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ABSTRACT 

Transportation systems represent a critical infrastructure 
upon which nations' economies and national security depend. 
As infrastructure systems, they must be planned and operated 
to accommodate the uncertain and continually evolving needs 
of  their passengers and freight. These changes represent not 
just changes in state - or system behavior - but also changes in 
system architecture. New routes and destinations are 
continually added and new modes of  transport are introduced 
to realize them. Such changes occur in the planning time scale 
when the transportation is intentionally expanded, but also in 
the operational time scale when, for example, buses and trains 
breakdown. As such, transportation systems meet the 
Axiomatic Design classification of  large flexible systems 
where many functional requirements not only evolve over 
time, but also can be fulfilled by one or more design 
parameters. This paper builds upon a recent work in which 
Axiomatic Design was used to develop a theory of  degrees of  
freedom in manufacturing systems for their reconfigurable 
design and operation. The theory is specialized here to 
reconfigurable transportation systems. The methodological 
developments are then demonstrated on a small subsection of  
the Mexico City transportation system to demonstrate its wide 
ranging utility in reconfigurability decision-making at the 
planning and operations time scales. 

Keywords: Axiomatic Design, transportation paths, 
transportation itineraries, Mexico City transportation system, 
re-configurability, resilience, reconfigurable transportation 
systems, resilient transportation systems. 

1 INTRODUCTION 

Transportation systems represent a critical infrastructure 
upon which nations' economies and national security depend.  
In the 1990s, transportation systems the world over became 
increasingly strained by the continually evolving needs of  a 
growing population that has trended towards concentrating in 
cities for the past 100 years [de Weck et al., 2011]. One 
particularly pertinent problem is the need to quickly find ways 
to reallocate and adjust the capacity and capabilities of  
transportation resources to the variants that need them most. 
Another key challenge is the transportation system’s resilience 
in the face of  unplanned disturbances, events, or disasters. Re-
configurability and resilience drivers can be found to varying 
degrees in many of  the modes of  transport: air, ship, rail, and 

road. Recently, decentralized reconfiguration strategies for 
reconfigurable transportation systems have emerged [Vallee et 
al., 2011]. In order to achieve and support these solutions, it 
becomes necessary to model the evolution of  the system 
architecture. The realization of  these incremental changes 
requires decisions to be made in the operations and planning 
of  transportation systems. This requirement causes a multi-
dimensional engineering management problem which 
stakeholders have to find ways to address. To fulfill these 
needs, reconfigurable transportation systems are proposed as 
a possible solution. They are defined as: 

Definition 1. Reconfigurable Transportation System: A 
system designed at the outset for rapid change in structure, in 
order to quickly adjust capacity and functionality in response 
to sudden changes in stakeholder requirements. 
Reconfigurable transportation systems are those in which new 
capabilities are added only when needed, and the system is not 
over-designed with capabilities that may be left unused. 

This paper uses an Axiomatic Design approach called 
transportation degrees of  freedom to enumerate the number 
of  passenger itineraries in reconfigurable transportation 
systems; transportation systems with variable system 
architecture. The enumeration of  passenger itineraries, and 
more generically paths through a network, has long been 
associated with network reliability and resilience [de Silva et al., 
2011; Rai and Kumar, 1986; Khan and Singh, 1980]. Here, the 
Axiomatic Design based approach serves two additional 
purposes. First, the enumerated passenger itineraries are set in 
terms of  the evolving system architecture variables in both 
function and form. Second, it bridges the traditionally graph 
theoretic approaches to the engineering design community.  

The remainder of  the paper proceeds as follows. Section 
II provides the background to the methodological 
developments with brief  introductions to graph theory [van 
Steen, 2010; Lewis, 2009; Newman 2010], Axiomatic Design 
for large flexible systems [Suh, 2001], and production degrees 
of  freedom [Farid, 2007; 2008; Farid and McFarlane, 2006a]. 
Section III then reframes previous work on production 
degrees of  freedom [Farid, 2007, 2008; Farid and McFarlane, 
2006a] into a transportation system context. Next, Section IV 
enumerates passenger itineraries as a measure called passenger 
degrees of  freedom upon this foundation. Section V 
illustrates the methodological developments on a small 
subsection of  the Mexico City transportation system. Section 
VI describes the re-configurability applications of  these 
measures in the planning and operations time scales. Section 
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VII concludes the work and proposes avenues for future 
work.  

