of the rotor-bearing
system under allowable levels of imbalance. The stability of
the rotor-bearing system is very important in nonlinear rotor
dynamic design, as it severely restricts the work efficiency
and reliability of the power units. Therefore, measurements
and schemes that improve the stability margin of the system
should be considered before calculation. FR3; can be
decomposed as follows:

e FRix;: Consider the impact of the bearing ellipticity on the
threshold speed

e FRiy;: Consider the impact of the lubricating oil viscosity
on the threshold speed

In order to meet these two FRs, two DPs can be chosen as
follows:

e DPsyi: The frequency spectrum of the system under
different bearing ellipticity conditions

e DPspo: The frequency spectrum of the system under
different lubricating oil viscosity conditions
The design equation can be written as:
{FRSZZI}_[X 0:|{DP3221} (14)
FR3222 0 X Dp3222
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The design matrix is a diagonal matrix, which indicates
that this is an uncoupled design.

For DP333, two bearing types should be considered: circular
journal bearings and elliptical journal bearings. FR333 can be
decomposed as follows:

e FRj331: Consider the impact of the circular journal bearings
e FRisz: Consider the impact of the elliptical journal
bearings

In order to meet these two FRs, two DPs can be chosen as
follows:

e DPs33;: The amplitude-speed curves of the system under
circular journal bearing conditions

e DPs33: The amplitude-speed curves of the system under
elliptical journal bearing conditions

The design equation can be written as:

{FRSSSI}:[X 0:|{DP3331}
FR3332 0 X DP3332

The design matrix is a diagonal matrix, which illustrates
that this is an uncoupled design.

Therefore, the fourth level design meets the independence
axiom.

(15)

3.5. Global design matrix and design flowchart

The FRs and DPs of the supercritical rotor dynamic design
based on axiomatic design theory have been decomposed to
generate a level structure of the FRs and DPs by repeated
iterations between the functional domain and the physical
domain, as shown in Fig.4. The final decomposition result
gives the twenty FRs and their corresponding DPs represented
by the green frames. A 20x20 global design matrix is
developed using the relationship between the FRs and DPs
described by the design matrices at all levels, as shown in
Table 1. The global design matrix is a lower triangular matrix,
therefore, the supercritical rotor dynamic design is a
decoupled design and meets the independence axiom.

Through the analysis of Fig.4 and Table 1, a dynamic
design flowchart of the supercritical rotor-bearing system
shown in Fig.5 can be obtained. ® is an AND node which
means that there is an uncoupled design between modules
without the need to consider the sequence in the design. © is
a control node which means that there is a decoupled design
between the modules that must be controlled in accordance
with the sequence suggested by the design matrix during the
design. Module M; is defined as a single row of the design
matrix, meaning that DP; being input, FR; can be determined.
Mi can be expressed as:
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Fig. 4. The level structure of the FRs and DPs of the supercritical rotor
dynamic design.

4. Design example and analysis

A single span flexible symmetric rotor-bearing system with
a single disk is shown in Fig.6. The rotor parameters are
shown in Table 2. The disk parameters are shown in Table 3.
The bearing parameters are shown in Table 4. Under the
guidance of the dynamic design flowchart for the supercritical
rotor-bearing system, the rotor-bearing system is designed and
analyzed. Although not described in detail in this example,
Module M, is achieved using Fortran language.
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Table 1. The global design matrix for supercritical rotor dynamics.

DPyiy DPy;; DPiyy DPi; DPyy DPy DPy; DPyy DPs;y DP3j; DPyi3 DPsyy DPiyy DPipyy DPsyy DPssy DPss;  DPissp DPiszy DPisy
FRin X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FR,)» X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FRyy X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FRi;; X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FR,, X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FR» X X X X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FRy;3 X X X X 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
FRy4 X X X X 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0
FR;;; X X X X 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0
FR31 X X X X 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0
FR;;; X X X X 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0
FRj, X X X X 0 X 0 0 0 0 0 X 0 0 0 0 0 0 0 0
FRy X X X X 0 X 0 0 0 0 0 0 X 0 0 0 0 0 0 0
FRym X X X X 0 X 0 0 0 0 0 0 0 X 0 0 0 0 0 0
FRiys X X X X 0 X 0 0 0 0 0 0 0 0 X 0 0 0 0 0
FRs; X X X X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0
FRs3, X X X X 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 0
FRyz X X X X 0 0 0 0 0 0 0 0 0 0 0 X 0 X 0 0
FRsy;; X X X X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 X 0
FRy X X X X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 X
M;: The performance design of the rotor-
bearing system
M;j;: The design of
the“criticﬂl speed of
the system -
M,: The characteristic extraction|
of the rotor-bearing system
M;: The vibration calculation of the rotor-bearing system| - M;;: The design of
My: Th? calculall.on the threshold speed
M;;: The calculation M;: The calculation of the time domain of the system | M.
of the dynamic oil- of the rotor vibration waveform
film forces on the M,,: The calculation| —F(SD
joumal bearings of the frequency m
© pCa ~©-
Mb;: The calculation|
of the axis track
M, The calculation M;;: The design of the subharmonic|
of the Poincare resonance parameters of the system
mapping
Fig. 5. The dynamic design flowchart of the supercritical rotor-bearing system.
Disk Table 2. The rotor parameters.
Length (M) Diameter (m)  Density (kg:-m?)  Elasticity modulus (Pa)
Bearing Rotor

