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ABSTRACT 

This paper is the continuation of  a previous one where 
the vacuum cleaner was used as an academic example for 
teaching Conceptual Design. In this paper the example is 
extended by including the use of  the Linearity Theorem as a 
screening tool that allows the student to select the best 
configuration. The paper shows several contradictions that 
arise when students have to face design problems with the use 
of  Axiomatic Design in a qualitative way. In particular, 
ambiguities derived from the individual or sequential 
application of  the Axioms are described. The Linearity 
Theorem is proposed as a powerful tool for applying both 
Axioms at the same time and hence for overcoming the 
difficulties associated to the aforementioned contradictions.  

Keywords: Axiomatic Design, Education, Design Matrix, 
Linearity Theorem. 

1 INTRODUCTION / STATE OF THE ART 

Independence Axiom (A1), “maintain the independence 
of  the functional requirements (FRs)” [Suh, 1990], leads to 
formulate the design matrices (DM) as the main tool for 
assessing designs, and hence, for guiding the decision-making 
process during the conceptual design. 

Information Axiom (A2), “minimize information 
content” [Suh, 1990], leads to formulate the probability of  
success as the main guide for refining the search of  solutions.  

In the classical methodology proposed by Suh there 
exists an asymmetry between both axioms. The asymmetry is 
born because priority is given to the Independence Axiom. 
Indeed, the Information Axiom is used for selecting the best 
design among all the designs that fulfill the Independence 
Axiom [Suh, 1990, 2001]. Benavides [2012] also shows that it 
is wise to force firstly the accomplishment of  A1 and 
secondly the accomplishment of  A2 because this way 
facilitates the calculation of  the probability of  success. 
Therefore, the asymmetry consists in preferring a sequential 
application of  the axioms in detriment of  a parallel 
application of  them. The preference of  the sequential 
approach is clearly stated in this alternate statement of  A2 
“The best design is a functionally uncoupled design that has 
the minimum information content” [Suh, 1990]. 

In addition, during the conceptual design phase it is 
difficult to calculate the probability of  success and thus, A2 
must be applied in a qualitative way; Suh [2001] or Benavides 

[2012] present theorems that help the designer in this task. 
But in several cases, the fact of  having a pure qualitative 
description makes the result of  a sequential application of  the 
axioms different from the result of  a parallel application of  
the axioms. From a formal point of  view, this fact resembles a 
contradiction in the Axiomatic Design Theory. The 
contradiction is born because the definition of  the Best 
Design as the one that has a Diagonal Design Matrix, requires 
the application of  both axioms at the same time [Suh, 1990, 
Benavides, 2012], but it does not include all the restrictions 
imposed by the second Axiom. In other words, the classical 
methodology for qualitatively selecting the Design Parameters 
(DPs) only seeks to achieve a diagonal matrix without using 
any other additional knowledge derived from the Information 
Axiom. The main reason is the difficulty to derive qualitative 
guidelines from the quantitative formulation of  the 
information content.  

In this paper we use the same lecture structure that was 
given by Rodriguez and Benavides [2013] for the resolution of  
a pedagogical case study. The main concern of  that work was 
to help students and practitioners in the comprehension of  
Axiomatic Design principles and methodology as postulated 
by Suh [1990, 2001]. Hence, the lecture structure was focused 
on the resolution of  a challenge that must join at the same 
time 1) enough simplicity for allowing its resolution in two or 
three hours, and 2) enough difficulty for letting the difficulties 
of  applying the methodology arise. This challenge was 
enunciated as “obtain the best design for a vacuum cleaner”. 
In this work we will extend the same example with the 
purpose of  showing how a decision-making process based on 
qualitative arguments leads to contradictions that are 
sometimes detected by the students, creating in them a feeling 
of  lack of  rigor.  

