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Abstract 

Utilizing the Axiomatic Design (AD) principles to develop a perfect product, design of a manufacturing system with minimal complexity is 
required. For the purpose of reducing the manufacturing system complexity, theoretically, it is preferred to integrate multiple Process Variables 
(PVs) of the product into a single process unit. However, due to significant presence of some active noise factors, this integration practice may 
result in failing to maintain the independence among some of Functional Requirements (FRs) of the product. This event is the result of 
statistical causal relationships unintentionally developed among a subset of the integrated PVs. In such a condition, the AD’s Independence 
Axiom cannot be successfully satisfied and reaching a system with minimal complexity is inconceivable, even though an uncoupled or 
decoupled system design is apparently presented. To mitigate this kind of FRs coupling generated from the PVs integration, this study proposes 
partial & semi-partial correlation analysis as a statistical solution to identify the most appropriate integration choices where integrating a subset 
of the PVs is inevitable. Furthermore, based on the Taguchi’s loss function, a quantitative criterion is established to fairly compare any two 
non-ideal manufacturing system designs and choose the one with relatively lower loss. The proposed approach explained in this study is 
verified based on hypothetical data. 
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1. Introduction 

In order to achieve a perfect product, which is capable of 
satisfying every requirement demanded by customers in an 
effective way, the product engineers always have to make a 
series of complex decisions at different stages of the product 
development life-cycle [1-2]. Considering all of these stages, 
the failure in making good decisions at the engineering design 
stage may cause significant and fundamental problems in 
development of a successful product [3-6]. In fact, any poor 
design decision should be regarded as a serious obstacle for 
reaching a successful product because it cannot be often 
addressed easily by simple practices such as fine-tuning and/or 
design iterations [4, 7-8]. Commonly, we refer to poor 
decisions on design of a product as “conceptual weaknesses” 
at the design stage. They should be reduced even if they 
cannot be fully eliminated [5,8]. For this particular purpose, 

we do require a disciplined engineering and manufacturing 
process design that can tie a multitude of product (system) 
design tools together. By definition, the “engineering and 
manufacturing process design” is, in fact, a set of processes 
and activities required to transform the customers’ needs and 
objectives into a series of design solutions [5]. 

 In order to address and satisfy the identified requirements 
of the product, there is a wide variety of engineering design 
approaches to develop a capable product [9-10]. However, 
among all of these existing approaches, the strength of the 
Axiomatic Design (AD) theory to design an effective product, 
which is potentially capable of satisfying the customers’ 
requirements, is emphasized [7, 9,11-12]. 

According to Suh [7, 13-14], to design any product or 
engineering system, the Customers’ Attributes (CAs) must be 
specified into a minimum set of independent requirements 
usually defined by engineering terms in the functional domain 
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of the product. These independent requirements are to 
completely characterize the functional needs of the product 
and known as Functional Requirements (FRs) of the product. 
In addition, in order to fulfil the FRs, we must define or select 
physical solutions which are referred to as Design Parameters 
(DPs) in the physical domain of the product [5, 7, 15]. Finally, 
to manufacture the product characterized in terms of DPs, we 
also have to develop a process which is specified by a set of 
Process Variables (PVs) in process domain of the product [5, 
16]. Moreover, in a consistent way, the system design process 
must be simplified by breaking the higher level elements 
down into a set of sub-elements included at the lower levels of 
abstraction. The decomposition process is accomplished 
according to zigzag procedure. In fact, on the basis of 
zigzagging decomposition, the hierarchy in domain is defined 
by zigzagging back and forth between at least two adjacent 
domains [17] (Fig. 1). 

From the AD’s principles, in order to achieve a successful 
product, fulfilling every identified FR is absolutely essential. 
Because of this, it is important that all major sources that may 
significantly cause some variations in the product’s FRs are 
identified. This is, in fact, a good way to find potential factors 
which can significantly inhibit improvement of the probability 
of success in satisfying the established FRs [5, 12]. Among all 
of potential causes which can make considerable variations in 
the product’s FRs, the effect of incapable manufacturing 
system is critical [18- 19]. In fact, relying on the AD theory, 
since the product manufacturing system is the engineering 
system intended to support the product’s PVs, any technical 
problems for PVs may result in some difficulties in fulfilling 
both DPs and FRs of the product. Therefore, from this view, 
developing the manufacturing system based on an improper 
design is considered a significant factor in failing to support 
the PVs and satisfying the product’s DPs successfully. This 
means that a sound design for the product manufacturing 
system can considerably pave the way for fulfilling the FRs of 
the product effectively and efficiently. 

With respect to presenting an efficient design for an 
engineering system, often, relying on the Information Axiom 
of the AD, it is argued that “a simple design is the best design” 
[20, 5-6, 12, 21]. From this, one may deduce that a good 
design for the product’s manufacturing system makes one PV 
satisfy multiple DPs. This means that a coupled design looks 
better. However, from the AD’s point of view, this is the case 
where multiple PVs are established to successfully satisfy the 
corresponding DPs of the same number. Nonetheless, these 
PVs may also be tightly integrated on a single process entity 
as well. In this study, we call such a design practice as 
“process integration” and it may be recommended. 

