
Proceedings of ICAD2014
The Eighth International Conference on Axiomatic Design

Campus de Caparica – September 24-26, 2014

ICAD-2014-23

 Copyright © 2014 by ICAD2014

ABSTRACT
In recent years, the fields of reconfigurable manufactur-

ing systems, holonic manufacturing systems, and multi-agent
systems have made technological advances to support the
ready reconfiguration of automated manufacturing systems.
While these technological advances have demonstrated robust
operation and been qualitatively successful in achieving
reconfigurability, their ultimate industrial adoption remains
limited. Amongst the barriers to adoption has been the
relative absence of formal and quantitative multi-agent system
design methodologies based upon reconfigurability
measurement. Hence, it is not clear 1.) the degree to which
these designs have achieved their intended level of
reconfigurability 2.) which systems are indeed quantitatively
more reconfigurable and 3.) how these designs may overcome
their design limitations to achieve greater reconfigurability in
subsequent design iterations. To our knowledge, this paper is
the first multi-agent system reference architecture for
reconfigurable manufacturing systems driven by a quantitative
and formal design approach. It is rooted in an established
engineering design methodology called axiomatic design for
large flexible engineering systems and draws upon design
principles distilled from prior works on reconfigurability
measurement. The resulting architecture is written in terms of
the mathematical description used in reconfigurability
measurement which straightforwardly allows instantiation for
system-specific application.

Keywords: multi-agent system, reconfigurability, reconfigura-
ble manufacturing systems, axiomatic design.

1 INTRODUCTION
Manufacturing has become increasingly characterized by

continually evolving and ever more competitive marketplaces.
In order to stay competitive, manufacturing firms have had to
respond with a high variety products of increasingly short
product lifecycle [Mehrabi et al. , 2002; Pine, 1999]. One
particularly pertinent problem is the need to quickly and
incrementally adjust production capacity and capability. To
fulfil the needs of enterprises with extensive automation,
reconfigurable manufacturing systems have been proposed as
a set of possible solutions [Mehrabi et al. , 2000].

Definition 1. Reconfigurable Manufacturing System
[Koren et al. , 1999]: [A System] designed at the outset for
rapid change in structure, as well as in hardware and software

components, in order to quickly adjust production capacity
and functionality within a part family in response to sudden
changes in market or regulatory requirements.

Over the last decade, many technologies and design
approaches have been developed to enable reconfigurability in
manufacturing systems [Dashchenko, 2007; Setchi and Lagos,
2004]. These have included modular machine tools [Heilala
and Voho, 2001; Ho and Ranky, 1995; Landers et al. , 2001;
Shirinzadeh, 2002; Townsend, 2000] and distributed
automation [Brennan and Norrie, 2001; Vyatkin, 2007]
[Lepuschitz et al. , 2011]. Additionally, a wide set of IT-based
paradigms such as Multi-Agent Systems [Leitão, 2009; Leitão
et al. , 2012; Leitão and Restivo, 2006; Ribeiro and Barata,
2013a; b; Shen and Norrie, 1999; Shen et al. , 2003], Holonic
Manufacturing Systems [Babiceanu and Chen, 2006; Ma�ík et
al. , 2002; McFarlane and Bussmann, 2000; 2003], Evolvable
Assembly Systems [Ribeiro et al. , 2010], and Fractal Factories
[Tharumarajah and Wells, 1997] have emerged. They include
a number of notable reference architectures including PROSA
[Van Brussel et al. , 1998], HCBA [Chirn, 2001] and
ADACOR [Leitão and Restivo, 2006]. While these
technological advances have demonstrated robust operation
and been qualitatively successful in achieving reconfigurability,
their ultimate industrial adoption remains limited [Marik and
McFarlane, 2005].

