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SYSTEM ARCHITECTURE TEMPLATE
White Paper

Written by:  Jason D. Hintersteiner1 and Glenn Friedman2

Last updated:  April 22, 1999

  1998, 1999  Massachusetts Institute of Technology

This document provides the standard templates for system architecture tables, along with complete
descriptions, for hardware systems3.  The following template should be used when applying
Axiomatic Design (AD) to a system design project. This template is intended to provide a consistent
format for the system architecture (SA), which can be used as a standard format for representation
and design reviews.

The mission statement for any project can be written as a single functional requirement (FR), which
asks “what is the overall project goal”.  This FR is addressed by a single design parameter (DP),
which asks “how is this project goal accomplished”.    If a system architecture already exists at a
higher level, the mission statement is the parent FR and DP from that system architecture.

Going through a process of decomposition, each design parameter (starting from the mission
statement) is broken down into constituent sub-FRs with corresponding sub-DPs.  This
decomposition process, known as zigzagging, continues top-down from the topmost level (i.e. system)
to levels of increasing detail (i.e. subsystems and components).  The decomposition should be taken
down to levels where the DPs are physical parts (geometries), computer programs (flow charts), and
specifications (tolerances, limits, etc.).  The hierarchical structure that emerges is known as the
system architecture.  The format for the system architecture is the subject of this document.

Section 1 discusses the format for representing FRs and DPs, along with design matrices to capture
the relationships between the FRs and DPs, at every level of the design hierarchy.  Section 2
discusses the format for representing constraints (Cs) on the design, which can originate from
management, marketing, and/or higher level design decisions.  Note that the Cs apply to lower level
FRs and have the effect of limiting the choice of DPs in the decomposition.  Also, it is common for
constraints at a parent level to dictate the need for one or more sub-level FRs.  Section 3 discusses
some diagramming conventions, to clarify the hierarchical structure of the FRs and DPs, as well as
graphically depict the design matrices to show the order of design tasks.

1 FUNCTIONAL REQUIREMENTS AND DESIGN PARAMETERS
In axiomatic design, problems are formulated first by specifying functional requirements (FRs),
which are single phrases that describes each overall task.  Each FR should be specified as a verb,
since it asks “what task do you want to accomplish”, and should also be specified in a solution-
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neutral manner (i.e. specify the task itself, not a preconceived notion of how that task will be
addressed).   Each FR is addressed by a corresponding design parameter (DP), which are single
phrases which express the solution or approach for each task.  Each DP should be specified as a
noun, since it asks “how do you want to accomplish the task”.    This is summarized in Table 1.

Table 1:  Summary of an FR and a DP.

Functional Requirement (FR) Design Parameter  (DP)
Single phrase that describes the overall project goal. Single phrase that represents the project solution.

1.1 THE FR/DP TABLE

Table 2:  Generic FR / DP table (any level).

Functional Requirements (FRs) Design Parameters (DPs)

Name Description Description Ver

ϕ.# Parent FR Parent DP
1 Process Perform physical process #1 Process module #1 T
2 Process Perform physical process #2 (a) Process module #2 (1st alternative)

(b) Process module #2 (2nd alternative)
(c) Process module #2 (3rd alternative)

In

3 Process Perform physical process #3 Process module #3 De
4 Transport Perform process #4 (transport) Transport module Dr
5 Control Schedule and coordinate all local

process functions
Command and control algorithm (CCA) T

6 Support Integrate subassemblies Support framework U

Table 2 provides the generic template for listing FRs and DPs.  The top row indicates the index at
this level, where “#” refers to the index in later rows, and the “ϕ” indicates the full index of the
parent FR/DP.   The parent FR and DP are included in the table in order to place the FRs and DPs
at this level in context with their parent FR/DP.  At the top level, the parent is the defining FR
provided by the customer, and the defining DP which is the name of the system.   For example, if ϕ
= 3.4a.2, the parent FR is FR.3.4a.2, and the FRs listed in this table are FR.3.4a.2.1, FR.3.4a.2.2, etc.