Concerning the process integration practice, in order to 
verify the PVs integration practice usefulness in achieving a 
simpler system design, here we suitably employ the Second 
(Information) Axiom of the AD theory. For this purpose, 
consider an uncoupled process (manufacturing) design in 
which the PVs are not integrated and each PV particularly 
uses an independent “process entity” to satisfy its associated 
DP which has already been established in the physical domain. 
In addition, let consider Pୈ

 (i=1, 2, 3, …, n) be the statistical 
probability of satisfying the ith DP at a given Lth level of the  

 
Fig.1. Mapping between Adjacent Domains in Axiomatic Design (AD) 

system’s levels of abstraction. Hence, the overall probability 
of success for the manufacturing (process) design, PManufacturing, 
can be expressed as the Eq. (1) [4, 7];  Pୟ୬୳ୟୡ୲୳୰୧୬ ൌ Pሼ୬ሽ  

(1) ൌ Pሺ൫drଵ୪  DPଵ  drଵ୳൯, … , ൫dr୬୪  DPଵ  dr୬୳൯ሻ 

Where; dr୧୪ and dr୧୳ represent the “upper design range” and 
“lower design range” of the DPi, respectively.  

In addition, with no loss of generality, assume that the DPs 
are also statistically independent of each other. Hence, the Eq. 
(1) can be rewritten as the Eq. (2); [4, 7] Pሼ୬ሽ ൌ ෑ Pሺሺdr୧୪  DP୧  dr୧୳ሻ୬

୧ୀଵ ሻ (2) 

In this type of process (manufacturing) design, since PVi 
independently employs a particular Process Entity (PEi) to 
satisfy its associated DPi (i=1, 2, 3, …, n), we have to use the 
concept of “conditional probability” to accurately measure 
probability of satisfying the DPi . For this purpose, as the Eq. 
(3) expresses, we need to study the probability of satisfying 
the DPi with respect to success/failure of the PEi;    Pሺ൫dr୧୪  DP୧  dr୧୳൯ሻ ൌ Pሺሺdr୧୪  DP୧  dr୧୳ሻ|PE୧ሻሻ. PሺPE୧ሻ  Pሺሺdr୧୪  DP୧  dr୧୳ሻ|PE୧େሻሻ. PሺPE୧େሻ (3) 

Where; PE୧ and PE୧େ represent the “success” and “failure” 
of the PEi to support the PVi for fulfilling the DPi, respectively. 

Moreover, without loss of generality, assume that the 
probability of success of each PE in supporting the PVi is the 
same. That is, P (PEi) =P (for i=1, …, n). Hence, the Eq. (2) 
can be rewritten as the Eq. (4); Pሼ୬ሽ ൌ P୬. ෑ Pሺ൫dr୧୪  DP୧  dr୧୳൯|PE୧ሻ୬

୧ୀଵ  (4) 

Therefore, the “information content” and “complexity” of 
such a system design can be obtained by the Eq. (5); Cୟ୬୳ୟୡ୲୳୰୧୬ ൌ Iୟ୬୳ୟୡ୲୳୰୧୬ ൌ െ logଶ PሼnሽL  ൌ െ logଶሼPn. ෑ Pሺ൫dril  DPi  driu൯|PEiሻሻሽn

iൌ1  

ൌ ሺn. logଶ Pሻ   logଶ Pሼ൫dril  DPi  driu൯|PEiሽ୬
୧ୀଵ  (5) 

On the other hand, regarding a manufacturing process) 
design in which the PVs (PV1, PV2, …, and PVn) are 
integrated on a single Process Entity (PE). Similarly, here we 
use the “conditional probability” concept to measure 
probability of satisfying the DPs. Therefore, “the overall 
probability of success” for such a system design can be 
expressed as Eq. (6); 
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Pୟ୬୳ୟୡ୲୳୰୧୬ ൌ Pሼ୬ሽ  ൌ Pሺ൫drଵ୪  DPଵ  drଵ୳൯, … , ൫dr୬୪  DPଵ  dr୬୳൯ሻ ൌ Pሺ൫drଵ୪  DPଵ  drଵ୳൯, … , ൫dr୬୪  DPଵ  dr୬୳൯|PEሻ. PሺPEሻ  Pሺ൫drଵ୪  DPଵ  drଵ୳൯, … , ൫dr୬୪  DPଵ  dr୬୳൯|PEେሻ. PሺPEେሻ (6) 

Assume that the probability of success PE in supporting 
the PVs to satisfy the corresponding DPs is also P. That is, P 
(PE) =P. Hence, the Eq. (6) can be rewritten as the Eq. (7);  Pሼ୬ሽ ൌ P. ෑ Pሺ൫dr୧୪  DP୧  dr୧୳൯|PEሻ୬