Fig. 6. The rotor-bearing system diagram.

2.8 0.2 7.8x10° 2.0x10"
Table 3. The disk parameters.

Mass (kg)  Diameter Polar moment  Mass imbalance
moment of of inertia eccentricity  (g-mm)
inertia (kg'm?)  (kg:m?) (um)

1176.21 80.37 152.91 25 29405.25
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Table 4. The bearing parameters.

Diameter Length  Radial Tile wrap  Ellipticity = Lubricating

(m) (m) clearance  angle (°) oil viscosity
(um) (Pars)

0.15 0.12 225 150 04 0.005

4.1. Realization of Module M,

The characteristic extraction graph of the left axle journal
vibration at a speed of 3000rpm is shown in Fig.7. The rotor
maintains a synchronous periodic motion around the moment.
The vibration frequency is only a working frequency. The
axis track appears as an ellipse, and only a fixed point is
shown in the Poincare mapping diagram. The characteristic
extraction graph of the left axle journal vibration at a speed of
3500rpm is shown in Fig.8. The rotor maintains a
quasiperiodic motion around the moment. A low frequency
component is seen in the frequency spectrogram as well as the
working frequency. The axis track forms a ribbon pattern with
a certain width, and a closed point ring is shown in the
Poincare mapping diagram.

4.2. Realization of Module M3

The implementation result of Module Ms; is shown in
Fig.9. It can be seen from this figure that the first critical
speed of the system is slightly different for different levels of
disk imbalance. Appropriate increases in the disk imbalance
can raise the horizontal critical speed and lower the vertical
critical speed.

The implementation results of Module M3, are shown in
Table 5. The instability refers to the variation from a
synchronous periodic motion to a quasiperiodic motion, but
not including the quasiperiodic motion at the subharmonic
resonance speed. Table 5 shows that an appropriate increase
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Fig. 8. The characteristic extraction graph of the left axle journal vibration at
a speed of 3500rpm: (a) the time domain waveform; (b) the frequency
spectrum; (c) the axis track; (d) the Poincare mapping.

of the imbalance and ellipticity, and an appropriate reduction
of the lubricating oil viscosity, can improve the stability of the
system.
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Fig. 9. The amplitude-speed curve of the left axle journal vibration under
different levels of imbalance: (a) the horizontal amplitude-speed curve; (b)
the vertical amplitude-speed curve.
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Table 5. The threshold speed of the system under conditions of different
ellipticity, lubricating oil viscosity and mass eccentricity.

Ellipticity Lubricating oil Mass eccentricity ~ Threshold speed
viscosity (Pa-s)  (um) (rpm)

0.4 0.005 25 3410

0.5 0.005 25 4280

0.6 0.005 25 4830

0.4 0.002 25 5200

0.4 0.01 25 2940

0.4 0.005 5 3180

0.4 0.005 75 3440

The implementation results of Module M33; are shown in
Fig.10. While the disk imbalance increases to a certain extent,
the rotor vibration peak also appears at approximately double
the first critical speed, which means that one half-
subharmonic resonance of the system occurs. In order to
analyze the dynamic behavior of the system at a speed of one
half-subharmonic resonance, the axis track chart and the
Poincare mapping diagram of the system at a speed of
2590rpm with a mass eccentricity of 70um are given, as
shown in Fig.11. The rotor maintains a quasiperiodic motion
around the moment, but returns to a synchronous periodic
orbit above the half-subharmonic resonance speed.
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Fig. 10. The amplitude-speed curve of the left axle journal vibration under
different levels of imbalance.
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Fig. 11. The axis track chart and the Poincare mapping diagram of the system
at a speed of 2590rpm with a mass eccentricity of 70um: (a) the axis track; (b)
the Poincare mapping.

