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ABSTRACT 

This paper is intended as an academic example for 
teaching Axiomatic Design in a trimestral course to 
engineering students or practitioners connecting with the 
theory for the first time. The proposed example is an 
application of  Axiomatic Design to the selection of  the best 
filtering system for vacuum-cleaning. Two different physical 
solutions are considered for collecting and retaining the solid 
particles: first solution is based on a filter media with a given 
porous size, and second one is based on a separation due to 
the larger density of  the particles. Physical laws for both cases 
are given and design matrices are derived from them. Finally, 
the axioms are used to guide the decision making process and 
conclusions are given.  

Keywords: Axiomatic Design, qualitative analysis, quantitative 
analysis, education, design matrix. 

1 INTRODUCTION / STATE OF THE ART 

When teaching Axiomatic Design to an audience that 
faces the theory for the first time, one of  the principal 
objectives of  the educator is to make his students “feel” the 
axioms and comprehend their implications. 

A main aspect that makes Axiomatic Design such a 
significant theory is its capacity to make explicit the relations 
existing between the functional and the physical domains, 
pointing the ones that govern the optimal designs [Suh, 1990]. 

It is particularly interesting to focus on how the 
Independence Axiom, based on a qualitative statement: 
“maintain the independence of  the functional requirements” 
[Suh, 1990], triggers a quantitative formulation based on the 
design matrices. According to the authors’ experience, both 
qualitative and quantitative definitions of  the Independence 
Axiom are often well understood by the audience, who at the 
beginning finds the main difficulties in the formal definition 
of  the design problem, and later on, in the understanding of  
the implications that Axiom 1 has in their design routines. 

On the other hand, the Information Axiom is based on a 
quantitative formulation: “minimize information content” 
[Suh, 1990]. Consequently, its entire understanding requires 
exploring its qualitative implications in the design process. 
Important efforts have been made in this sense as presented 
by Suh [2001] or Benavides [2012]. Full comprehension of  the 
implications derived from a qualitative application of  Axiom 2 
constitutes a real challenge for the educator and for all the 

engineers willing to acquire the ability of  using Axiomatic 
Design in their own design processes.  

As exposed by Park [2011], “design education is more like 
a philosophy”. As a consequence, in the framework of  
engineering, philosophical concepts guiding creative process 
have to be balanced with the accuracy of  engineering laws. 
Nakao and Nakagawa [2011] present how the correct 
definition of  the design problem helps the achievement of  
innovative products with a huge impact in the market. 

In this sense, it is important to note that the analysis of  a 
particular solution exclusively from a qualitative point of  view 
may result in the loss of  a good problem formulation. On the 
other hand, if  only a quantitative approach is proposed, 
practitioners and students may get lost in the problem 
definition, resulting in the increased difficulty for selecting an 
adequate set of  functional requirements (FR). Bathurst [2004] 
presents some of  the common problems found by engineers 
when facing Axiomatic Design for the first time.  

In order to communicate the qualitative and quantitative 
implications of  the design axioms, it is significant to select 
adequate intuitive examples that could help students and 
practitioners to entirely understand and interiorize the theory.  

The main purpose of  this paper is to suggest the 
structure of  a lecture which, based on the resolution of  a 
pedagogical example, would help students to comprehend 
Axiomatic Design principles as postulated by Suh [1990; 
2001]. Although this work focuses mainly on the learning of  
the Independence Axiom and its implications, it gives some 
interesting conclusions derived from the Information Axiom. 

To achieve this objective, this paper focuses on the 
qualitative and quantitative analysis of  the vacuum cleaner 
filtering system as a case study. First of  all, a summary of  the 
lecture’s structure is presented. Next, the design problem of  
the vacuum cleaner is solved; first qualitatively, and later on, 
quantitatively. In both, the lecture’s structure is conceived in 
order to illustrate the Axiomatic Design principles [Suh 1990; 
2001] within the concrete example.  

2 PROPOSED LECTURE’S STRUCTURE 

The lecture’s structure is based on the methodological 
steps described by Suh [1990; 2001]. As a first step in the 
education of  Axiomatic Design principles, it is suitable to 
analyze an existing solution from a qualitative perspective. 
Thanks to it, the students have the opportunity to come into 
contact with basic design problem definition, and particularly, 
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with two main implications of  the Independence Axiom: 
direct dependence (caused by the formulation of  needs which 
represent equivalent concepts) and indirect dependence 
(caused by the synthesis of  a physical solution that couples the 
set of  FRs).  