2 BACKGROUND 

This section summarizes the methodological 
developments found in the existing literature in order to 
provide a foundation for the enumeration of  passenger 
itineraries in the next section. The discussion proceeds in 
three steps. Section 2.1 gives a brief  introduction to graph 
theory while Section 2.2. introduces the application of  
Axiomatic Design for large flexible systems to transportation 
systems. Section 2.3 then discusses a taxonomy of  
transportation system degrees of  freedom as presented in 
earlier work. 

2.1 GRAPH THEORY IN TRANSPORTATION 

NETWORKS 
Graph theory is a long established field of  mathematics 

with applications in many fields of  science and engineering 
where artifacts are transported between physical locations [van 
Steen, 2010; Lewis, 2009; Newman 2010]. A number of  
definitions from this field are introduced later in the 
discussion.  

Definition 2. [van Steen, 2010] A graph: G= {V, E}, 
consists of  a collection of  nodes V and a collection of  edges 
E. Each edge eE is said to join two nodes, which are called 
its end points. If  e joins v1, v2  V, we write e=‹v1, v2›. Nodes 
v1 and v2 in this case are said to be adjacent. Edge e is said to 
be incident with nodes v1 and v2, respectively. 

Definition 3. [van Steen, 2010] A directed graph 
(digraph): D, consists of a collection of nodes V, and a 
collection of arcs A, for which D = {V, A}. Each arc a=‹v1, 
v2› is said to join node v1V to another (not necessarily 
distinct) node v2. Vertex v1 is called the tail of a, whereas v2 is 
its head.  

Definition 4. Adjacency matrix: A, is binary and of  size 
(V) x (V) and its elements are given by: 

 A(i, j ) 
1 if vi ,vj exists

0 otherwise






  (1) 

where the operator () gives the size of  a set. Interestingly, 
AN(i,j) represents the number of  traveler itineraries of  n-steps 
between origin i and destination j [Newman 2010].  

Definition 5. [van Steen, 2010] Incidence matrix: M of 
size (V) x (A) is given by: 

 M (i , j ) 

1 if  vertex v
i
 is the head of  arc a

j

1 if  vertex v
i
 is the tail  of  arc a

j

0 otherwise









  (2) 

While graph theory for decades has presented a useful 
abstraction of transportation networks for operations 
research, it has limitations from an engineering design and 
systems engineering perspective. “Interestingly, the fraction of 
bona fide engineers pursuing this approach has remained 
relatively small; it is mostly mathematicians, physicists and 
biologists who pursue this particular view of complex systems. 
This may be because of the emphasis on analyzing systems ‘as 

they are’ rather than on building systems that do not yet exist. 
It may also be that engineers have to focus on technical details 
and many of them remain suspicious of highly abstracted 
mathematical representations of systems such as system graph 
representations, where all nodes are essentially treated as 
equal” [de Weck, 2011]. The above definitions focus on the 
abstract form of the transportation network and less so the 
transportation functions itself. Furthermore, how the function 
is realized is not explicitly stated. Unless generalized, such 
graph theoretic approaches are likely to have limitations in 
systems of heterogeneous function and form. Furthermore, 
because the system function and its realizing form has been 
abstracted away, such approaches may not straightforwardly 
lend themselves to active control solutions that implement 
reconfigurable transportation system architectures.  

2.2 AXIOMATIC DESIGN FOR LARGE FLEXIBLE 

SYSTEMS 
In contrast, Axiomatic Design of  large flexible systems 

provides a natural engineering design description of  
transportation systems. Axiomatic Design has been previously 
applied to transportation applications in the design of  
intersections [Pena et al., 2010; Thompson et al., 2009a; 
Thompson et al., 2009b; Yi and Thompson, 2011], airport 
terminals [Pastor, 2011], and shipping companies & ports 
[Celik et al., 2009; Kulak, 2005; Celik, 2009]. While relevant to 
these applications, this work expands the scope to include the 
entire transportation system network.  

To this end, the Axiomatic Design of  large flexible 
systems proves a useful design tool. Suh [2001] defines large 
flexible systems as systems with many functional requirements 
that not only evolve over time, but also can be fulfilled by one 
or more design parameters. In transportation systems, the set 
of  functional requirements is taken as the set of  
transportation processes, FR = {Transportation Processes}. 
The definition of  a transportation process is adapted from 
Farid [2008] where it was used in a production system 
application.  

Definition 6. Transportation Process: A transportation-
resource-independent process pu	∈	P that transports 
individuals between stations. 

The set of  design parameters is taken as the set of  
transportation resources DP = {Transportation Resources}. 
This definition is similarly adapted for application to 
transportation systems [Farid, 2008].   