Fully understanding of  the implications derived from a 
qualitative application of  the A2 obligates the educator to face 
the aforementioned contradictions, and also obligates him to 
give a solution to that concern. To achieve this objective, this 
paper starts with the cyclone system, which was the one 
selected by Rodriguez and Benavides [2013] as the best design 
for the vacuum-cleaner challenge, and deeps in its qualitative 
resolution showing how the contradiction of  applying a 
sequential approach appears. Then, a solution based on the 
use of  a very restrictive theorem is proposed. In this case, the 
theorem selected is the Linearity Theorem, which was 
mathematically proved by Benavides [2012]. Linearity 
Theorem is a necessary consequence of  both Axioms at the 
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same time; thus, if  the Linearity Theorem is not satisfied, at 
least one of  the Axioms is not satisfied (normally, for 
uncoupled designs, it will be the Information Axiom). 
Therefore, what we say to our students is that it is wise to use 
the Linearity Theorem because in other case the fulfillment of  
the Axioms is in serious jeopardize, even more when only 
qualitative arguments are used in the design process. Paper 
shows how this qualitative argumentation is delivered to the 
students and how the contradictions appear. Finally the paper 
shows how the aforementioned contradictions are removed 
because the theorem forces a stronger use of  both axioms 
during the qualitative argumentation, solving the contradiction 
and producing a unique response to the proposed challenge.  

 

2 PROPOSED STRUCTURE 

The steps for conducting pedagogical lectures are 
[Rodriguez and Benavides, 2013]: 
1. Quantitative formulation of  the design problem. 

a. Challenge definition. 
b. Selection of  the minimum number of  independent 

FR in a neutral solution environment. 
c. Establishment of  constraints. 
d. Definition of  FRs in terms of  measurable variables 

2. Description of  the solution through its main DPs. 
e. Writing of  the design equations (physical laws). 
f. Identification of  DPs.  
g. Establishment of  new constraints derived from the 

DPs. 
3. Writing of  the design matrix. 
4. Analysis with the use of  the Independence Axiom. 
5. Analysis with the use of  the Information Axiom. 
6. Analysis with the use of  the Linearity Theorem. 

Selection of  DPs (this may imply to create new DPs 
and a new physical solution). 
h. Forcing the fulfillment of  the Linearity Theorem. 
i. Establishment of  future improvements. 
j. Outline new challenges.  

 
This lecture structure is the same described by Rodriguez 

and Benavides [2013], and it is in turn based on the 
methodological steps described by Suh [1990, 2001]. However 
in this paper, the sixth step is completed with the Linearity 
Theorem. 

Linearity Theorem (statement 1): Linear designs are 
better than non-linear designs. 

The proof  of  this theorem requires both Axioms 
[Benavides, 2012] and is out of  the scope of  the pedagogical 
lecture presented in this paper. For practical uses, mainly in 
the 6th point of  the lecture, two alternative statements of  the 
Linearity Theorem are explained to the students:  

Linearity Theorem (statement 2): The ideal design matrix 
is uncoupled and constant. 

Linearity Theorem (statement 3): When two different 
DPs can be used for satisfying one FRs, the best DP (the DP 
that must be chosen by the designer) is the most linear one.  

Since the proof  of  the Linearity Theorem uses the 
Axioms, the fact of  forcing its accomplishment during the 
conceptual design is a necessary condition (but not sufficient) 
for the accomplishment of  the Axioms. The difference 

between using the theorem or not appears because the 
Linearity Theorem forces a stronger definition of  the ideal 
design: The best design must have (a null information content 
and) a diagonal design matrix and a constant design matrix. 
This definition imposes that all the elements in the design 
matrix of  the ideal design must be constant, what is a direct 
consequence of  the Linearity Theorem [Benavides, 2012]. 
Note that, in general, the qualitative formulation of  the 
probability of  success avoids checking if  the information 
content is null (this fact is even more patent when students are 
involved because a teaching lecture tends to be more 
qualitative than quantitative); i.e. in a scenario where the 
information content cannot be calculated because there are 
only qualitative argumentations, the information content is 
not a practical part of  the ideal design definition, and for that 
reason we put that part in brackets in the classical definition: 
The best design must have (a null information content and) a 
diagonal design matrix; which is a version of  the alternate 
statement of  A2 given by Suh: “the best design is functionally 
uncoupled and contains minimum information content”. 
(Note that it’s an alternate statement and not a definition.) 
Note also that the new definition of  the ideal design, given by 
the statement 3 in this paper, comes from both Axioms at the 
same time and, for that reason, makes a more intensive use of  
A2 than the classical one. To have a more exigent definition 
of  the ideal design helps to remove or solve some of  the 
contradictions that appears due to not calculate the 
information content and use qualitative argumentations 
instead. This problem is more severe at preliminary stages of  
conceptual design, and hence, it is where it is worthier to use 
the Linearity Theorem. 