The FR column has been divided into two columns, for “name” and “description”.  Here, the
“name” is a one or two word summary of the process, control, and support FRs.  The template
provided shows four process modules, where the last process module is instantiated specifically as a
transport process.  Hence, for FR.3.2.4a.4, the term “transport” is used as the name.  In a
manufacturing system, transport processes will always be listed after any physical processes which
perform “value-added” activities on the operands.  This is because transport processes, in general,
will be responsible for transporting operands between physical process modules, and thus will
depend on the specific design of those DPs.  There can be an arbitrary but nonzero number of
process modules at each level of the hierarchy, depending upon the specific design, and the indices
can be renumbered accordingly.  These will always be followed by one control and one support FR.

There may be situations where alternative choices for DPs may exist, such as selecting between two
or more possible design alternatives and in cases where a particular tool platform may institute
different DPs at different times.  In such situations, alternate DPs can be listed as shown in Table 2.
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Each alternate DP will, in general, have different sets of sub-FRs and constraints, and so a separate
decomposition should be provided for each alternative.

The last column in the table is used for verification codes, so that the designer can specify a code to
indicate the verification procedure to be used to ensure that the DP is satisfying its corresponding
FR.  Verification may be done by testing (T), inspection (I), demonstration (De), drawings (Dr), or
proven unchanged technology (U).  More complete descriptions of verification procedures can be
included in the description for the DP.  This column is optional, and may be unnecessary in
particular design situations.  However, this column is useful in encouraging the designer to think
about verification issues.

When writing a system architecture in Microsoft Word, bookmarks with a unique name should be
used for the parent index (i.e. “ϕ”), so that they can be cross-referenced in the DP description titles
and in the off-diagonal element descriptions for the design matrix.  The bookmarks can contain a
cross-reference to the parent’s parent, and so a nested set of bookmarks can be created.  This is
advised so that, if a parent index number is altered, its child indices are automatically updated in the
document.

1.2 DP DESCRIPTIONS
A bulleted list description of each DP should be provided underneath the table, in order to clarify
what is meant by that DP, as well as any specific design issues that must be considered.  This
includes providing information such as the vendor (if the DP is purchased externally), relevant
operating conditions, and so forth.  Verification information may also be included.

The format of this list should be as follows.

• Process module #1 (DP.ϕ .1):  This module is primarily responsible for performing process
#1.  This includes…

• Process module #2 (DP.ϕ.2):  This module is primarily responsible for performing process
#2.  This includes…

• Process module #3 (DP.ϕ.3):  This module is primarily responsible for performing process
#3.  This includes…

• Transport module (DP.ϕ.4):  This module is primarily responsible for performing transport
tasks between some or all of the process modules.  This includes…

• Command and control algorithm (DP.ϕ.5):  This CCA coordinates the process tasks at this
level.  This includes…

• Support framework (DP.ϕ.6):  This support framework includes the layout and configuration
of the process DPs, electrical and pneumatic supplies, wiring, mechanical support structure, and
so forth.  This includes…
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1.3 DESIGN MATRIX
When the list of FRs and DPs are formulated at a particular hierarchical level, a design matrix is used
to correlate how the DPs impact the FRs.  An axiomatic design matrix equation of the form
{FR}=[A]{DP}is constructed and the matrix elements evaluated.  Each element Aij (row i, column
j) in the matrix is evaluated by asking, “Can we design (or change the existing design of) DP.j
without impacting how we address FR.i?”  In the design matrix, a “X” is used to signify that a
relationship exists between DP.j and FR.i, and a “O” is used to signify that no relationship exists.

Obviously, the diagonal elements (i=j) should all be “X”, since DP.i is chosen to satisfy FR.i.  When
there are no off-diagonal elements (i.e. every i ≠ j has a “O”), the design is uncoupled, which indicates
that each DP only impacts its corresponding FR, and is independent of all other FRs.  This is the
most desirable case by the Independence Axiom, though is unlikely to occur in practice.  When
there are off-diagonal elements, the matrix rows and columns should be reordered in an attempt to
achieve a lower-triangular matrix.  If the design matrix is lower-triangular, it is a decoupled design and
still satisfies the Independence Axiom, since DPs can be altered in a specific sequence without
needing to iterate the design solution.  If there exist any off-diagonal “X” in the upper-triangular
portion of the design matrix, the design is coupled, indicating that iteration is required to converge on
an acceptable design solution to satisfy all of the coupled FRs.  This last case violates the
Independence Axiom, and should be avoided by choosing alternative DPs whenever possible.