Definition 7. Transportation Resource: A vehicle h	∈	H 
capable of  realizing one or more non-null transportation 
processes such as a bus or train. 

Once the high-level functional requirements and design 
parameters have been established, they may be simultaneously 
decomposed to establish full functional and physical 
hierarchies as part of  a rigorous engineering design process. 
While this goal is not the objective of  this paper, establishing 
the development in terms of  the evolving high-level system 
architecture variables in both function and form grounds the 
methodology within the engineering design literature.  
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2.3 TRANSPORTATION DEGREES OF FREEDOM: AN 

ANALOGY 
The concept of  degrees of  freedom as applied to large 

flexible systems originated with research in automated 
reconfigurable manufacturing systems in which an analogy 
between mechanical and production degrees of  freedom was 
drawn [Farid, 2007, 2008; Farid and McFarlane, 2006a]. So as 
to make this paper's developments more intuitive, the analogy 
--this time for transportation systems --is redrawn. 

Production system degrees of  freedom arose from an 
analogy between mechanical and production systems that 
holds equally well for transportation systems [Farid and 
McFarlane, 2006a]. At the most basic level, a mechanical 
system is defined by its kinematics which is described by links 
and coordinates [Shabana, 1998]. Links make up the physical 
composition of  a mechanical system. Similarly, transportation 
systems are composed of  transportation resources. 
Coordinates are used to express the time-evolution of  a 
continuous state which results in motion. However, an event-
driven evolution of  discrete states is more appropriate for 
reconfigurable transportation system architecture. Cassandras 
and LaFortune [1999] have previously drawn this analogy 
between coordinates for time-driven systems and events for 
event-driven systems. Finally, when analyzing multi-body 
mechanical systems, the number of  coordinates is calculated 
based upon the number of  combinations of  dimensions and 
links less any applicable constraints [Shabana, 1998]. For 
example, a fully free three-link system has 18 degrees of  
freedom: 6 dimensions for each of  the three links. The 
analogy suggests that transportation system degrees of  
freedom would come from the feasible combinations of  
transportation processes and their associated resources less 
applicable constraints. Finally, mechanical degrees of  freedom 
are classified as either scleronomic, i.e. time-independent, or 
rheonomic, i.e. time-dependent [Shabana, 1998]. This suggests 
that event-driven systems' degrees of  freedom would be 
scleronomic or rheonomic in relation to their sequence 
dependence.  

3 TRANSPORTATION DEGREES OF 
FREEDOM 

This section reframes previous work on production 
degrees of  freedom [Farid, 2007, 2008; Farid and McFarlane, 
2006a] into a transportation system context. First, a measure 
of  scleronomic transportation degrees of  freedom is 
developed as a measure of  the sequence-independent 
capabilities of  the transportation systems. Next, a measure of  
rheonomic transportation degrees of  freedom is developed to 
address sequence-dependent capabilities. Along the way, a 
number of  modeling simplifications are made to reflect 
transportation's relative simplicity in comparison to 
manufacturing. Additionally, matrix-based developments are 
introduced to replace scalar-based ones found in previous 
work.  

3.1 SCLERONOMIC TRANSPORTATION DEGREES OF 

FREEDOM 
The scleronomic transportation degrees of  freedom arise 

from the Axiomatic Design knowledge base for large flexible 

systems [Farid, 2008]. Its development is recounted here for 
clarity.  

Suh uses the large flexible system design equation 
notation: 

1 1 2 3

2 2 3

3 3

$( , , )

$( , )

$( )

FR DP DP DP

FR DP DP

FR DP

                       (3) 

to signify that FR1 can be realized by design parameters DP1, 
DP2, or DP3 [Suh, 2001]. Previous work reinterprets the design 
equation in Equation 3 in terms of  a matrix equation using a 
Boolean knowledge base matrix J which contains the systems 
degrees of  freedom [Farid, 2008]. 

ܴܨ   ൌ ܬ ⊙  (4)                                  ܲܦ
where matrix Boolean multiplication ܥ ൌ  is equivalent ܤ⊙ܣ
to ܥሺ݅, ݇ሻ ൌ ௝ܸܣሺ݅, ݆ሻ ,ሺ݆ܤ⋀ ݇ሻ where ௝ܸ ௝ܽ ൌ ܽଵ ∨
ܽଶ …ܽ௡ିଵ ∨ ܽ௡ is the array-OR operation [Warshall, 1962; 
Farid, 2008].  