୧ୀଵ  (7) 

Therefore, the “information content” and “complexity” of 
such a system design can be obtained by the Eq. (8); Cୟ୬୳ୟୡ୲୳୰୧୬ ൌ Iୟ୬୳ୟୡ୲୳୰୧୬ ൌ െ logଶ PሼnሽL  ൌ െ logଶሼP. ෑ Pሺ൫dril  DPi  driu൯|PEሻሻሽn

iൌ1  

ൌ ሺlogଶ Pሻ   logଶ Pሺ൫dril  DPi  driu൯|PEሻሽ୬
୧ୀଵ  (8) 

Therefore, comparing Eq. (5) and Eq. (8), it is clearly 
concluded that integration of PVs on a single process entity 
may result in relatively lower information content. However, 
this conclusion is true where there is no “noise factors” in the 
system. This is the important point the present study is to 
address.  

 With respect to the practice of PVs Integration on a single 
manufacturing unit, sometimes, due to the presence of some 
active noise factors, such as time, location, worker’s skills, 
common limited resources, etc., which may be frequently 
experienced in manufacturing environments, the integration of 
PVs cannot maintain the inherent independence of the PVs. 
Such a condition particularly occurs where causal 
relationships between some of PVs are developed. In fact, 
often, following integrating PVs in one single process unit, 
some strong statistical causal relationships between some of 
PVs have been developed unintentionally. That is, in such a 
condition, the behaviors of some of PVs depend causally on 
behaviors of the others. For example, consider a statistical 
causal dependency between functions of two different CNC 
machines (as two DPs of a given product) integrated on a 
common multi-skill worker to manufacture the product of 
interest. Concerning this case, it is clear that the worker’s 
skills to work with the machines are, in fact, the corresponding 
PVs required to fulfill the specified DPs. Here the number of 
settings the machines may require to properly operate can be 
regarded as one the possible active noise factors. In fact, if the 
number of required settings for two machines significantly 
increases, the worker may not appropriately divide his/her 
available time between two machines and, as a result, the 
machines will not be served properly. In such a situation, the 
functions of the machines may therefore depend causally on 
each other even though the established PVs are apparently 
mapped into the DPs via an uncoupled process design. As 
another example for clarifying the considerable role of noise 
factors in developing undesirable causal relationships between 

some of integrated PVs, consider a manufacturing process in 
which a common robot must load/unload two different 
machines. Clearly, the functions of these two machines 
integrated on this common industrial robot are, in fact, 
regarded as two DPs established in physical domain of 
product intended to be manufactured. In this example, the 
distance between these two machines is considered to be a 
serious noise factor. In fact, in this case, the location of the 
facilities may make some difficulties for the robot in 
effectively employing the machines. In other words, in this 
case, the inappropriate locations of the machines will lead to 
developing a statistical causal relationship between the 
functions PVs) of the employed robot. 

Obviously, any causal relationship between any certain 
pair of PVs is considered a significant cause for failing to 
maintain the independency of DPs and FRs, in turn. In fact, 
since the DPs and FRs are theoretically functions of the PVs, 
any strong causal relationship between any given pair of PVs 
will subsequently result in developing some type of causal 
relationships between the corresponding FRs as well. Clearly, 
this means violating the First (Independence) Axiom of the 
AD theory. In other words, a real coupling among a subset of 
the product’s FRs is expected to be met where the PVs 
integration leads to some significant causal relationships.  
This is the main challenge the present study is going to 
address as a serious problem in manufacturing system design 
context. Hence, the contribution of the current work can be 
outlined as the followings; 

 Clarifying effect of significant causal correlation among a 
certain subset of the product’s PVs -- which may arise 
through some active noise factors in PVs integration-- as a 
serious obstacle for satisfying the product’s FRs effectively 
even though an uncoupled or decoupled manufacturing 
system design is apparently presented.  

 Establishing a quantitative criterion, based on the 
Taguchi’s Loss Function, to fairly compare any two 
different design decisions on integrating the PVs in one 
single process unit and choose the one with relatively 
lower loss. 

 Proposing a statistical solution to identify the most 
appropriate integration choices where integrating a subset  
of the PVs is inevitable. 