Note that the order of FRs in a lower-triangular matrix indicate the order of importance, with the
top matrix row being the most important FR (and the first to decompose).

In general, the control and support FRs will be impacted by the specific design of the process
modules, and hence at least the last two rows will be decoupled, as shown.  (Note, if a process
module is completely passive and requires no active control, there will be a zero in the
corresponding column for the control FR).  Question marks are used to show the relationships
between the process modules, indicating that the process modules can be either uncoupled or
decoupled, depending on the specifics of the design.  Coupling between the process modules, as well
as between the process and control and support modules, is possible though undesirable as it
violates the Independence Axiom.

The format for the FRs and DPs in the matrix equation can either be abbreviated descriptions (as
shown) or the full numerical index can be used, and is left to the preference of the designer.  The
problem with using the full numerical index, however, is that there is no method currently available
in Microsoft Word to automatically update the index numbers if the parent index is altered, and thus
they must be updated manually.  This should not be a problem, however, in the Axiomatic Design
software under development.
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After the design matrix, a remark (i.e. explanation) should be provided for each off-diagonal “X” in
the design matrix.  In some instances, a description may also be desirable for an off-diagonal “O”,
especially in cases where the relationship is a “O” only under certain conditions, or where a “O”
appears in an on-diagonal term (meaning that the DP does not satisfy its corresponding FR).  If a “?”
or “*” is used within the design matrix (in cases where the relationship between an FR and a DP is
either variable or unknown), an explanation should also be provided.

There are currently two acceptable formats for these descriptions, either in text or tabular format.  It
doesn’t matter which format is followed, so long as one format is used consistently in a document.
Please note that indices can be grouped in cases where the same description is applicable to multiple
off-diagonal elements.

1.3.1 TEXT FORMAT

The text format for making remarks on off-diagonal terms is as follows:

Off-diagonal Terms:
Here, the index (i, j) refers to the element corresponding to FR.ϕ.i and DP.ϕ.j.

(2, 1): xxx

(3, 1): xxx

(3, 2) – (4, 2): xxx

(3, 4): Coupling results under conditions where… .

(4, 1), (4, 3): xxx

(5, 1) – (5, 4): The CCA is responsible for coordinating the activities and interactions between these process
modules.

(6, 1) – (6, 5): The support framework design depends on the design of each process DP and the requirements
specified by the design of the CCA.

1.3.2 TABULAR FORMAT

The tabular format for making remarks on off-diagonal terms is shown in Table 3:
Table 3:  Tabular format for comments on off-diagonal terms in the design matrix.

i j
Remarks

(FR.ϕ .i, DP.ϕ.j)
i j jth design parameter affects how system performs ith functional requirement: e.g. some specific example

is included hear. Additional comments go here.

2 CONSTRAINTS
Error! Reference source not found. is the current version of the generic template for constraints.
Each constraint gets a unique index, indicating the level of the decomposition to which these
constraints correspond.  The title bar for the table includes a cross-reference to the current parent
index (i.e. “ϕ“).  The table also includes columns for the full index of the parent constraints for each
constraint.  At the top level, the constraints can come from external customers (i.e. marketing) or
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internal departments (i.e. management).  Each constraint has a one or two word “name”
summarizing the nature of the constraint, followed by a full description.

The columns after the description indicate which FRs at this level are impacted by each constraint,
by means of a check mark or a question mark, if the relationship is uncertain.  In the future
Axiomatic Design Software, this may be expanded to include a method of adding comments, so that
the relationship between the Cs and FRs can be captured more thoroughly.   The last column is
provided for verification codes, in order to specify how verification will be performed to ensure that
the constraint is being satisfied.  (These codes are discussed in the previous section.)  As with the
impact boxes, the future Axiomatic Design Software should allow these to be commented in greater
detail in a separate window.

In order to properly identify the importance and stringency of different constraints at a particular
level of the hierarchy, it is useful to categorize the constraints.  These classifications appear at every
level of the system hierarchy, maintaining the fractal representation of the system architecture.

• Critical performance specifications:  These are the set of constraints which are most critical
for the system to be considered a success, and form the metrics by which a system will be judged
by its customers.  Generally, these constraints will have specific values which must be achieved
or exceeded in order for the system to be acceptable to the customer.   Examples of this type of
constraint include throughput specifications and specific process performance metrics.