The transportation system knowledge base found in 
Equation 4 describes the transportation system's capabilities 
and is defined formally as follows. A transportation system is 
composed of  a set of  transportation processes P = {p1, … 
p(P)} that transport passengers from an arbitrary station by1 to 
by2. If  B is taken as the set of  stations, then by definition there 
are 2(B) such processes. Of  these, (B) are “null" processes 
where no motion occurs. The rest of  the paper adopts the 
indices convention that a transportation process pu transports 
passengers from station by1 to by2 such that  

             1 2( )( 1)u B y y                            (5) 

These transportation processes are realized by a set of  
resources R = {r1,…,rσ(R)} which realize them. An event εuv∈E 
(in the discrete event system sense) [Cassandras and 
Lafortune, 1999] can be defined for each feasible combination 
of  production process pu being realized by resource rv.  

Definition 8. Transportation System Knowledge base: 
A binary matrix: JS, of  size σ(P)ൈσ(R) is defined where 
element JS(u,v)∈{0,1} is equal to one when event euv exists..  

Interestingly, the Axiomatic Design knowledge base 
itself  forms a bipartite graph [van Steen, 2010] between the 
set of  processes (e.g. functional requirements) and resources 
(e.g. design parameters).   

Proceeding with the development, a number of  discrete 
holonomic constraints can apply in the operational time frame 
so as to eliminate events from the event set. These constraints 
are said to be scleronomic as they are independent of  event 
sequence. Such constraints can arise from any phenomenon 
that reduces the capabilities of  a transportation system e.g. 
vehicle breakdowns, line closures, or road detours. The 
description of  the discrete holonomic constraints can be 
captured succinctly in a single binary matrix.   

Definition 9. Transportation System Scleronomic 
Constraints Matrix: A matrix KS of  size σ(P)ൈ σ(R) whose 
elements KS(u,v)∈{0,1} are equal to one when a constraint 
eliminates event euv from the event set.  

So as to not exaggerate the transportation system 
capabilities with null processes of  remaining at the same 
station, these events are eliminated by convention in the 
context of  this paper.   
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 K
S
(u,v) 

1  if mod ((u1), (B)) 

(u1) / (B)

0 otherwise









      (6) 

Or equivalently,  

        K
S
 not[I  ( B)V 1 ( R)T ]                 (7) 

where Im is the identity matrix of  size mൈm, 1m is the ones 
vector of  length m, the AV operation is shorthand for 
vectorization vec() commonly implemented in MATLAB with 

the (:) operator, and   is the Kronecker tensor product.  
From these definitions of  JS and KS, follows the 

definition of  scleronomic transportation degrees of  freedom.  
Definition 10. Scleronomic Transportation Degrees of  

Freedom [Farid, 2007, 2008]: The set of  independent 
transportation events ES that completely defines the available 
transportation processes in a transportation system. Their 
number is given by: 

        (8) 

where the  operation is “boolean subtraction" 

Alternatively,  is equivalent to ܣ ∙ തܤ . Note that the 
boolean “AND”   is equivalent to the hadamard product, and 
തܤ ൌ  ሻ. In matrix form, Equation 8 can be rewritten inܤሺݐ݋݊
terms of  the Frobenius inner product [Abadir and Magnus, 
2005]:  

     , ( )T
S S S F S SDOF J K tr J K                 (9) 

The form Equation 9 interestingly matches the form of  
the expression used for mechanical degrees of  freedom. 
Furthermore, it allows the usage of  the Axiomatic Design 
knowledge base for further detailed engineering design. 
Finally, the constraints matrix captures the potential for 
operational constraints like vehicle breakdowns, line closures, 
or road detours. As such, it allows a flexible expression of  
transportation system capabilities in the design and 
operational phases.  

3.2 RHEONOMIC TRANSPORTATION DEGREES OF 

FREEDOM 
The previous subsection recalled the development of  

transportation degrees of  freedom as independent. However, 
a transportation system has constraints that introduce 
dependencies in the sequence of  events. Rheonomic 
transportation degrees of  freedom provide a sequence-
dependent measure of  the capabilities in a transportation 
system [Farid, 2008].  

Definition 11. Rheonomic Transportation Degrees of  
Freedom [Farid, 2007, 2008]: The set of  independent 
transportation strings Z that completely describes the 
transportation system language.  

In other words, the transportation system language L can 
be described equally well in terms of  the Kleene closure 
[Cassandras and Lafortune, 1999] of  the scleronomic and 
rheonomic transportation degrees of  freedom.  

              * *L E Z                       (10) 

For mathematical tractability, the length of  strings z is limited 
to two. Strings of  longer length are discussed in Section 4.   