2.1 QUANTITATIVE FORMULATION OF THE DESIGN 

PROBLEM 

2.1.1 CHALLENGE DEFINITION 
Since the challenge “Analyze two different technologies 

(porous filter and centrifugal separation) for filtering dust 
particles when vacuum cleaning. Identify their main 
dependences and select the best solution according to 
Axiomatic Design.” was solved in a previous work [Rodriguez 
and Benavides, 2013], the students know that the best solution 
is the one based on the cyclone physics. For that reason, the 
new challenge for the new lecture is: “Analyze a vacuum 
cleaner that uses the technique of  centrifugal separation for 
filtering dust particles. Identify their main dependences and 
improve the solution according to Axiomatic Design.” 

 

2.1.2 SELECTION OF THE MINIMUM NUMBER OF 

INDEPENDENT FRS IN A NEUTRAL SOLUTION 

ENVIRONMENT 
FR1: Clean-up dust particles. 
FR2: Retain dust particles. 
FR3: Operate during a fixed period of  time. 
The concept of  direct independence [Benavides, 2012] is 

used to realize that the needs stated in FR1, FR2 and FR3 are 
functional requirements because they represent, in a neutral 
solution environment, independent concepts. 
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2.1.3 ESTABLISHMENT OF CONSTRAINTS 
The main set of  constraints that usually appear are: 

minimum cost, maximum energetic efficiency, easily of  use. 
But also the number of  particles collected by unit of  time. For 
the purpose of  this lecture they are not relevant. 

2.1.4 DEFINITION OF FRS IN TERMS OF MEASUREABLE 

VARIABLES 

FR1: Clean-up dust particles: u1 
FR1 represents the functionality of  cleaning-up particles, 

which might be represented by the speed of  the air that must 

remove the dust particles from the floor. Let u1 be this speed. 

FR2: Retain dust particles: dmin 
FR2 represents the functionality of  separating all the 

particles that have a size bigger than dmin. 

FR3: Operate during a fixed period of  time: tmax  
FR3 represent the maximum period of  time that the 

customer expects to operate the device. 

2.2 DESCRIPTION OF THE SOLUTION THROUGH ITS 

MAIN DPS 
We will construct the design matrix using directly the 

physical model that relates the FRs to the DPs for the 
centrifugal based solution. This physical model is based on the 
one described by Rodriguez and Benavides [2013]. For the 
sake of  clarity, we will repeat here the main laws that lead to 
relate the final value of  the FRs to a given set of  values of  the 
DPs. 

2.2.1 WRITING OF THE DESIGN EQUATION (PHYSICAL LAWS) 
 
We will assume that the air can be modelled as an 

incompressible fluid. Under this assumption, the mass flow 

rate m  through the system can be modeled as 

0 1 1m Au    (1) 

where 0  is the air density at room conditions, and  1A  is the 

cross sectional area of  the inlet pipe (see Fig. 1). 
 

 
Figure 1. Cyclone-based solution. 

The second physical law considers that there is an 
electrical motor that converts electrical energy into kinetic 
energy. If  we assume that the available power after the 

conversion is W , the mechanical energy injected into the air 

is given by: 
2

1

2

u
W m    (2) 

The combination of  Eqs. (1) and (2) lead to the physical 
law for FR1: 

3
1

0 1 0 1

2m W
u

A A 
     (3) 

The next physical law to take into account is the one that 
describes the centrifugal force in the cyclone. The cyclone 
comprises a stream tube which follows a helical stream line 

with a characteristic radius R  and cN  turns. The differential 

equation that describes the radial displacement of  a dust 
particle inside the cyclone is: 

3 3 22
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0

4 4 1
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(4)

 

For large particles or for low radial speeds the following 
inequality holds: 

2
2

0

3 2
1

1

2 4 1
4

3 2

d
d

d
d

d
x c

d u

R




 
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(5) 