• Interface Constraints:  These are the set of constraints which describe how the system must
interact with its environment   This includes specification of all interfaces between the system
and the environment (including operators and maintenance personnel), as well as specific
features or options that particular customers may desire (e.g. a custom layout so that the system
will fit into a preexisting facility).  Generally, these constraints include what types of operands /
inputs the system must handle, as well as the parameters and features that must be incorporated
into the design of specific components in the system.  This category also includes constraints on
human and equipment safety, as well as acceptable impacts on the environment.

• Design Restrictions and Limitations:  The categories above capture constraints which are
externally imposed by the customer, by industry standardization, and by government regulation.
Several constraints emerge, however, due to choices and tradeoffs made elsewhere in the design
of the system, including acceptable factors of risk.  For example, the choice to use a particular
robot for an application may lead to limitations on where that robot can reach, and thereby
restrictions as to where accessible stations need to be placed.  In addition, vibrations induced by
the robot may dictate requirements for vibration isolation of other components in the system.  If
a different robot or another type of mechanism is selected, such requirements may not be
necessary.

• Global Constraints:  These are the set of constraints which apply, to some greater or lesser
degree, to every component in the system.  Generally, these constraints will state overall goals,
such as minimizing footprint or maximizing availability.  While some of these constraints may
have limits (e.g. do not exceed a footprint of 100 sq. ft.), the are usually more negotiable, and can
be “massaged” as necessary to address other issues in the design.  Typically, the better that these
constraints can be achieved, the lower the ultimate cost of ownership will be for the customer.
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Global constraints will also include so-called “external constraints”, which include conforming
to national and international laws, industry standards and safety regulations.

• Project Constraints:  These are the set of constraints dictated by marketing and management
which impact the effectiveness and timetable of the design effort.  Thus, this category
incorporates such items as the schedule for design reviews, project deadlines, specific test
procedures, development budgets, and staffing and resource limitations.

These constraints can be summarized in a constraint table, which provides a unique index number for
every constraint, the source (i.e. index number, marketing, and/or management) of that constraint, a
description of the constraint, and a chart indicating which FRs at this level of the hierarchy this
constraint impacts. An example template for the constraint table is shown in Table 4.

Table 4:  Generic constraint table.

Constraints on FR.ϕ.#
Index: C.ϕ-#

Impacts
FR.ϕ.#

Parent Name Description 1 2 3 4 5 6 Ver
-- Critical Performance Specifications --

1 Marketing Throughput Meet throughput specifications ü ü ü ü ü ü T
2 Marketing Performance Meet process spec. (arbitrary # of instances) ? ? ? ? ? ? T
3 Marketing Performance Meet transport spec. (arbitrary # of instances) ? ? ? ? ? ? T

-- Interface Constraints --
4 Marketing Operand Handle customer specified operand (arbitrary # of

instances)
? ? ? ? ? ? I

5 Marketing Interface Handle customer specified interface (arbitrary # of
instances)

? ? ? ? ? ? I

-- Design Restrictions & Limitations --
6 Marketing Feature Include specified components & features (arbitrary # of

instances)
? ? ? ? ? ? I

7 Mgmt. Inventory Use specific components from inventory ? ? ? ? ? ? I
-- Global Constraints --

8 Marketing Quality Maximize availability / reliability (maximize MTBF and
MTTF, minimize MTTR)

ü ü ü ü ü ü I

9 Marketing Geometry Minimize size (footprint) ü ü ü ü ü ü I
10 Marketing Integration Integrate tool with factory environment (host computer,

air and water supply, facilities, etc.)
ü ü ü ü ü ü I

11 Marketing
Mgmt

Flexibility Provide maximum flexibility to accommodate individual
customer needs

ü ü ü ü ü ü Dr

12 Marketing Cleanliness Maintain appropriate cleanliness rating (industry-
dependent)

ü ü ü ü ü ü Dr

13 Marketing Geometry Minimize weight (industry-dependent) ü ü ü ü ü ü I
14 Mgmt Maintenance Make serviceable (easy access to components) ü ü ü ü ü ü I
15 Marketing Human Make tool "user-friendly" (ergonomics and software

interfaces)
ü ü ü ü ü ü I

16 Marketing
Mgmt

Cost Minimize costs (design, manufacturing, operational,
maintenance, etc.)