2. FRs Coupling which Originates from Integration of PVs 

In this section, we are going to begin with delineating the 
real difference of two terms Coupling and Correlation between 
any two design variables (e.g. FRs/DPs/PVs of a product of 
interest). The “coupling” between a given two design 
variables is certain and may be established by a poor mapping 
practice while the “correlation” is hypothesized to be a sign of 
a statistical relationship between them. That is, any two design 
variables can be statistically correlated while they are not 
coupled. However, this is the case where there does not exist a 
significant statistical causal relationship between these two 
design variables. This means that we can experience an 
apparent uncoupled or decoupled system design in which 
some of the design variables in a specific domain are actually 
coupled because their corresponding elements in adjacent 
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domain have significant causal correlations. For the purpose 
of understanding such a condition more, for example; consider 
a two-DP uncoupled process design as the Eq. (9) expresses; ܦ ଵܲܦ ଶܲ൨ ൌ ܤଵଵ 00 ଶଶ൨ܤ . ܲ ଵܸܲ ଶܸ൨ (9) 

Or, in other words; ܦ ଵܲ ൌ .ଵଵܤ ܲ ଵܸ (10) ܦ ଶܲ ൌ .ଶଶܤ ܲ ଶܸ 

In addition, assume that PV2 is a function of PV1since the 
PV2 is causally correlated to PV1. That is; ܲ ଶܸ ൌ ݃ሺܲ ଵܸሻ  ;      ߝ ,ሺ0ܰ~ߝ         ଶሻ (11)ߪ

Where; the ߝ  represents random component of this 
statistical causal relationship between the PV1and the PV2. 
Moreover, it is assumed that the ߝ has a “Normal” probability 
distribution with mean zero and variance ߪଶ . Thus, the Eq. 
(10) can be rewritten as the Eq. (12); ܦ ଵܲ ൌ .ଵଵܤ ܲ ଵܸ (12) ܦ ଶܲ ൌ .ଶଶܤ ሺ݃ሺܲ ଵܸሻ   ሻ ߝ

Therefore, ܦ ଵܲ and ܦ ଶܲ are coupled to each other although 
the Eq. (9) does not apparently imply such a fact. 

Hence, on the basis of argument above, it is clearly 
concluded that any (causal) correlation among the PVs will 
also result in generating a (causal) correlation among the DPs 
directly. In this regard, in order to explore the magnitude of 
the (causal) correlations between a given pair of the DPs in 
terms of degree of correlation between its corresponding PVs, 
let’s consider the Eq. (13) as a process design equation which 
represents the pattern of mapping practice between physical 
and process domain of the product; 

൦ܦ ଵܲܦ ଶܲ…ܦ ܲ൪ ൌ ൦ܤଵଵ 0 ⋯ 00 ଶଶܤ … 0⋮ . ⋱ ⋮0 0 ⋯ ൪ܤ . ൦ܲ ଵܸܲ ଶܸ…ܸܲ൪ (13) 

Also, let Σࡼࡰ represent the “Variance-Covariance Matrix” 
of the vector DP, VCMDP. According to the AD theory, it is 
clear that the concerned DPs can be mathematically expressed 
as the Eq. (14); ࡼࡰ ൌ ሾሿ.  (14) ࢂࡼ

Where; PV is an n-vector which includes all established 
PVs. On differentiation, the matrix [B]--which relates the DP 
vector to the PV vector of the manufacturing process-- is, in 
fact, the sensitivity process design matrix with entries given 
by the Eq. (15); ܤ ൌ ࢂࡼ߲ࡼࡰ߲ ݆ ൌ 1, … , ;  ݇ ൌ 1, … , ݊ (15) 

Therefore, the Eq. (16) follows; 

Σࡼࡰ ൌ Varሺࡼࡰሻ ൌ Varሺሾሿ. ሻ  ൌࢂࡼ ሾሿ.Σࢂࡼ. ሾሿ(16) ܂ 

Where; Σࢂࡼ  represents the “Variance-Covariance Matrix” 
of the vector PV, VCMPV. Also, the Σࢂࡼcan be expressed as 
the Eq. (17); 

Σࢂࡼ ൌ ൦ߪଵଵ ଵଶߪ ⋯ ଵଶߪଵߪ ଶଶߪ … ⋮ଶߪ . ⋱ ଵߪ⋮ ଶߪ ⋯  ൪ (17)ߪ

Thus, VCMDP is; 

Σࡼࡰ ൌ ێێۏ
.ଵଵܤۍێ ଵଵߪଵଵܤ .ଵଵܤ ଵଶߪଶଶܤ ⋯ .ଵଵܤ .ଶଶܤଵߪܤ ଵଶߪଵଵܤ .ଶଶܤ ଶଶߪଶଶܤ … .ଶଶܤ .ଷଷܤଶߪܤ ଵଷߪଵଵܤ .ଷଷܤ ଶଷߪଶଶܤ … .ଷଷܤ ⋮ଷߪܤ . ⋱ .ܤ⋮ ଵߪଵଵܤ .ܤ ଶߪଶଶܤ ⋯ .ܤ ۑۑےߪܤ

 (18) ېۑ

Therefore, on the basis of the Eq. (18), for any pair of 
design parameters, the covariance between DPi and DPj 
(i,j=1,2, …, n ; i ് j) can be written as the Eq. (19); Cov ൫ܦ ܲ, ܦ ܲ൯ ൌ .ܤ .ܤ ,   ሺiߪ j ൌ 1,2, … n ; i ് jሻ (19) 

Where, Cov ൫ܦ ܲ, ܦ ܲ൯ stands for the covariance between 
DPi and DPj (i,j=1,2, …, n ; i ് j). Also, the ߪ represents the 
covariance between PVi and PVj (i,j=1,2, …, n ; i ് j ). 
Obviously, Cov (DPi, DPj) will be zero if and only if either Bii 
or Bjj is equal to zero. 