Under this condition Eq. (4) yields to: 

2
1u

x
R


   

(6)

 

This equation can be integrated to obtain:

 

2
1u

x t
R


   

(7) 

2
211

2

u
x t

R


   
(8) 

The time spent by the particle inside the cyclone is: 

1

2 cRN
t

u




   

(9) 

Taking into account Eqs. (5) to (9), we can write the 
condition for neglecting the aerodynamic forces: 

2 2 03p c d
d

d N c R





  

 

(10) 

A particle will escape from the cyclone towards the 

container when 1x d , where 1d  represents the diameter of  

the tube (note that 2
1 1 / 4A d ). Thus a particle will reach 

the container if  the following inequality is satisfied:  

11

2c

d
N  

R


  
(11)

 

Since 1d R  and 1cN  , the previous inequality is 

always satisfied. Thus, all the particles that have a large size 
(defined by Eq. (10)) are always retained with independence 
of  the value of  the rest of  the DPs. As a consequence, only if  

dmin is less than the value 2 2
03 /c d dN c R   , FR2 is not 
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satisfied. Hence, it is convenient to simplify the Eq. (4) for the 
case of  having particles with a diameter much lower than that. 
In that situation, the aerodynamic force becomes dominant 
and the radial velocity becomes constant as stated by: 

2
1

3

4
d

d
d d

R
x d

c u






   

(12) 

This equation can be integrated to obtain: 

2
1

3

4
d

d
d d

R
x d t

c u






   

(13) 

Taking into account Eq. (9), the minimum size of  the 
dust particles retained into the container is obtained from the 

condition 1( )x t d , which yields to the design equation for 

FR2:

 
0 1

min 3 2

3

4
d

d c

c A
d

RN






   

(14)

 

The last physical law relates the volume of  dust collected 
during a period of  time to the available volume in the 
chamber 2-3. Obviously, this time will depend on the density 
of  dust particles per unit of  volume n . The operational time 

is calculated when the whole dust container, whose volume is 

23V ,  is full: 

23
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max 3 23
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 
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(15)

 

2.2.2 IDENTIFICATION OF DPS  
The DPs derived from design equations Eqs. (3), (14) and 

(15) are 
1A , 

23V , 
cN , R , and W . (At this point, students are 

advised of  having a redundant design with three FRs and five 
DPs). Which three DPs are the best ones?  

 

2.2.3 ESTABLISHMENT OF NEW CONSTRAINTS DERIVED 

FROM THE DPS.  
One option for selecting only three DPs is to collect 

several of  them just in the same term. For example, we could 

use W  or 
1A  for assuring FR1 because both appear, combined 

as the main parameter 
1/W A , in Eq. (3). When only the main 

DPs are used to describe the solution, the physical 
formulation can be expressed in a qualitative DM as follows:  

1
2

23

Clean-up dust particles X 0 0 Vacuum ( / )

Retain dust particles X X 0 Cyclone ( )

Operate a long time X X Container capacity( )
c

W A

RN

x V

    
    

     
    
    

       (16) 

The lower case x in the matrix reminds that there is a 
weak dependency in that term: the less the minimum size of  
the collected dust is, the larger the number of  dust particles 
per unit of  volume collected in the reservoir. However since 

this variation affects to the particles with minimum volume, 
we will neglect this effect, i.e. we will consider 2/ ( ) 0cn RN   . 

At this point, we explain that the DM in Eq. (16) is not 
linear due to the dependence of  FR2 and FR3 with 

1A . In 

addition, we remark in class that the groups of  DPs made in 
Eq. (16) are not unique, and hence there exist some degree of  
arbitrariness in that Design Matrix. In matrix (16), DP1 was 
chosen as the specific power installed in the system because it 
is a quite engineering parameter that measures the amount of  
power per unit of  system size, and hence, it allows the 
engineer to compare systems of  different sizes. It affects to 
FR2 because if  DP1 changes due to a variation of  

1A  Eq. (14) 

shows that FR2 varies too. However, if  the inlet area is 
removed from DP1 because it is not considered a main DP 
any more, the physical formulation also responds to the 
following DM: 