ü ü ü ü ü ü I

17 Mgmt Change Integrate maximum amount of existing technology
(minimize redesign of proven components, use off-the-
shelf equipment)

ü ü ü ü ü ü U

18 Marketing
Mgmt

Assembly
Test

Provide ease of testability (make components compatible
with standard & customer-defined tests)

ü ü ü ü ü ü T
I

19 Mgmt. Manufacture Optimize components for ease of manufacture and
assembly (DFM, DFA)

ü ü ü ü ü ü Dr
I

20 Marketing Standards Conform to industry and safety standards (arbitrary # of
instances)

ü ü ü ü ü ü I
D

-- Project Constraints --
21 Marketing Interface Use budget and resources ü ü ü ü ü ü I
22 Mgmt Time Meet project development timetable ü ü ü ü ü ü I
23 Marketing

Mgmt
Test standards Meet test standards ü ü ü ü ü ü I
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3 DIAGRAMS4

Once the decomposition is complete, it is useful to have graphical depictions of the design.  These
diagrams can offer clues into implementation issues, as well as highlighting specific areas of the
design which may require further development and decomposition.

The first step is to generate tree diagrams that demonstrate the layout of the design hierarchy.  These
diagrams are used to identify the leaves (i.e. endpoints) of the design.  Assuming that the number of
FRs and the number of DPs are equal at each level of the hierarchy, the tree diagrams should reveal
the same pattern for the FRs and the DPs.  If the number of FRs and DPs are not equal, then this
diagram may indicate that certain FRs are not being adequately addressed in the design.  Examples
of the tree diagrams are shown in Figure 1 and Figure 2.

FR3FR2FR1 FR5FR4

FR21

FR22 FR23

FR24FR11

FR12 FR13

FR14 FR31

FR32 FR34

FR35

FR33

FR41

FR42 FR43

FR44 FR51

FR52 FR54

FR55

FR53

FR421 FR422 FR521 FR524

FR522

FR531 FR533

FR532FR523

HIGH LEVEL
FUNCTIONAL REQUIREMENT

Figure 1:  Tree diagram representing the functional requirements (FRs).
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Figure 2:  Tree diagram representing the design parameters.

                                               
4 Parts of this section also appear in Hintersteiner, J. D.  (1998)  Axiomatic Design and Network Performance Analysis

for Applications in Home-Based Health Care.  MIT Master’s Thesis.  February, 1998. Pgs. 93-96.
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The leaves of the tree can be transformed into independent modules, which represent the non-zero
diagonal elements of the design matrices relating the FRs to the DPs.  These modules are then
joined by junctions in a module-junction structure diagram, which represents the relationship between
them (i.e. uncoupled, decoupled, or coupled).  The module-junction structure diagram should
roughly maintain the pattern of the tree diagram, as shown in Figure 3.  There are three types of
junctions which can appear in the module-junction structure diagram, as specified in Table 5.

Once the module-junction structure diagram is specified, it can be used to generate a design flow
diagram, which shows how design information must flow through the system design process.  Thus,
it represents the order in which modules must be designed in order to satisfy the overall functional
requirements of the system, as shown in .  The determination of parallel, sequential, and feedback
loops for the information flow is dictated by the junctions in the module-junction structure diagram,
as shown in Table 5.  This information flow is shown in Figure 4.

Table 5:  Junction types and relationships for system architecture diagrams.

Symbol Type Relationship Flow Diagram Representation
S Summation Uncoupled Parallel summation of modules

(order of design does not matter)
C Control Decoupled Sequential processing of modules

(order of design is critical)
F Feedback Coupled Feedback loop of sequentially processed modules

(design iteration required)
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Figure 3:  Module-junction structure diagram.  Note that, in this example, the feedback (F) junction indicates
coupling between  FR.2 (M2) and FR.4 (M4).  This will dictate a feedback loop in the design flow diagram.
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Figure 4:  Design flow diagram.  Note that the junctions in the module-junction structure diagram are
referenced here, in conjunction with parallel (S), sequential (C), and feedback (F) information flow.
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