Hence, according to the Eq. (19), any kind of correlation 
between any given pair of the DPs can be directly derived 
from the correlation between its corresponding PVs. 
Moreover, generalizing the Eq. (12), it is clearly concluded 
that any causal correlation/relationship between a certain pair 
of PVs will result in developing a causal correlation/ 
relationship between their corresponding DPs as well. This 
indicates violation of the Independence Axiom of the AD 
theory in process design of the product even though the 
mapping practices are accomplished in an uncoupled/ 
decoupled pattern. In addition, because of the interplay 
between the physical and functional domain of the product, it 
is concluded that the developed causal correlation/relationship 
between a certain pair of the DPs will subsequently result in 
developing a causal correlation/relationship between their 
corresponding FRs as well. Similarly, this indicates violation 
of the Independence Axiom of the AD theory in physical 
design of the product even though the mapping practices are 
performed in an uncoupled/ decoupled pattern. 

Therefore, regarding the physical design of the product, to 
clarify the magnitude of the (causal) correlations between a 
given pair of the FRs in terms of degree of the correlation 
between their corresponding DPs, the Eq. (20), like the Eq. 
(19), can be written; Cov ൫ܴܨ, ܨ ܴ൯ ൌ .ܣ .ܣ Cov ൫ܦ ܲ, ܦ ܲ൯ሺi, j ൌ 1,2, … n ; i ് jሻ (20) 

Where, Akk is the entry (k,k) of the physical design matrix 
[A]. In addition, let’s assume that ሾሿ ൌ ሾሿ. ሾሿ. Hence, the 
Eq. (18) can be expressed as the Eq. (21); Cov ൫ܴܨ, ܨ ܴ൯ ൌ .ܥ .ܥ ,      ሺiߪ j ൌ 1,2, … n ; i ് jሻ (21) 

Where, Cov ൫ܴܨ, ܨ ܴ൯stands for the covariance between 
FRi and FRj (i,j=1,2, …, n ; i ് j ), and ߪ  represents the 
covariance between PVi and PVj (i,j=1,2, …, n ; i ് j ). 
Obviously, Cov (FRi, FRj) will be zero if and only if either Cii 
or Cjj is equal to zero. 

Therefore, according to the Eq. (21), any strong causal 
relationship between any given pair of PVs will subsequently 
result in developing some type of causal relationships 
(coupling) between their associated FRs as well.   
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3. Deriving A Mathematical Relationship between Degree 
of the PVs Dependencies and Amount of Loss that 
Stakeholders Have to Incur 

With respect to an uncoupled design for physical mapping 
between functional and physical domain of the intended 
product design, let consider ்ࢀ ൌ ሾ ଵܶ ଶܶ … ܶሿ் and ்ࡾࡲ ൌ ሾܴܨଵ ଶܴܨ … ሿ்ܴܨ be the “Target Value” and the 
identified “FR” vector, respectively. In addition, let consider 
L (T, FR) be the product physical design quality loss function 
[22-25]. Expanding L (T, FR) at FR=T yields the Eq. (22); ۺሺࢀ, ሻࡾࡲ ൌ ࢀୀࡾࡲ|ۺ  સࡾࡲ|ۺୀࢀሼࡾࡲ െ  ሽࢀ

(22)  12 ሼࡾࡲ െ .ሽࢀ ࡾࡲሼࢀୀࡾࡲ|ࡴ െ ሽࢀ  ⋯ 

Where; H is the Hessian matrix. It is clear that L (T, FR) 
would be minimal when FR is equal to T. Therefore, ࡾࡲ|ۺୀࢀ ൌ   . If the product operates around the vector FR 
which is equal to T, the quadratic term of the Eq. (22) may 
dominate the expansion and, hence, we can express the 
Eq.(22) as Eq.(23); ۺሺࢀ, ሻࡾࡲ ≅ 12 ሼࡾࡲ െ .ሽࢀ ࡾࡲሼࢀୀࡾࡲ|ࡴ െ  ሽ (23)ࢀ

Let ߤிோand ߪிோଶ represent the mean and the variance of ܴܨ 
, i=1, 2, …, m, respectively. Therefore, the expected value for 
the product’s quality loss in the Eq. (23) can be expressed as 
the Eq. (24); EሾLሺݏܴܨ, ሻሿݏܶ ൌ  ∂ଶL∂ܴܨଶ |ிோୀ் ቂߪிோଶ  ൫ߤிோ െ ܶ൯ଶቃ୫

୧ୀଵ   

 

 

(24) 
   ∂ଶL∂ܴܨ ܴܨ∂ | ிோୀ்ிோೖୀ்ೖሾCov ሺܴܨ, ሻ୫ܴܨ

୩ୀଵା୧
୫ିଵ
୧ୀଵ  ൫ߤிோ െ ܶ൯. ൫ߤிோೖ െ ܶ൯ሿ 
Where; Cov ሺܴܨ, ሻܴܨ  denotes the covariance between 

FRi and FRk (i,k=1,2, …, m ; i ് k). 
Hence, according to the Eq. (24), the product quality loss 

function consists of three ingredients including “variability of 
each FR”, “mean adjustment of each FR to its associated 
target value”, and “covariance between the individual FRs”. 