Amongst the barriers to adoption has been the relative
absence of quantitative multi-agent system design
methodologies based upon reconfigurability measurement.
Hence, it is not clear 1.) the degree to which these designs
have achieved their intended level of reconfigurability, 2.)
which systems are indeed quantitatively more reconfigurable
3.) how these designs may overcome their inherent design
limitations to achieve greater reconfigurability in subsequent
design iterations. In short, without a quantitative framework
for assessing the design, potential industrial adopters are
unconvinced by the technology’s validation. Furthermore,
and in addition to reconfigurability measurement, such
methodologies must make a straightforward link between 1.)
high level design principles (e.g. bionic, holonic, fractal) 2.) a
reference architecture that is sufficiently general to apply to
the scope of manufacturing systems it seeks to address 3.) the
associated instantiation as a system-specific architecture 4.)
and a detailed implementation with connected hardware. In
short, even if a potential industrial adopter had confidence in
a prototype implementation, there would be no certain to
scale and transfer the knowledge of the prototype up to full-

AN AXIOMATIC DESIGN OF A MULTI-AGENT RECONFIGURABLE
MANUFACTURING SYSTEM ARCHITECTURE

Amro M. Farid
afarid@masdar.ac.ae, amfarid@mit.edu
Engineering Systems & Management

Masdar Institute of Science & Technology
Abu Dhabi, United Arab Emirates
Mechatronics Research Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

 Luis Ribeiro
luis.ribeiro@liu.se

Division of Manufacturing Engineering
Department of Management & Engineering

Linköping University
Linköping, SE-58183, Sweden

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design
Campus de Caparica – September 24-26, 2014

156 Copyright © 2014 by ICAD2014

scale implementation. Rigorously derived reference
architectures fill this gap because they provide they make all
system-specific implementation simply instantiations of one
design pattern.

This paper provides a multi-agent system reference
architecture for reconfigurable manufacturing systems driven
by a quantitative and formal design approach. In so doing,
this paper makes four specific contributions. First, it roots
itself in an established engineering design methodology:
axiomatic design for large flexible engineering systems.
Second, the architecture's design is directly informed by
design principles distilled from prior works in reconfigurability
measurement. Third, the resulting architecture is written in
terms of the mathematical description used in
reconfigurability measurement – thus facilitating its
implementation. Finally, the reference architecture and its
associated mathematical description straightforwardly address
instantiation for system-specific application. These specific
advantages have yet to be demonstrated in existing reference
architectures such as PROSA [Van Brussel, Wyns, 1998],
HCBA [Chirn, 2001] and ADACOR [Leitão and Restivo,
2006].

The remainder of the paper proceeds as follows. Section
II qualitatively articulates the design strategy and rationale for
the architecture. Section III details the underlying
mathematical description of the architecture. Section IV then
details the architecture's data model implementation. Finally,
Section V brings the work to a conclusion.

This paper restricts its reconfigurability discussion to the
shop-floor activities of discrete-part automated manufacturing
system as defined in Levels 0-3 of ISA-S95 [ISA, 2005] where

Definition 2. Reconfigurability [Farid 2007]: The ability
to add, remove and/or rearrange in a timely and cost-effective
manner the components and functions of a system which can
result in a desired set of alternate configurations; chosen here
to be the addition/removal of new products and resources.

2 ARCHITECTURE DESIGN STRATEGY AND
RATIONALE

The aim of this work is to develop an Axiomatic Design
of a Multi-Agent Reconfigurable Manufacturing System
(ADMARMS) Architecture. To this end, the central goal of
the design is to conceive a multi-agent (control) system
architecture that enables a highly reconfigurable
manufacturing system when it is integrated with its physical
devices. Here, reconfigurability is understood as the principle
life cycle property which enables the desired behaviours
described in the previous section. It is dependent upon the
characteristics of the production’s system structure [Farid,
2007; Farid, 2014b]. That said, Axiomatic Design states
generally [Suh, 2001] and previous works on this subject
[Farid, 2007; Farid, 2014b] have discussed that a well
conceptualized architecture is also a necessary prerequisite for
excellent production system performance. Furthermore, as a
design methodology Axiomatic Design is able to highlight
potential design flaws at an early conceptual stage; well before
final implementation.

The architecture design strategy and rationale is directly
informed by recent work in the reconfigurability measurement
of automated manufacturing systems [Baca et al. , 2013; Farid,

2007; 2008a; Farid, 2008b; Farid, 2013; 2014b; Farid and
Covanich, 2008; Farid and McFarlane, 2008; McFarlane and
Farid, 2007]. These works showed that a high degree of
reconfigurability could be achieved by fostering greater
reconfiguration potential (i.e. the number of possible
configurations of the system) as well as greater reconfiguration
ease (i.e. the effort required to change from one configuration
to another). Therefore, the architecture design strategy and
rationale presented in this section is being described as a set of
qualitative design principles which have been distilled from
these prior works on quantitative reconfigurability
measurement. The design principles for reconfiguration
potential and reconfiguration ease are treated in turn and are
actively used in the discussion of Section III. While a deep
treatment of reconfigurability measurement is not feasible
here, the interested reader is referred to these background
references for the details of the mathematical developments in
this work. The necessary aspects of these mathematical
developments are revisited in Section III.