The implementation results of Module M333 and Module
Mssz4 are shown in Fig.12. Under circular journal bearing
conditions, the system can more easily generate one half-
subharmonic resonance than under elliptical journal bearing
conditions. The system is less likely to generate one half-
subharmonic resonance under higher oil viscosity conditions.
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Fig. 12. The amplitude-speed curve of the left axle journal vibration under
conditions of different bearing types and lubricating oil viscosity (mass
eccentricity: 60pm).

5. Results and discussion

By analyzing the calculation results of the design example,
it can be seen that a single span flexible symmetric rotor-
bearing system with a single disk has its first horizontal
critical speed at 1190 rpm, its first vertical critical speed at
1410 rpm and a threshold speed of 3410 rpm. The rotor
maintains a synchronous periodic motion when it is operating
below a speed of 3410 rpm and maintains a quasiperiodic
motion when it is operating within a certain range beyond a
speed of 3410 rpm. In comparison with circular journal
bearings, choosing elliptical journal bearings in the design can
improve the stability of the system and less easily cause one
half-subharmonic resonance of the system. A higher level of
rotor imbalance in the design can raise the horizontal critical
speed of the system, lower the vertical critical speed of the
system and improve the stability of the system, but it can also
increase the rotor’s vibration amplitude and even cause one
half-subharmonic resonance of the system. A lower
lubricating oil viscosity in the design can improve the stability
of the system, but can also cause one half-subharmonic
resonance. Therefore, taking various factors into
consideration,  designers should choose appropriate
characteristic parameters to realize a supercritical rotor
dynamic design according to specific design requirements.

When nonlinear effects are stronger in rotor-bearing
systems, there are obvious differences in the design results for
the critical speed and threshold speed between rotor dynamic
design methods that consider nonlinear deep knowledge and
designs based only on linear theory. The first horizontal
critical speed and threshold speed of the rotor-bearing system
with a disk mass eccentricity of 75um based on linear and
nonlinear theories are given in Table 6. It can be seen that
when nonlinear deep knowledge is considered, the first
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horizontal critical speed improves by 15.6 percent and the
threshold speed improves by 8.9 percent. Therefore, the
nonlinear factors of rotor-bearing systems cannot be ignored
in the supercritical rotor dynamic design. After adopting an
axiomatic design method which integrates nonlinear deep
knowledge, the critical speed and threshold speed that are
calculated are closer to actual working conditions, thus
optimizing the design results.

Table 6. The first horizontal critical speed and threshold speed of the system
with a disk mass eccentricity of 75um based on linear and nonlinear theories.

Horizontal critical Threshold speed
speed (rpm) (rpm)

Linear theory 1185 3160

Nonlinear theory 1370 3440

Improved degree (%) 15.6 8.9

6. Conclusions

(1) In order to introduce nonlinear theory of rotor-bearing
systems into rotor dynamic design and integrate the nonlinear
deep knowledge research, an axiomatic design method for
supercritical rotor dynamics has been adopted. A four-level
decomposition of FRs and mapping of corresponding DPs
have been achieved. A global design matrix for supercritical
rotor dynamics has then been developed. A dynamic design
flowchart of the rotor-bearing system has finally been
obtained.

(2) Under the guidance of the design flowchart, a single
span flexible symmetric rotor-bearing system with a single
disk has been dynamically designed and analyzed. The
feasibility and validity of axiomatic design theory for
supercritical rotor dynamic design has been validated. The
design results that consider nonlinear deep knowledge have
been found to be superior to those based only on linear theory.

(3) Appropriate increases in the rotor imbalance can raise
the horizontal critical speed of the rotor-bearing system and
lower the vertical critical speed of the system. Appropriate
increases in the imbalance and ellipticity, and reductions in
the lubricating oil viscosity can improve the stability of the

system. The rotor-bearing system is more likely to generate
one half-subharmonic resonance under circumstances of a
larger imbalance, lower lubricating oil viscosity and circular
journal bearings. These various factors need to be considered
by designers in order to select appropriate parameters to
achieve a supercritical rotor dynamic design according to
specific design requirements.
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