Once students have contacted qualitatively with the 
implications of  the design axioms, the quantitative 
formulation of  the design problem can be suitably exposed. 

The proposed structure for the lecture is presented in the 
next subsections.  

2.1 QUALITATIVE ANALYSIS 
For analyzing an existing solution from a qualitative 

perspective, we propose the following steps [Based on Suh, 
1990]: 

1. Qualitative formulation of  the design problem 
a. Challenge definition 
b. Selection of  the minimum number of  

independent FRs in a neutral solution 
environment 

c. Establishment of  constraints 
2. Description of  the physical solution through its 

main DPs 
3. Writing of  the design matrix 
4. Analysis with the use of  the Independence axiom 
5. Introduction to the Information Axiom in terms 

of  probability of  success 
6. Propose uncoupled solutions and outline new 

challenges 

2.2 QUANTITATIVE ANALYSIS 
For analyzing an existing solution from a quantitative 

perspective, we propose the following steps [Based on Suh, 
1990]: 

1. Quantitative formulation of  the design problem 
a. Challenge definition 
b. Selection of  the minimum number of  

independent FRs in a neutral solution 
environment 

c. Establishment of  constraints 
d. Definition of  FRs 

2. Description of  the existing solution through its 
main DPs 
a. Writing of  the design equations (physical 

laws) 
b. Identification of  DPs 
c. Establishment of  new constraints derived 

from the DPs 
3. Writing of  the design matrix 
4. Analysis with the use of  the Independence 

Axiom 
5. Introduction to the Information Axiom in 

terms of  probability of  success 
6. Selection of  new DPs to achieve the optimal 

design and outline new challenges. The selection 
of  the new DPs may imply the selection of  a 
new physical solution. 

3 THE VACUUM CLEANER AS A CASE STUDY 

According to Suh [1990], the design problem definition is 
performed when the challenge is expressed and the lists of  
FRs and constraints are established. Because the FRs have to 
be stated in a neutral solution environment, the problem 
formulation has to be valid when analyzing two different 
solutions to the same design problem.  

For that reason, since the methodological steps 1a, 1b 
and 1c are common for both the quantitative and the 
qualitative approaches; we will collect them in the following 
block. 

3.1 FORMULATION OF THE DESIGN PROBLEM 

3.1.1 CHALLENGE DEFINITION 
Analyze two different technologies (porous filter and 

centrifugal separation) for filtering dust particles when 
vacuum cleaning. Identify their main dependences and select 
the best solution according to Axiomatic Design. 

3.1.2 SELECTION OF THE MINIMUM NUMBER OF 

INDEPENDENT FRS IN A SOLUTION NEUTRAL 

ENVIRONMENT 
The minimum list of  independent FRs for the first level 

of  hierarchy can be settled as follows (because the main 
objective of  this paper is focused on the FRs, the set of  
constraints will not be established): 

 
FR1: Clean-up dust particles 
FR2: Retain dust particles 
FR3: Operate for a long time 
 

At this point, students must realize that the needs stated 
in FR1, FR2 and FR3 are functional requirements because 
they represent, in a solution neutral environment, independent 
concepts. The concept of  direct independence is explained as 
a necessary condition for establishing a correct set of  FRs. 

3.2 QUALITATIVE ANALYSIS 

3.2.1 DESCRIPTION OF THE POROUS FILTER 

SOLUTION THROUGH ITS MAIN DPS: 
The main DPs that satisfy in the porous filter solution the 

aforementioned list of  FRs can be settled as follows: 
 

DP1: Vacuum 
DP2: Filter pores size 
DP3: Filter area  

3.2.2 WRITING OF THE DESIGN MATRIX: ANALYSIS 

WITH THE USE OF INDEPENDENCE AXIOM 
With the use of  the Independence Axiom [Suh, 1990], 

the design matrix relating the established sets of  FRs and DPs 
can be written: 

 
Clean-up dust particles X X X Vacuum

Retain dust particles X X X Filter pore size

Operate a long time X X X Filter area

    
        
    
    

 (1) 
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3.2.3 ANALYSIS WITH THE USE OF THE 

INDEPENDENCE AXIOM 
The design matrix (DM) makes explicit how the filtering 

system couples the functional requirements (clean-up dust 
particles and retain dust particles). Indeed, the more particles 
that are retained, the more filter pores clog, and consequently, 
the power for vacuuming and cleaning-up particles decreases. 
For a particular time of  use, the conceived solution generates 
a dependency between functional requirements that, prior to 
the obtaining of  the physical solution, were independent. 