2

23

Clean-up dust particles X 0 0 Vacuum ( )

Retain dust particles 0 X 0 Cyclone ( )

Operate a long time X 0 X Container capacity( )
c

W

RN

V

    
    

     
    
    

       (17) 

Both matrices show that the design is uncoupled for FR1 
and FR2. However, because the former has a less number of  
off-diagonal elements, the second one is closer to the ideal 
design. This difference comes from reducing the number of  
DPs to the number of  FRs such as the ideal design requires. 
This reduction is, in fact, made by imposing design constraints 
in the DPs not selected [Suh, 1990]. Therefore, depending on 
how the designer defines the constraints that affect the DPs, 
several design matrix are obtained. This resembles an 
inconsistency in the qualitative application of  the Axiomatic 
Theory because the first design matrix induces us to think that 
using the specific power as a design parameter is worse than 
using just the power for a frozen value of  the area, but 
engineers have well-founded arguments for preferring the 
specific power. This incoherence is quite important from the 
academic point of  view because it produces a negative impact 
in the students that realize that question. They perceive the 
existence of  different DMs for the same problem as an 
arbitrariness in the decision making process, and hence, they 
tend to reject the Axiomatic Design Theory for not 
considering it a scientific or well-founded methodology when 
a tool to select the most accurate DPs. In our lectures we 
solve this problem saying that all the variables that can be 
controlled by the designer are DPs, but that only a few 
number of  them are the best ones. 

2.3 WRITING OF THE DESIGN MATRIX 
Our approach for removing the flaw addressed before is 

to accept that all the physical variables are susceptible of  
being DPs and hence, all of  them must be considered main 
parameters. Thus, according to the design equations written 
before, the resultant design matrix can be written as follows: 

1 1 1 1 1

1 23

0; 0; 0
c

u u u u u

A R N VW

    
    

   
 (18) 

min min min min min

1 23

0; 0; 0
c

d d d d d

A V R NW
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    

   
 (19) 
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max max max max max

1 23

0; 0; 0; 0
c

t t t t t

A V R NW

    
    

   

      (20)

 

Resulting in the following design matrix: 

1 1

1
1 1

min min min
min

1
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max max max
23

1 23

0 0 0

0 0

0 0

c
c

u u
W
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u A

d d d
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  

                                       

 

(21) 
At this point, with the full formulation of  the DM, the 

student realizes that 1) the design is coupled because 1A  

affects to all the FRs, and 2) the design is redundant because 
there are more DPs than FRs. Both are unexpected events for 
a concerned student because it strongly contrasts with the 
classical formulation given by the DM in Eq. (17). Now the 
contradiction is even more apparent because the new DM 
(with the full set of  available DPs) separates even more the 
design matrix from the ideal one. Thus, the previous 
inconsistency, far from disappearing, becomes stronger, which 
transmits again the impression of  methodological weakness 
when identifying the most adequate DPs. 

2.4 ANALYSIS WITH THE USE OF THE INDEPENDENCE 

AXIOM 
The classical approach to solve this ambiguity consists on 

freezing the variable that does not satisfy the Independence 
Axiom the most and select the DPs from the rest of  variables 
[Suh, 1990]. Therefore, the straightforward selection derived 
from the application of  the Independence Axiom is, for 
example, the following one (which resembles the structure of  
the DM in Eq. 17) 

1

1

min
min

max 23
max max

23

0 0

0 0

0

u

Wu W
d

d R
R

t V
t t

VW

 
 
    

    
                

  

 (22) 

However, this approximation has the problem of  
applying exclusively the Independence Axiom, giving to the 
Information Axiom a secondary role. 

2.5 ANALYSIS WITH THE USE OF THE INFORMATION 

AXIOM 
According to the Axiomatic Design Theory the 

Information Axiom is applied after the Independence Axiom 
for selecting the best design among all the ones that fulfill the 
Independence Axiom. In this case, there is another possibility 
that could be best than the previous one. It is the following, 

1

1

min
min

max 23

max max

23

0 0

0 0

0

c
c

u

Wu W
d

d N
N

t V
t t

VW

 
 
    

    
                

 
  

 (23) 

However, in a qualitative formulation where the 
information content cannot be obtained, any selection 
between (22) and (23) appears again as an arbitrariness. 