2.1 DESIGN PRINCIPLES FOR RECONFIGURATION
POTENTIAL

The aspects of reconfigurability measurement related to
reconfiguration potential were founded upon axiomatic design
theory in which reconfigurable manufacturing systems may be
classified as large flexible engineering systems.

Definition 3. Large Flexible Engineering System (LFES)
[Suh, 2001]: an engineering system with many functional
requirements (i.e. production processes) that not only evolve
over time, but also can be fulfilled by one or more design
parameters (i.e. production resources).

Furthermore, according to Axiomatic Design, this
mapping of system processes to system resources requires
adherence to the Independence Axiom.

Axiom 1. The Independence Axiom: Maintain the
independence of the functional requirements [Suh, 2001].

In practice, this means that each functional requirement
(i.e. production process) must be related mathematically to a
design parameter (i.e. production resource). Ultimately, each
match of production process to production resource is
assigned an event (in the discrete-event sense) called a
production degree of freedom [Farid and McFarlane, 2008]
which individually and collectively have a number of
interesting properties:

• Individually, they represent all of the available capabilities
of the physical production system.

• Collectively, they represent the configuration of the
production system.

• Their (countable) number represents the production
system's reconfiguration potential.

• The production of any product can be described as a
sequence of the production degrees of freedom.
In this regard, production degrees of freedom adhere to a

relatively strict analogy to the mechanical degrees of freedom
in a purely mechanical system [Farid and McFarlane, 2008].

Furthermore, it is important to recognize the difference
between the existence and the availability of a production degree
of freedom. The former is the presence of a capability
regardless of whether it is currently functional or not. The
latter addresses the condition of its functionality as a binary

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design

Campus de Caparica – September 24-26, 209

Copyright © 2014 by ICAD2014 157

state. Therefore, the description of shop floor phenomena
such as machine breakdowns may apply sequence-
independent constraints that limit the number of production
DOFs [Farid and McFarlane, 2008]. Additionally, there may
exist sequence-dependent constraints that do the same
between pairs of production degrees of freedom. Sequence-
dependent constraints may arise from a rigidly implemented
supervisory controller; although the relative (physical)
geometry of resources always applies some sequence-
dependent constraints [Farid and McFarlane, 2008].

With this production degree of freedom primer in mind,
a number of design principles are distilled that maximize
reconfiguration potential:

Principle 1. Application of Independence Axiom:
Explicitly describe the agent architecture in terms of the
production system's production degrees of freedom.

Principle 2. Existence: As a decision-making/control
system, the multi-agent system must maintain a 1-to-1
relationship with the set of physical capabilities that exist on
the shop floor.

Principle 3. Heterogeneity: The production degrees of
freedom within the agent architecture must respect the
heterogeneity of capabilities found within the shop-floor be
they various types of transformation, transportation or storage
processes.

Principle 4. Physical Aggregation: The agent
architecture must reflect the physical aggregation of the
objects that they represent.

Principle 5. Availability: The agent architecture must
explicitly model the potential for sequence independent
constraints that impede the availability of any given production
degree of freedom.

Principle 6. Interaction: The agent architecture must
contain agent interactions along the minimal set of physical
sequence-dependent constraints.

Principle 7. Maximum Reconfiguration Potential: Aside
from the minimal set of physical sequence-dependent
constraints, the agent architecture should avoid introducing
any further agent interactions (which may impose further
constraints).