Let Yij ,i = 1, . . . , m; j = 1, . . ., m, be a binary variable 
indicating the existence of the mapping between FRi and DPj 
as the Eq. (25) expresses; 

ܻ ൌ ቄ1         FR୧is Mapped into DP୧0                               Otherwise  (25) 

Also, let ߤand ߪଶ be the mean and the variance of the 
design parameterܦ ୧ܲ. Therefore, ܴܨ୧can be expressed as the 
Eq. (26); ܴܨ ൌ  ܻሺ∂ܴܨ∂ܦ ܲሻೖୀఓೖ. ܦ ܲ୫

୩ୀଵ  (26) 

And, ܴܨ୨can be expressed as the Eq. (27); ܨ ܴ ൌ  ܻሺ∂ܨ ܴ∂ܦ ୪ܲሻୀఓ. ܦ ୪ܲ୫
୪ୀଵ  (27) 

Now, let LCorr.be the quality loss due to DPs correlation. 
Then, we may have; 

EሾLେ୭୰୰.ሺݏܴܨ, ሻሿݏܶ
ൌ   ∂ଶL∂ܴܨ ܨ∂ ܴ|ವುసഋವುೕసഋೕ

୫
୨ୀ୧ାଵ .୫ିଵ

୧ୀଵ  Cov ۈۈۉ
ۇ ܻ ൬∂ܴܨ∂ܦ ܲ൰ೖୀఓೖ . ܦ ܲ୫

୩ୀଵ ,
 ܻ ൬∂ܨ ܴ∂ܦ ܲ൰ୀఓ . ܦ ܲ୫
୪ୀଵ ۋۋی

ۊ
ೖୀೕୀଵஷൌ   ∂ଶL∂ܴܨ ܨ∂ ܴ| ୀఓೕୀఓೕ

.   ܻ୫
୩ୀ୪ାଵ . ܻ .୫ିଵ

୪ୀଵ
୫

୨ୀଵା୧
୫ିଵ
୧ୀଵ ൬∂ܴܨ∂ܦ ܲ൰ೖୀఓೖ 

. ൬∂ܨ ܴ∂ܦ ܲ൰ୀఓ . Cov ሺܦ ܲ, ܦ ܲሻ 

 (28) 
In addition, since the DPs are correlated, the error 

propagation formula of FRi can be given as the Eq. (27); 

ிோଶߪ ≅  ሺ∂ܴܨ∂ܦ ܲሻೖୀఓೖୀఓ . ሺ∂ܴܨ∂ܦ ܲሻೖୀఓೖୀఓ . Covሺܦ ܲ, ܦ ܲሻ୫
୪ୀଵ

୫
୩ୀଵ  (29) 

 

Therefore, according to the Eq. (19), Eq. (28), & Eq. (29), 
the Eq. (24) can be expressed as the Eq. (30). The Eq. (30), in 
fact, mathematically relates the degree of dependency 
(correlation) between any given pair of PVs to the amount of 
loss (cost) the stakeholders (customers) have to incur. To be 
more specific, on the basis of the Eq. (30), we can predict 
amount of the loss the stakeholders will incur due to the 
product’s FRs dependencies/couplings that originate from the 
PVs integration. EሾLሺݏܴܨ, ሻሿൌݏܶ  ∂ଶL∂ܴܨଶ |ிோୀ் ቐ  ൬∂ܴܨ∂ܦ ܲ൰ೖୀఓೖୀఓ . ൬∂ܴܨ∂ܦ ୪ܲ൰ೖୀఓೖୀఓ . .ܤ .ܤ ୫ߪ

୪ୀଵ
୫

୩ୀଵ
୫

୧ୀଵ  ܻ ൬∂ܴܨ∂ܦ ܲ൰ೖୀఓೖ . ୫ߤ
୩ୀଵ െ ܶ൩ଶቑ

   ∂ଶL∂ܴܨ ܨ∂ ܴ | ୀఓೕୀఓೕ
.   ܻ୫

୩ୀ୪ାଵ . ܻ .୫ିଵ
୪ୀଵ

୫
୨ୀଵା୧

୫ିଵ
୧ୀଵ ൬∂ܴܨ∂ܦ ܲ൰ೖୀఓೖ. 