Given string z=eu1v1eu2v2 ∈ Z, =σ(P)(u1-1)+u2 and 
=σ(R)(v1-1)+v2, ∀ u1,u2∈{1,σ(P)} and ∀	v1,v2∈{1,σ(R)}. 
Intuitively speaking, certain transportation events can follow 
one another, while others are not possible. These feasible 
strings can be captured succinctly in a single binary matrix ܬఘ 
of  size σ2(P)ൈ σ2(R) whose elements J(,)∈{0,1} are equal to 
one when string z exists and can be calculated as: 

              S SJ J J                                (11) 

Allowing the presence of  scleronomic constraints, Equation 
11 becomes 

     (12) 

As before, a binary constraints matrix ܭఘ of  size σ2(P)ൈ 
σ2(R) is used to describe the potential elimination of  strings 
z=eu1v1eu2v2 from the transportation system string set. While 
KS can equal zero, ܭఘ has perpetual non-zero continuity 
constraints. In other words, in order for one degree of  
freedom to follow another, the destination of  the former 
must be equivalent to the origin of  the latter. Formally, the 
convention described in Equation 5 implies that u equals the 
sequence of  digits ((y1-1),y2) in base σ(B). This yields two 
useful results: y1= (u-1)/σ(B)+1 where '/' represents integer 
division and y2=mod((u-1),σ(B))+1 where mod(x,y) represents 
the modulus of  x with respect to y. Calculation of  ఘ isܭ 
executed from a binary square constraint matrix ܥఘ of  size 
σ(P)ൈσ(P) which is defined as 

1

1 2 2

0 if mod (( 1), ( ))

( , ) ( 1) / ( )

1 otherwise

u B

C u u u B




 
 



 (13) 

which may be more simply calculated in terms of  the 
following matrix equation 

C  1 ( B)  I  ( B) 1 ( B)T               (14) 

From this, the rheonomic transportation constraint matrix can 
be calculated 

2 ( )[1 ]V R TK C 
                      (15) 

It follows that the number of  rheonomic transportation 
degrees of  freedom is:  

           (16) 

Equation 16 can be rewritten in a number of  equivalent 
forms [Farid, 2013].  

 

DOF

 [

v
2

 ( R)


v

1

 ( R)


u

2

 ( P)


u

1

 ( P)

 [J
S
 K

S
](u

1
,v

1
)

 [J
S
 K

S
](u

2
,v

2
) C


(u

1
,u

2
)]

  (17) 
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Equation [17] views rheonomic degrees of  freedom as a 
sequence of  binary conditions. An alternative approach is to 
rearrange the vector spaces such that.  

 
JR  [JS KS]V[JS KS]VT

KR  C [1 (R)1 (R)
T ]

  (18) 

Here, scleronomic transportation degrees of  freedom are 
treated as a basis vector – as would typically be done with 
mechanical degrees of  freedom. JR strongly resembles an 
adjacency matrix where are the degrees of  freedom are treated 
as nodes and are mutually connected. KR consequently applies 
the perpetual rheonomic constraints. The rheonomic 
transportation degrees of  freedom measure becomes 

   (19) 

where w=(R)(u-1)+ v.  
This section has reused the Axiomatic Design large 

flexible system knowledge base to introduce the concept of  
scleronomic and rheonomic transportation degrees of  
freedom. These measures are used in the next section to 
enumerate the number of  passenger itineraries. 

4 ENUMERATED ITINERARIES – PASSENGER 
DEGREES OF FREEDOM 

As inspired by research in product degrees of  freedom 
[Farid, 2008], the passenger degrees of  freedom measure takes 
advantage of  the efforts in the previous section to measure 
the number of  ways that a passenger in the transportation 
system may be transported from a desired origin to a final 
destination (i.e. the number of  possible itineraries). The 
derivation rests on three definitions:   

Definition 12. Passenger Event: A scleronomic 
transportation degree of  freedom that permits a passenger's 
transport along one leg of  an itinerary from a desired origin y1 
to a desired destination yn.  

Definition 13. Passenger Itinerary: An n-string of  
passenger events that permit the passenger's transport from a 
desired origin y1 to a desired destination yn. 

Definition 14. Passenger Degrees of  Freedom (ܨܱܦఘ): 
The number of  passenger itinerary strings in the language ܮఘ 
between a desired origin y1 to a desired destination yn. 

From these definitions, a straightforward derivation of  
the passenger degrees of  freedom is to sum the itineraries 
consisting of  1 leg, 2 legs, up to the number of  n legs deemed 
impractical by the passenger.  

n

p pi
i

DOF DOF                         (20) 

The number of  direct routes follows from Equation 9 
considering that only the process u=(B)(y1-1)+y2 is desired.  