Since the Axiomatic Design postulates an objective 
definition of  the best design, any arbitrariness in the method 
for obtaining it appears as a contradiction of  the theory. We 
propose to fix this problem with the use of  the Linearity 
Theorem. 

2.6 ANALYSIS WITH THE USE OF THE LINEARITY 

THEOREM 
The quantitative description plus the Linearity Theorem 

allow us to focus the students on selecting DPs or on creating 
new ones, if  the available DPs do not fulfil the Linearity 
Theorem. 

We think that making the design decisions on applying 
both Axioms at the same time is more powerful than apply 
them individually or sequentially. For that reason, our 
approach lies on explaining that it gives more value to force 
the solution to satisfy a theorem that comes from both axioms 
at the same time than to apply only one axiom (or to apply a 
reduced definition of  the best design); in general, we assume 
that it gives more value to use a stronger definition of  the 
ideal design: If  it is not linear, it is not the best design. 

Since the Linearity Theorem leads to a stronger definition 
of  the best design, we encourage our students to use it for 
selecting the best set of  DPs. In the case of  the FR2, Eq. (14) 
tell us that FR2 has the most linear dependency with 

variable 1A , neither with R  nor cN . For that reason, 1A  

should be chosen as the DP2; however this decision produces 
a contradiction with the theory itself  because it leads to a 
coupled design that does not satisfy the Independence Axiom 
(and because its relation with FR1 is not linear). The removal 
of  this contradiction is presented to the students as a new 
challenge. At this point we induce students to think of  how 
this solution could be improved.  More specifically, they are 

asked about how the dependency between 1u  and mind  due 

to 1A  could be removed: students are able to focus 1A  for the 

design improvement by using Linearity Theorem.  
 

2.6.1 PROPOSING UNCOUPLED SOLUTIONS AND OUTLINE 

NEW CHALLENGES 
The previous challenge exposes students to a creative 

problem with the following hints: 1) due to the Linearity 
Theorem, they know that area is an important DP, and 2) due 

to the Independence Axiom, they know that 1A  is a bad DP. 

One solution to this innovative/creative challenge is to add 
more areas as DPs: one possibility that can be explored is 

adding the inlet diameter 0A  as a new design parameter. This 
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addition changes the design in Fig. 1, by adding the inlet 
diameter as a new design parameter, into the new solution 
presented in Fig. 2, where the cyclone diameter is different 
from the inlet diameter. 

 
Figure 2. Cyclone-based solution with decoupled air 

speeds. 

In this new solution a new DP has been added to the 
system in order to decouple the inlet speed from the cyclone 
speed. The new equations are  
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And the DM derived from them is 
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This allows us to write the following design matrix 
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23

Clean-up dust particles X 0 0 Vacuum ( / )

Retain dust particles 0 X 0 Cyclone (A / )

Operate a long time X 0 X Container capacity( )
c

W A

RN

V

    
    

     
    
    

           (28) 

This shows that although DM in Eq. (17) is formally 
similar to the DM in Eq. (28), the physical solutions are not. 
Therefore, the contradictions coming from the arbitrariness 
were due to forget to implement a new design parameter. This 
is quite interesting because in this problem the number of  
DPs was already larger than the number of  FRs. However, 

this possibility still can use 1A  as DP2 and W  as DP1, while 

still keeping the design matrix for FR1 and FR2 diagonal. 
 

3 CONCLUSION 

This paper explores some contradictions and arbitrariness 
that can appear when Axiomatic Design is used in a qualitative 
way, particularly, when qualitative examples are used for 
teaching it to students and the ideal design is exclusively based 
on the functional independence. It is proposed that using a 
definition of  the best design as strong as possible mitigate 
these problems. In this paper, the stronger definition is “the 
best design is the one that has a constant and diagonal Design 
Matrix” which arises from the Linearity Theorem. In 
particular, it has been shown that this definition of  the Best 
Design fixes that problem for the case study of  the cyclone 
vacuum cleaner, and it has been shown that the solution 
requires increasing the number of  physical variables.  
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