ሺ∂ܨ ܴ∂ܦ ܲሻୀఓ. .ܤ .ܤ ߪ
   ∂ଶL∂ܴܨ ܨ∂ ܴ| ிோୀ்ிோೖୀ்ೕ

୫
୨ୀ୧ାଵ . ൞ሾ ܻ.୫

୩ୀଵ ܻ. ൬∂ܴܨ∂ܦ ܲ൰ೖୀఓೖୀఓ . ቆ∂ܴܨ∂ܦ ܲ ቇೖୀఓೖୀఓ . ଶ୫ିଵߤ
୧ୀଵെ .ೕߤ ሾ ܻ. ൬∂ܴܨ∂ܦ ܲ൰ೖୀఓೖୀఓ . ܶ  ܻ. ቆ∂ܴܨ∂ܦ ܲቇೕୀఓವುೕୀఓ

. ୧ܶሿሿ  ܶ. ܶቑ 

 (30) 
According to the Eq. (30), it is concluded that the stronger 

the PVs dependencies are, the heavier the loss will be 
incurred. On the basis of such a conclusion, the Eq. (30) is 
considered to be a sound quantitative criterion for comparing 
any two different design decisions on integrating the PVs in 
one single process unit and, hence, choose the one with 
relatively lower loss. 

4. “Partial & Semi-partial Correlation Analysis” as a 
Statistical Solution to Identify the Most Appropriate 
Choice of  the Process (Manufacturing) Integration 

On the basis of what we argued in sections above, it is 
concluded that to provide an appropriate design for the 
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manufacturing system associated with the product of interest, 
we have to detect and analyze the statistical (causal) 
correlations which may arise among a subset of the PVs 
integrated in one single process unit. For this reason, type and 
significance of the relationships among the integrated PVs are 
of particular interest of the present study. In practice, we 
seldom find PVs perfectly correlated or cases that do not 
contain any stochastic error component. Hence, providing 
some effective diagnostic tool for detecting “correlation” 
among a sub-set of the PVs is considered a significant step 
toward achieving good designs for the manufacturing system 
of the product. 

4.1. Detection of Correlation among the PVs 

To detect the “correlation” among the PVs, here we 
propose use of “partial and semi-partial correlation analysis”, 
which is frequently helpful for identifying correlation among 
the PVs [26]. A “partial correlation” is a correlation between 
two specific PVs from which the linear relations, or effects, of 
another PV(s) have been removed. The “order” of the partial 
correlation coefficient is indicated by the number of PVs that 
are being controlled.  A simple correlation is sometimes 
referred to as a “zero-order” correlation while a correlation 
between two PVs controlling for a third would be a “first-
order” correlation in case of dealing with three PVs (Fig. 2) 
[26]; 

 
 
 
 
 
 

 

Fig.2. First Order Correlation 

For instance, in case of studying three different PVs (PV1-
PV3); the first-order partial correlation between PV1 and PV2 
where the effect of PV3 is removed (rଵଶ.ଷ) can be expressed as 
Eq. (31); ݎଵଶ.ଷ ൌ ଵଶݎ െ .ଵଷݎ ଶଷඥ1ݎ െ ଵଷଶݎ . ඥ1 െ ଶଷଶݎ  (31) 

 

Where, “1”, “2”, and “3” represent PV1, PV2, and PV3, 
respectively. In addition, r୧୨  is to represent the statistical 
correlation between PVi and PVj (i,j=1,2,& 3 ; i ് j). 

Alternatively, as another effective way for accomplishing 
the partial correlation considerations, the multiple regression 
analysis can also be employed usefully. To be more specific, 
regarding this way of partial correlation analysis, we can pillar 
the squared partial correlation of interest on the coefficients of 
partial determination analysis. On the basis of this approach, it 
can be shown that the Eq. (31) can be expressed as the Eq. 
(32);  rଵଶ.ଷଶ ൌ Rଵ.ଶଷଶ െ Rଵ.ଷଶ1 െ Rଵ.ଷଶ  (32) 

 
Where; 

 rଵଶ.ଷଶ  ; represents the coefficient of partial determination for 
measuring the marginal contribution of PV2 to predicting 
PV1where PV3 is already included in the regression model. 

 Rଵ.ଶଷଶ ; represents the coefficients of determination from the 
multiple regression model in which PV2 and PV3 are 
explanatory variables employed to predict the response 
variable PV1. 

 Rଵ.ଷଶ  ; represents the coefficients of determination from the 
simple regression model in which PV3is explanatory 
variables employed to predict the response variable PV1. 