1 , (( ) ( ))T T T T T
p u S u S F u S u SDOF e J e K tr e J e K     (21) 

where en represents nth the elementary basis vector of  
appropriate size.  

The number of  two-leg routes uses the rheonomic 
transportation degrees of  freedom found in Equation [19] but 

requires that the scleronomic constraints matrices be updated 
from their original formulation in Equation [7] to incorporate 
the desired origin y1 to a desired destination yn.. 

 
K

Sy1
 not [e

y1
 ( B) 1 ( R) ][1 ( R) ]T 

K
Sy2

 not [1 ( R) e
y2
 ( B) ][1 ( R) ]T 

  (22) 

and that JR be updated accordingly.  

 JRy1y2
 [JS KSy1

]V[JS KSy2
]VT

  (23) 

 
here en represents nth the elementary basis vector of  
appropriate size.  

The number of  n-leg passenger routes is derived from 
the scalar form in Equation [17] where strings of  the form 
z=eu1v1eu2v2 were considered. Extending this string to n events 
z=eu1v1…eunvn yields the number of  n-event rheonomic 
transportation degrees of  freedom ܨܱܦఘ௡ 

1 1

( ) ( ) 1

1
,..., ,...,

[J K ](u , v ) ( , )

[J K ](u , v )
n n

P R n

s s x x x x
u u v v x

s s n n

C u u
 






 

   
 

 

  
 (24) 

This rather cumbersome scalar form based upon single events 
can be simplified by recalling that the product in Equation 
[19] is a square adjacency matrix AR between scleronomic 
transportation degrees of  freedom.  

 AR  JR KR  (25) 
Following the initial introduction to graph theory, where the 
nth power of  an adjacency can be used to calculate the n-step 
paths through a network,  

 DOFn  AR
n1

w2

 ( Es)


w1

 ( Es)

 (w
1
,w

2
)   (26) 

Here, the (n-1) power originates from the differences between 
the traditional formulation of  the transportation network 
graph and that the Axiomatic Design based approach. To fix 
the passenger itineraries specifically from the desired origin y1 
to a desired destination yn., Equation [26] becomes  

 DOFn  ARy1
AR

n3ARy2
 

w2

 ( Es)


w1

 ( Es)

 (w
1
,w

2
)   (27) 

where  

 
ARy1

 [JS KSy1
]V[JS KS]VT  KR

ARy2
 [JS KS]V[JS KSy2

]VT  KR

  (28) 

In this section, passengers were modeled in terms of  
sequences, which allowed for the enumeration of  their 
itineraries in a measure called passenger degree of  freedom. 
All measures continued to exhibit the same three common 
elements found in mechanical degrees of  freedom: discrete 
events captured in Axiomatic Design knowledge bases, 
constraint matrices, and a Boolean difference of  these two 
matrices.  

The transportation degrees of  freedom broadly measure 
"reconfiguration potential". The scleronomic transportation 
degree of  freedom measures provide a quantitative 
description of  which transportation capabilities exist in the 
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system and potentially how they can be changed. 
Mathematically, it can be described as a reconfiguration 

process R : 

 
' '( , ) ( , )S S S SJ K J KR           (29) 

The rheonomic transportation degree of  freedom 
measures provide a quantitative description of  how 
transportation capabilities can be combined into sequences. In 
either case, these measures describe the impact of  the desired 
set of  reconfigurations on the system capabilities. 
Mathematically, it can be described by the transformation: 

R(J
R
, K

R
) (J

R
' , K

R
' )           (30) 

While the Axiomatic Design approach to the calculation 
is admittedly more complex than the traditional graph 
theoretic method, the Axiomatic Design approach explicitly 
represents the transportation system knowledge base and 
constraint matrices. Therefore, these matrices can be readily 
decomposed and incorporated into design processes 
specifically aimed to achieve system resilience and 
reconfigurability. Furthermore, active control solutions can be 
developed to evolve these matrices in the operational time 
scale. 

5 ILLUSTRATIVE EXAMPLE: MEXICO CITY 
PUBLIC TRANSPORTATION SYSTEM 

To demonstrate the application of  the passenger DOF 
measures, the Mexico City Public Transportation System is 
taken as an illustrative example. This system is one of  the 
largest of  its kind in the world and includes various modes of  
transportation, such as light rail, the bus network, the Metro 
and Metrobus. It serves a population of  approximately 25 
million and has over 300 stations [Hewlett Foundation, 2012].  