3.2.4 INTRODUCTION TO THE INFORMATION AXIOM IN 

TERMS OF PROBABILITY OF SUCCESS 
As stated by Suh [Suh, 2001] in a coupled design, the 

variability of  the DPs can generate a decrease in the 
probability of  success of  satisfying the FRs (and therefore of  
satisfying client needs). In this example this aspect is visible 
when the filter has to be removed and changed because the 
vacuum power is not enough to clean-up dust particles. 

3.2.5 PROPOSING UNCOUPLED SOLUTIONS AND 

OUTLINE NEW CHALLENGES 
The coupling identified leads to the formulation of  a new 

challenge: “how to retain dust particles without losing vacuum 
power and maximizing the time of  use”. 

There are different solutions in the market that solve this 
dependency. One of  them is the one patented by Dyson: the 
centrifugal vacuum cleaner based on cyclone technology. In 
this solution, the FR “retain dust particles” is satisfied by a 
separation of  the dust particles with the use of  the centrifugal 
force. This solution responds to the following new design 
matrix.  

 
Clean-up dust particles X 0 0 Vacuum

Retain dust particles X X 0 Cyclone

Operate a long time X X X Container capacity

    
        
    
    

 (2) 

In this case, the DM shows a decoupled design. Indeed, 
the filtering system for retaining dust particles does not affect 
the vacuum power, and consequently, the functionality of  
cleaning-up dust particles.  

It’s remarkable to note the huge effect that this new 
concept had in the market, showing up the deep impact that 
the reduction of  the number of  dependencies has into the 
achievement of  more competitive products.  

At this point it is useful to induce the students to think 
about the independency obtained with respect to the porous 
bag required for the conventional filter vacuum cleaner. 
Additionally, they can be proposed to think in terms of  
probability of  success, determining which of  the solutions has 
a higher probability of  satisfying FRs.  

3.3 QUANTITATIVE ANALYSIS 

3.3.1 DEFINITION OF FRS  
In order to achieve the quantitative analysis, the set of  

FRs has to be defined in terms of  the appropriate physical 
variables: 

 

FR1: Clean-up dust particles: u1 
 
FR1 represents the functionality of  cleaning-up particles, 

which might be represented by the variable u1 which 
represents the speed of  particles that are cleaned. 

 
FR2: Retain dust particles: dmin 

 
FR2 may be stated as follows: separate all the particles 

that have a size bigger than dmin. 
 

FR3: Maximize operational time: tmax  
 
FR3 might be stated as the time in which FRs are 

satisfied. 

3.3.2 DESCRIPTION OF THE POROUS FILTER 

SOLUTION THROUGH ITS MAIN DPS 
Writing of  the design equations (physical laws):  

In order to obtain the physical laws that apply to the 
problem, let us consider the following system as a 
simplification of  the vacuum cleaner we want to analyze: 

 

Figure 1. Solution based on porous filter. 

where, 0 = room, 1 = tube, 2 = dust container before filter, 
3= filter, 4= dust container after filter, and 5 = fan. The 
physical laws applying to them for an ideal gas are collected in 
Table 1. 

Table 1. Main physical laws for filtering solution. 
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Assuming an isentropic evolution between 0-1, 2-3, and 

4-5, i.e.,  1 0 1 0/ /p p
  ,  3 2 3 2/ /p p

  , 

 5 4 5 4/ /p p
  ; and assuming that the variations of  

density are small, we can retain the first terms of  Taylor 
expansion in order to solve the system of  equations in terms 
of  the FR selected. The following transfer equations are 
deduced (see appendix for details): 

Design equation for FR1- u1 

 
 0 1

1 2
3

1

3

2 /

1

W A
u

A

A




 
  
 


 (3) 

Design equation for FR2 – dd  

 d poresd d  (4) 

Design equation for FR3 – tmax  

Considering the limit as the moment when the whole 
filter is clogged: 

 
max 2 2
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d
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
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   
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   

 
 
 

  
 (5) 

Definition of  DPs  

The DPs that derive from design equations are

1, , andporesA N d W .
 