Because the production of the entire production line can
be described as sequences of individual production degrees of
freedom, it is logical to describe the agents in terms of these
same production degrees of freedom (Principle 1). In that
regard, production degrees of freedom are the quantitative
equivalent of agent semantic ontologies. The production
degrees of freedom must also be necessary and sufficient;
neither overstating nor understating the production system's
capabilities (Principles 2 and 3). The agents must also have a
level of aggregation that mimics that of the physical entities
that they represent (Principle 4). Next, the agent architecture
must distinguish between the existence and availability of its
capabilities (Principle 5). The existence of sequence-
dependent constraints on the physical shop floor suggests for
the need for the same amongst the agents (Principle 6). For
example, a material handling process must end where another
material handling process begins. Finally, adding agent
interactions beyond the ones on the physical shop floor is
likely to introduce unnecessary constraints (Principle 7).

2.2 DESIGN PRINCIPLES FOR RECONFIGURATION
EASE

The aspects of reconfigurability measurement related to
reconfiguration ease were founded upon the use of the
production design structure matrix [Farid, 2008a; McFarlane
and Farid, 2007]. It encourages the design of maximally
cohesive and minimally coupled modules within the
production system. To that end, three more design principles
are added for reconfiguration ease.

Principle 8. Physical Agents: Align agents' scope and
boundaries with their corresponding physical resources and
their associated production degrees of freedom.

Principle 9. Encapsulation: Production system
information should be placed in the agent corresponding to
the physical entity that it describes.

Principle 10. Reconfiguration Method: The same
reconfiguration process can require significantly different
effort (measured in time, cost, or energy) depending on the
method used to conduct the reconfiguration (and not just the
reconfigured resources).

Principle 8 ensures that when a reconfiguration process
occurs (i.e. addition, modification or removal of a production
degree freedom), it does so simultaneously on the physical
resource as well as on the corresponding agent. Previous
reconfigurability measurement work has shown that in many
cases misaligned informatic entities such as centralized
controllers lead to greater coupling of production degrees of
freedom [Farid, 2008a]; thus hindering reconfiguration ease.
Principle 9 recognizes that information is more often used
locally rather than remotely and thus encourages greater
encapsulation and modularity. Principle 7 also serves to
support the modularity of the production system agents.
Finally, Principle 10 accounts for the potential for
reconfiguration processes to be conducted manually or
automatically.

3 MATHEMATICAL DESCRIPTION OF THE
ARCHITECTURE

On the basis of the design principles described in the
previous section, the Axiomatic Design Multi-Agent
Reconfigurable Manufacturing System (ADMARMS)
architecture is developed and is shown in Figure 1. It's high
level structure is now discussed in terms of the mathematical
treatment found in the reconfigurability measurement of
automated manufacturing systems [Baca, Farid, 2013; Farid,
2007; 2008a; Farid, 2008b; Farid, 2013; Farid and Covanich,
2008; Farid and McFarlane, 2008; McFarlane and Farid, 2007].

3.1 PRODUCTION SYSTEM KNOWLEDGE BASE
The production system knowledge base is the key matrix

for describing a system's production degrees of freedom. Its
usage is a mathematically explicit adherence to Principle 1.

Definition 4. Production System Knowledge Base [Farid
and McFarlane, 2008]: A binary matrix JS of size σ(P)xσ(R)
whose elements JS(w,v)∈{0,1} are equal to one when event ewv
exists as a production process pw being executed by a resource
rv..

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design
Campus de Caparica – September 24-26, 2014

158 Copyright © 2014 by ICAD2014

Figure 1. ADMARMS Architecture & Data Model

By Principle 2, these physical resources have their
informatic counterpart in the resource agent (RA). It is
decomposed into itself to allow a production system to be
divided into a physical hierarchy of departments and cells
(Principle 4).

Resource agents are further classified into transformer
agents (TFA) M, storage agents (SA) B, and transporter agents
(TPA) H to differentiate between the inherently different
types of production resources. R=M∪B∪H. The first is often
considered “value-adding” while the other two are often
intentionally minimized. The architecture also recognizes that
the transformation and storage resources and their respective
agents may be grouped into a set of buffer resources and their
respective agents (BA); locations in which products remain
stationary (Principle 3). BS=M∪B [Farid and McFarlane, 2008].

While the resource agent effectively describes the system
form, the production process agent (PPA) effectively
describes the system function. While it is common that
physical resources have their associated agents, a novel aspect
of the ADMARMS architecture is the decision to assign
agents to each production process. They act as component
slaves of their resource agent masters. This serves to
emphasize the distinction between the form of physical
resources and the (potentially variable) set of behavioural
production processes they can perform.