For the purpose of  this example, the system boundary is 
narrowed down to a few square blocks around the City Center 
(Centro), which is considered the exact geographic center and 
hub of  activity of  most typical Mexican cities. This is done for 
two reasons: first, to simplify the analysis and ensure a better 
understanding of  the developed degree of  freedom measures; 
and second, because the DOF approach for reconfigurable 
transportation system development is extensible to systems of  
any size.  

The system has a total of  9 public transportation system 
stations that fall within the defined system boundary (B). 
These include stops along Metro and Metrobus lines, 
excluding other modes of  public transportation available in 
the city such as buses (no longer running in the city center) 
and light rail (mostly used to serve outlying areas to the north 
and south of  the city that are not covered by other 
transportation modes). There are 2 considered modes of  
transport (H), the Metro and Metrobus, and 49 transportation 
processes. 

The knowledge base for the system being analyzed is an 
81ൈ2 binary matrix JS on a 1-hour time scale, where the rows 
represent possible transportation processes between stations 
and the columns represent the transportation resources (or 
modes: Metro and Metrobus). By definition, the 
transportation process is valid (1) if  there exists at least one 
resource that can do the process within the allotted timeframe. 

Its corresponding constraints matrix, KS, is calculated from 
Equations 6 and 7.  

A DOFS of  56 represents the number of  transportation 
processes that are possible within the 1-hour time scale with 
the two resources provided. ܨܱܦఘ is the number of  sequences 
of  two processes that are possible in the same system. Aside 
from these values, it is interesting to note that the sum of  the 
non-zero elements in each column serves as a measure of  the 
flexibility of  the given transportation mode; the sum of  the 
elements in each row provide a measure of  redundancy. 

6 DISCUSSION: RECONFIGURABILITY 
APPLICATIONS IN TRANSPORTATION 
SYSTEMS 

Axiomatic Design has proven a powerful tool to measure 
transportation degrees of  freedom as a measure of  
reconfiguration potential. This section discusses three classes 
of  applications for these developments: reconfigurable 
operations, reconfigurable planning, and reconfigurability 
valuation.  

6.1 RECONFIGURABLE OPERATIONS 
The concept of  transportation degrees of  freedom can 

be applied to achieve reconfigurable transportation system 
operations when the knowledge base and constraint matrices 
are taken over a short but regular time interval i.e. one hour. 
In such a case, a reconfiguration process can be said to occur 
from one hour to the next. For example, not all bus and metro 
lines are in service at all times in the day. Their periods of  
non-operation can be captured within the constraints matrix.  

These observations suggest that there exist many types 
of  constraints that limit the reconfiguration potential of  the 
transportation system. One can easily conceive code that 
pushes trains without choice down a dedicated line. The 
resulting transportation system language would be ܮ ൌ
݁஗ଵ୰ଵ݁஗ଶ୰ଵ݁஗ଷ୰ଵ when it could have been written to support 
the language ܮ ൌ ஖நଵݖ

∗ . In essence, railway operators that 
engage in active real-time switching sequences can be viewed 
as making real-time reconfigurations, or eliminating 
scleronomic and rheonomic constraints all together. Fixed 
public transportation system schedules are another example 
of  inflexible operations. Buses and trains leave at a fixed time 
from a fixed location irrespective of  existing traffic conditions 
or vehicle breakdowns elsewhere in the system. Real-time 
transportation scheduling algorithms represent a key enabling 
technology for reconfigurable operations in the face of  
disturbances and shocks to the system. 

6.2 PLANNING 
The concept of  transportation degrees of  freedom can 

also be applied to long-term planning decisions. In the 
medium term, the schedules generated by transportation 
system operators represent a planning activity of  which 
transportation system resources are going to be used to realize 
which transportation system processes. In the long term, the 
expansion of  a transportation system network represents an 
expansion of  the system knowledge base to include new 
transportation processes (i.e. rows in the knowledge base) and 
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new transportation resources/modes (i.e. columns in the 
knowledge base).  

Returning to the Mexico City system as an example, the 
reader is taken back to the late 1990's, before the Metrobus 
was developed for Mexico City. Back then, typical city buses 
covered the streets of  the downtown area, contributing to 
what was already the most heavily-congested traffic area in the 
city. Even worse, the service was lackluster due to the long trip 
times between locations that were oftentimes reached faster 
on foot rather than by taking a bus. The Metro, known then 
for being crowded to the point of  being uncomfortable and a 
safety hazard, was avoided by many passengers. A decision 
was taken to expand the transportation system. Table 1 shows 
the degrees of  freedom for the system before 2005 (8 
stations) and the same values for the current system (9 
stations, already shown in Section 5). The system flexibility 
and reconfigurability are shown to increase dramatically with 
the introduction of  the Metrobus. Additionally, this new 
transportation mode runs mostly on surface streets on 
dedicated median lanes -which translates to virtually no traffic 
congestion. 