3.3.3 WRITING OF THE DESIGN MATRIX FOR 

POROUS FILTER SOLUTION 
According to the design equation (3), none of  the terms 

of  the first row of  the DM are zero, consequently:  

 1 1 1 1

1

0; 0; ; 0; 0
pores

u u u u

A d NW

   
   

     (6) 

According to the design equation (4), the terms of  the second 
row of  the DM are:  

 
1

0

0

d d d

d

pores

d d d

A NW

d

d

  
  
 







 (7) 

Finally, analyzing the design equation (5) for FR3,  

 
1

0; 0; 0; 0
pores

t t t t

A d NW

   
   

     (8) 

This results in the following design matrix: 
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                                  
    

 



 (9) 

3.3.4 ANALYSIS WITH THE USE OF THE 

INDEPENDENCE AXIOM 
As it can be observed through the design matrix, the 

solution based on a filter for retaining dust particles couples 
the FRs. Indeed, due to the fact that the number of  the filter 
pores diminishes with time, and that the mass flow has to be 
conserved throughout sections 1, 2, 3, the effective area of  

the filter 
2

3 4
poresd

A N


  diminishes.  

As a consequence, the vacuum power (represented by u1) 
decreases during the operational time. This coupling is 
particularly critical because as it can be observed, even if  the 
other control parameters vary in order to compensate this 
coupling, the diameter of  the filter pores cannot be as big as 
desired, because it would imply the not achievement of  FR2: 

minporesd d .  

3.3.5 INTRODUCTION TO THE INFORMATION AXIOM IN 

TERMS OF PROBABILITY OF SUCCESS 
As commented in the qualitative analysis, the coupling 

generates a progressive loss of  vacuum power. This decrease 
induces a smaller probability of  success for satisfying FR1: 
clean-up dust particles.  

3.3.6 SELECTION OF NEW DPS TO UNCOUPLE 

SOLUTIONS AND OUTLINE NEW CHALLENGES: 
CYCLONE BASED VACUUM CLEANER 

Axiomatic Design identifies how far designs are from the 
optimal solution. Therefore, it answers why solutions become 
separated from the best design, making explicit their critical 
points [Suh, 1990]. 

In this particular case, Axiomatic Design shows how the 
physical solution based on a filter generates a coupled design. 
The tendency indicated by DPs is that in order to eliminate 
the functional coupling, the porous filter has to be removed, 
requiring a new DP that would uncouple the solution. The 
next subsection analyses how a different physical solution 
decouples the system. 

3.3.7 DESCRIPTION OF THE CYCLONE BASED 

SOLUTION THROUGH ITS MAIN DPS  
In order to obtain the main DPs that describe the cyclone 

based solution, let us consider the following system: 
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Figure 2. Solution based on centrifugal force. 

Writing of  the design equations (physical laws) 

Physical laws are equivalent to the ones exposed 
previously, considering that in this case, zone 2 and 3 are 
equivalent. 

Table 2. Main physical laws for centrifugal solution. 

Z
on

es
 

Sp
ee

d
 

P
re

ss
u

re
 

E
n

th
al

p
y 

M
as

s 
fl

ow
 

St
at

e 
eq

u
at

io
n

 

0 0 0u 
 

0p  
0h  m  

0
0 01

p
h

 





 

1 1u  
1p  

2
1

1 0 2

u
h h 

 1 1 1

m

A u


 
1

1 11

p
h

 





 

2-3 2 3 0u  
 

2 3p 
 

2 3h 
 0

 

-
 

4 4 0u 
 

4 1p p
 

4 0h h  m  
4

4 41

p
h

 





 

5 5 0u 
 

5 0p p
 

5 0

W
h h

m
 




 

m  
5

5 51

p
h

 





 

Applying the laws previously exposed and solving the 
system in terms of  the FR selected, and considering that in 
cyclone case A3 >> A1 we obtain: 

Design equation for FR1- u1 

 3
1

0 1 0 1

2m W
u

A A 
 


 (10) 

Design equation for FR2 – dd  

The differential equation that describes the radial 
displacement of  a dust particle inside the cyclone is: 

3 3 22
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   (11) 

For large size particles or for low radial speeds the following 
inequality holds: 
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Under this condition Eq. (11) yields to: 
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This equation can be integrated to obtain: 
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The time spent by the particle inside the cyclone is: 

 
1

2 cRN
t

u


  (16) 

Taking into account Eqs. (12, 13, 14, 15 and 16), we can write 
the condition for neglecting the aerodynamic forces: 

 2 2 03d c d
d

d N c R





  (17) 

A particle will escape from the cyclone towards the 
container if 1x d , where 1d  represents the diameter of  the 

tube (note that 2
1 1 / 4A d ). Thus a particle will reach the 

container if  the following inequality is satisfied:  

 11

2c

d
N  

R
  (18) 

It is convenient to remark that this condition is easily 
satisfied, and hence, the FR is satisfied by all the particles that 
have a large size as stated by Eq. (17). For particles with a 
much lower diameter than that, the aerodynamic force will 
become dominant and the radial velocity will become constant 
as stated by: 
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Design equation for FR3 – tmax  