As with resource agents, the production process agents
must be classified to account for the different types of
activities on the shop floor (Principle 3). These include the

entry and exit processes agents (ENPA and EXPA) for
crossing the system boundary and transformation processes
(TFPA) for value-adding processes [Farid, 2014a].
Mathematically, they have often been lumped into a single set
of production processes Pμ. Transportation process agents
(TPPA) Pη are defined between individual buffers.
σ(Pη)=σ2(BS) where σ() gives the size of a set. Notice that the
only resource-agent-to-resource-agent interaction occurs here
because a transporter agent needs to know the identity of the
origin and destination buffers. Holding process agents (HPA)
Pγ account for the ability to fixture/hold a product during
storage or transportation.

The overall production system knowledge base JS can
then be reconstructed straightforwardly. The transformation
system knowledge base JM relates Pμ to M. The transportation
system knowledge base JH relates Pη to R=M∪B∪H. M and B
are included here to account for their “null-transportation” or
storage processes where no motion occurs. The holding
system knowledge base Jγ relates Pγ to R. Then JS becomes
[Farid, 2013; Farid and McFarlane, 2008]

JS =
JM | 0

JH

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1)

where [Farid, 2013]

JH = Jγ ⊗1σ (Pη)⎡⎣ ⎤⎦ ⋅ 1σ (Pγ) ⊗ JH⎡⎣ ⎤⎦ (2)

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design

Campus de Caparica – September 24-26, 209

Copyright © 2014 by ICAD2014 159

and is the kronecker product and 1n is a column ones
vector of length n.

3.2 PRODUCTION SYSTEM SCLERONOMIC
CONSTRAINTS MATRIX

Each of the resource and process agents (and their
specific types) can potentially be unavailable due a physical
fault or some rigidity in the control system (Principle 5). To
account for this, the agents have an “on-off” status. These are
described mathematically in the production system
scleronomic (i.e. sequence-independent) constraints matrix.

Definition 5. Production System Scleronomic
Constraints Matrix [Farid and McFarlane, 2008]: A binary
matrix KS of size σ(P)xσ(R) whose element KS(w,v) ∈{0,1} is
equal to one when a constraint eliminates event ewv from the
event set.

It is calculated analogously to the production system
knowledge base [Farid, 2013; Farid and McFarlane, 2008]:

KS =
KM | 1

KH

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (3)

where [Farid, 2013]

KH = Kγ ⊗1σ (Pη)⎡⎣ ⎤⎦ ⋅ 1σ (Pγ) ⊗KH⎡⎣ ⎤⎦ (4)

From these definitions of JS and KS, follows the definition

of sequence-independent production degrees of freedom.
Definition 6. Sequence-Independent Production

Degrees of Freedom [Farid and McFarlane, 2008]: The set of
independent production events ES that completely defines the
available production processes in a production system. Their
number is given by:

DOFS =σ (ES) = JS KS[]

v

σ (R)

∑
w

σ (P)

∑ (w,v) (5)

where the A B operation is boolean subtraction.

3.3 PRODUCTION SYSTEM RHEONOMIC
CONSTRAINTS MATRIX

Once the individual agents have been defined around
production system degrees of freedom, the design of the
architecture turns to defining the resource-agent-to-resource-
agent interactions. In that regard and as mentioned
previously, the only such interaction occurs because
transporter agents need to know the identity of the origin and
destination buffers (Principle 6). These minimal interactions
are reflected in the production system rheonomic constraints
matrix.

Definition 7. Rheonomic Production Constraints Matrix
Kρ [Farid, 2013; Viswanath et al. , 2013]: a square binary
constraints matrix of size σ(P)σ(R)xσ(P)σ(R) whose elements
Kρ (ϕ1,ψ1)∈{0,1} are equal to one when string zϕ1ψ2 = ew1v1ew2v2
is eliminated and where ψ=σ(P)(v-1)+w.

Previous work has shown that Kρ must be non-zero so as
to account for basic rules of continuity; the destination of one
production degree of freedom must occur at the same
location as the origin of a subsequent one [Farid, 2013; Farid
and McFarlane, 2008]. This includes transformation degrees

of freedom which explicitly state where the corresponding
transformation process must occur. Aside from these
minimal constraints, the architecture does not introduce any
other resource-agent-to-resource-agent interactions on the
resource side (Principle 7).