Table 1. Mexico City Public Transportation System 
Degrees of  Freedom. 

Variable Before 2005 After 2005
DOFS 40 56 
DOFρ 228 422 

6.3 THE VALUE OF RECONFIGURABILITY 
The concept of  transportation degrees of  freedom as a 

measure of  reconfiguration potential draws questions about 
the value of  this reconfigurability. To this end, it is important 
to recognize that each transportation degree of  freedom can 
be associated with tangible measures that figure in ROI and 
cost/benefit decisions. In operations, each degree of  freedom 
is associated with a passenger capacity and hence a revenue. 
Alternatively, it can be associated with a time of  execution, 
energy consumption, greenhouse gas emissions, operating 
costs, and externalities. Furthermore, one can measure the 
ease of  a reconfiguration process and value it in terms of  time 
or monetary cost [Farid, 2007]. In such a strategy, it becomes 
possible to value reconfigurability as an operations-stage life 
cycle property. In planning decisions, each degree of  freedom 
can be associated with not just an expected capacity and 
revenue, but also the required investment to make the degree 
of  freedom possible. Similarly, such an approach can be used 
to model future energy consumption and greenhouse gas 
emissions from a perspective of  technical planning rather than 
macroeconomic development.  

7 CONCLUSIONS AND FUTURE WORK 

This paper has developed a set of  system measures called 
passenger degrees of  freedom. The work rests firmly on the 
foundation of  previous work in the field of  reconfigurability 
measurement. Specifically, an analogy between mechanical and 
transportation degrees of  freedom was drawn. The 
application-neutral Axiomatic Design model of  a knowledge 
base of  functional requirements and design parameters was 
contextualized to transportation processes and resources 

[Farid, 2007, 2008; Farid and McFarlane, 2006a] in an intuitive 
fashion. 

The developed passenger degree of  freedom measures 
came in two varieties. The scleronomic degrees of  freedom 
assess available transportation processes irrespective of  
sequence. Second, the rheonomic degrees of  freedom 
describe the independent paths available from one point to 
another. These measures were discussed both practically and 
theoretically. For the former, the measures provided an 
intuitive description of  how the reconfiguration potential of  
the Mexico City public transportation network changed in the 
face of  additional resources. It also represented potential 
reconfigurations in which stations and resources and the 
processes that they realize are added, modified or removed. 
These measures showed that in large flexible systems -such as 
transportation networks -many insights into the system 
structure can be gained if  the allocation of  pairs of  processes 
was considered in relation to pairs of  resources. In such a way, 
the measures gave a thorough understanding of  the potential 
for reconfiguration.  

From a theoretical perspective, the Axiomatic Design 
models have multiple advantages. Each of  the measures 
developed form an absolute scale; thus facilitating 
measurement and quantitative comparison [Ejiogu, 1991; 
Kriz, 1988; Roberts, 1979; Stevens, 1946; Zuse, 1991] 
involving all forms of  statistics including means and 
percentages. The measures provide a high level of  objectivity 
and consistency that may allow them to be a potentially 
expressive tool in the evaluation of  transportation systems. 
Lastly, the measures provide a significant amount of  design 
feedback. Their functional form shows clearly that 
reconfiguration potential can be improved with additional 
resources and processes, and with careful attention to the 
emergence of  system constraints.   

From a modeling point of  view, the Axiomatic Design 
models avoid any needless complicating detail. In a formal 
sense, every element in the knowledge bases is required for 
the associated degree of  freedom measures. In an empirical 
sense, each element corresponds to a physical relationship 
fundamental to the desired reconfiguration.  

In future work, the authors seek to extend the 
development of  passenger degrees of  freedom as part of  a 
systematic approach to reconfigurability measures described 
elsewhere [Farid, 2007, 2008]. The measurement of  
"reconfiguration potential" only addresses half  of  the 
reconfigurability measurement question [Farid, 2008]. Further 
measures of  "reconfiguration ease" are forthcoming [Farid, 
2007, 2008; Farid and McFarlane, 2006b, 2007]. The 
integration of  these two branches of  reconfigurability 
research into more complex measures of  key characteristics 
such as integrability and convertibility also provide a 
challenging avenue of  future work [Farid, 2007]. Finally, all of  
these measures would benefit from their application into 
industrial case studies. 
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