Considering the limit as the moment where the whole 
dust container is full: 
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Definition of  DPs  

The DPs that derive from design equations Eq. (10, 21 
and 22) are

1 2, , ,cd A N R and W  

3.3.8 WRITING OF THE DESIGN MATRIX FOR 

CYCLONE BASED SOLUTION 
According to the design equations, the resultant design 

matrix can be written as follows: 
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This results in the following design matrix: 
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




 (26) 

3.3.9 ANALYSIS WITH THE USE OF INDEPENDENCE 

AXIOM 
As it can be observed, the solution obtained eliminates 

the main functional dependence that was present in the 
porous filter solution. As it is derived from the design matrix, 
in the cyclone based solution vacuuming dust particles does 
not dependent on the system used to filter them. 

As a consequence, in the aforementioned solution the 
vacuum power does not decrease during the operational time. 
In this case, the limit is imposed by the volume of  the dust 
container, and not by the system used to separate particles. In 
this sense, the quantitative analysis confirms the dependencies 
identified in the qualitative study. 

As it can be noted, in the quantitative analysis presented 
(for both filter and cyclone based solutions) the number of  
DPs available is bigger than the number of  FRs. Particularly, 
each FR depends on more than one and only one DP, 
conducting to redundant designs in terms of  the number of  
DPs, and generating coupled or decoupled designs in terms 
of  independency. 

This situation is to be expected when the physical laws 
that allow designers to achieve the quantitative study of  
designs are settled. In general, the number of  DPs that derive 
from the laws of  physics is much bigger than the minimal set 
of  independent FRs. For that reason, Axiomatic Design 
constitutes a valuable tool to minimize the impact that a 
bigger number of  DPs generates in the definition of  new 
designs. By minimizing the dependencies between FRs and 
DPs and by selecting the appropriate DP that maximizes the 
probability of  success, Axiomatic Design theory keeps the 
inherent complexity of  the physical problem minimal [Lu and 
Suh, 2009]. 

3.3.10 PROPOSING UNCOUPLED SOLUTIONS AND 

OUTLINE NEW CHALLENGES 
Although the main functional coupling is solved with the 

described solution, at this point it is convenient to induce 
students to think about how this solution could be improved. 
More specifically, students can be asked to think about how 
the obtaining of  a non-redundant design could be achieved. 
For example, they can be asked for analyzing if  the DPs could 
be combined in dimensionless variables and mainly, which of  
them should be fixed as constant values. Additionally, students 
should be invited to evaluate each derivative of  the design 
matrix, and particularly, the relative weight of  each term, 
concluding which terms should be frozen and what tendencies 
the DPs should follow in order to maximize independency 
and the probability of  success.  

4 CONCLUSION 

This paper proposes the structure of  a lecture whose 
purpose is to introduce students and practitioners the basics 
of  Axiomatic Design through the case study of  an existing 
product which presents different configurations. The aim is to 
examine whether the design is optimal or not.  

The case study is solved both qualitatively and 
quantitatively, and it shows how the compliance or not with 
the design axioms introduces a rationale that certainly 
identifies the critical points where the synthetized solutions 
move away from the optimal. This identification constitutes a 
valuable guide for designers and decision makers, even when 
just a qualitative study can be conducted, in order to direct 
their creativity into the optimal solution, what confers a 
precious tool to validate designs before investing resources to 
develop them. In addition, it shows how the accomplishment 
of  the Axiom 1 can lead to the accomplishment of  the Axiom 
2.   
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APPENDIX 

LIST OF VARIABLES 

iu  Air speed in zone i 

ip  Air pressure in zone i 

ih  Air enthalpy in zone i 

m  Mass of the air 

m  Flow mass of the air 
  Heat capacity ratio of the air 

0  Air density 

d Dust particles density 

dd Dust particles diameter 

n Number of dust particles per volume unit 

poresd  Filter pores diameter 

N  Number of filter pores 

3A Porous filter area 

1d Tube 1 diameter 

1A Tube 1 area 

23V  Dust container capacity 

W Fan power 

R Radius of curvature of cyclone 

cN Number of cyclone turns 

x Radial acceleration inside cyclone 

x Radial speed inside cyclone 

x Radial position inside cyclone 

dc  Drag coefficient 

PROCEDURE TO OBTAIN THE DESIGN 

EQUATIONS 
1. Density resolution in all the zones 
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2. Obtaining of iu and m as a function of  DPs 
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