The second-order partial correlation is the correlation 
between two PVs where the effects of two other PVs are 
removed (Fig.4). For example, in case of studying four 
different PVs (PV1-PV4); the second-order partial correlation 
between PV1 and PV2 where the effects of PV3 and PV4 are 
removed (ݎଵଶ.ଷସ) can be obtained by Eq. (33); ݎଵଶ.ଷସ ൌ ଵଶ.ଷݎ െ .ଵସ.ଷݎ ଶସ.ଷඥ1ݎ െ ଵସ.ଷଶݎ . ඥ1 െ ଶସ.ଷଶݎ  (33) 

 
Where, “1”, “2”, “3”, and “4” represent PV1, PV2, PV3, and 
PV4, respectively. In addition, r୧୨.୩ stands for the coefficient of 
partial determination for measuring the marginal contribution 
of PVj to predicting PVi where PVk is already included in the 
regression model (i,j, k=1,2,& 3 ; i ് j ് k). 

 
 
 
 
 
 
 

 

 

Fig. 4.Second Order Correlation 

Similarly, here we can also use the multiple regression 
analysis to perform the partial correlation considerations. That 
is, the Eq. (33) can also be expressed as Eq. (34);  rଵଶ.ଷସଶ ൌ Rଵ.ଶଷସଶ െ Rଵ.ଷସଶ1 െ Rଵ.ଷସଶ  (34) 

 
Where; 

 rଵଶ.ଷସଶ  ; represents the coefficient of partial determination 
for measuring the marginal contribution of PV2 to 
predicting PV1where PV3and PV4 are already included in 
the regression model. 

 Rଵ.ଶଷସଶ ; represents the coefficients of determination from 
the multiple regression model in which PV2 , PV3, and PV4 
are explanatory variables employed to predict the response 
variable PV1. 

 Rଵ.ଷସଶ  ; represents the coefficients of determination from the 
simple regression model in which PV3 and PV4 are 
explanatory variables employed to predict the response 
variable PV1. 

The “semipartial correlation analysis” (also called as “part 
correlation analysis”) can also be employed as another helpful 
tool for detecting the correlation among the product PVs, 
Specifically, using the semipartial correlation, we can remove 
the effects of additional PVs from one of the concerned PVs. 
For instance, in case of studying three different PVs (PV1-
PV3); the first semipartial correlation between PV1 and PV2 

rଵଶ.ଷ 
 

rଵଶ.ଷସ 
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where the effect of PV3 is removed from PV2 (ݎଵሺଶ.ଷሻ) can be 
expressed as Eq. (35);  ݎଵሺଶ.ଷሻ ൌ ଵଶݎ െ .ଵଷݎ ଶଷඥ1ݎ െ ଶଷଶݎ  (35) 

 
Where, “1”, “2”, and “3” represent PV1, PV2, and PV3, 

respectively. In addition, r୧୨  is to represent the statistical 
correlation between PVi and PVj (i,j=1,2,& 3 ; i ് j).  

Similarly, we can benefit from the multiple regression 
analysis to accomplish the semipartial correlation analysis. 
That is, the Eq. (35) can be expressed as the Eq. (36); ݎଵሺଶ.ଷሻଶ ൌ ܴଵ.ଶଷଶ െ ܴଵ.ଷଶ  (34) 

 
Where; 

 rଵሺଶ.ଷሻଶ ; represents the coefficient of semipartial 
determination for measuring the marginal contribution of 
PV2 to predicting PV1where PV3 is already included in the 
regression model. 

 Rଵ.ଶଷଶ  ; represents the coefficients of determination from the 
multiple regression model in which PV2 and PV3 are 
explanatory variables employed to predict the response 
variable PV1. 

 ܴଵ.ଷଶ  ; represents the coefficients of determination from the 
simple regression model in which PV3 is explanatory 
variables employed to predict the response variable PV1. 
Such a statistical analysis can be usefully employed to 

examine all possible choices of the PVs integration and 
identify the most appropriate integration choice. 

5. Conclusion and Discussion 

Often, in developing an engineering system or a product 
based on the Axiomatic Design (AD)’s principles, it is argued 
that integration of the product’s PVs on a single process unit 
is a good way for reaching system designs with relatively 
lower complexity. However, in this study, we argued that 
such a design practice may be true where there is no “noise 
factors” in the system. This work theoretically illustrated that, 
due to the presence of some active noise factors in 
manufacturing environments, the integration of PVs may 
unintentionally result in development of some significant 
statistical causal relationships among a specific subset of the 
PVs. This damages the inherent independency among the PVs 
and will result in violating the AD’s First (Independence) 
Axiom in both process and physical design of the product 
even though uncoupled or decoupled mapping designs are 
apparently presented. However, at most of times, due to some 
technical/ physical/financial constraints, integration of a 
subset of PVs is inevitable. For this reason, we established a 
sound quantitative criterion to fairly compare any two non-
ideal manufacturing system designs to help system designers 
identify a good design with relatively lower loss. Indeed, 
based on this criterion, the system designers are able to 
predict amount of the loss that the stakeholders will incur 
because of the PVs dependencies. Moreover, in order to 
explore and control any significant statistical causal 
relationship between any pair of the PVs, we proposed partial 
& semi-partial correlation analysis as a useful statistical 
solution to identify the most appropriate integration choices  
in which the PVs dependencies are minimal.  
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