3.4 PRODUCTION MODEL
The design of the ADMARMS architecture then includes

product agents (PA) as the informatic counterpart of the
physical products (Principle 2). A product agent maybe
decomposed into itself to allow a physical hierarchy of
subassembly and component products (Principle 4). It is also
important to note that the product agent must have some
awareness of how it should be produced. This has been
achieved previously with a product net.

Definition 8. Product Net [Farid, 2008b; McFarlane and
Farid, 2007]:

Given product li, it may be described as:
Nli={Sli, Eli, Fli} (6)

where Nl is the product net, Sl is the set of product places, Eli
is a set of product events, and Fl is set of product flow
relations.

Definition 9. Product Event [Farid, 2008b]: A specific
transformation process that may be applied to a given
product.

In addition to the events, places and flow relations all
have physical meaning. Each of the places represents a
product or component at a raw, work-in-progress, or final
stage of production. Finally, the flow relations describe which
products or components receive which product events.

The presence of an instantiated product agent in the
production system is achieved by the entry and exit process
agents found within a given storage agent (Principle 5).

3.5 PRODUCT FEASIBILITY MATRICES
Once the individual product agents have been defined,

the design of the architecture turns to defining the product-
agent-to-resource-agent interactions. These are absolutely
necessary operator-to-operand relations (Principle 6). The
relationship between product events to transformation
degrees of freedom is achieved with the product transfor-
mation feasibility matrix.

Definition 10. Product Transformation Feasibility Matrix
Λμi [Farid, 2008b; Farid, 2013]: A binary matrix of size
σ(Eli)xσ(Pμ) whose value Λμi(x,j) = 1 if exli realizes transfor-
mation process pμj.

The relationship between products and the required
holding/transportation processes is similarly defined.

Definition 10. Product Transportation Feasibility Matrix
Λγ i [Farid, 2008b; Farid, 2013]: A binary row vector of size
1xσ(Pγ) whose value Λγi(g) = 1 if product li can be held by
holding process pγ g.

3.6 PRODUCTION DESIGN STRUCTURE MATRIX
The subsections above collectively address the

reconfiguration potential of the production system and so the
attention now turns to reconfiguration ease. In that regard,
the production system design structure matrix (PDSM) shown
in Figures 2 &3 [Farid, 2008a] has been previously used for
measurement. It captures the physical, energy, and informatic

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design
Campus de Caparica – September 24-26, 2014

160 Copyright © 2014 by ICAD2014

couplings between production system entities. While the
PDSM is highly sparse, it does have heavy coupling on both
sides of the main diagonal[Farid, 2008a]. As a result, this
paper advocates heuristic-based approaches to usage rather
than optimization. The latter being extremely computationally
intensive (e.g. NP-hard job-shop NP-hard scheduling
problems.)

Figure 2. Production System Design Structure Matrix

Figure 3. Production System Design Structure Matrix

(with centralized controllers)

In the case of multi-agent systems in production systems,
the scope of each agent aligns with the underlying production
system resource or product (Principle 8). In such a case, the
coupling between production degrees of freedom can be
minimized. In contrast, centralized controllers introduce new
blocks to the production system design matrix which appear
as off-diagonal coupling between resources and their
associated production degrees of freedom. As this
architecture is developed to include the specific behaviours of
agent-to-agent interactions and negotiations, care will be taken
to demonstrate that each agent is maximally cohesive and
minimally coupled (Principle 9).

3.7 RECONFIGURATION PROCESSES
The final element of the ADMARMS architecture is to

specify the method of conducting reconfiguration processes
(Principle 10). In that regard, the reconfiguration agent (RCA)
is an automatic way of changing the production degrees of
freedom of a given resource agent. Mathematically, it is
responsible for conducting the reconfiguration process [Farid
and Covanich, 2008; Farid and McFarlane, 2008]:

 (7)
Examples of reconfiguration agents are automatic tool

changers (change of transformation degree of freedom),
automatic fixture changers (change of holding degree of
freedom) and conveyor gates (change of transportation degree
of freedom).

4 ARCHITECTURE DATA MODEL
IMPLEMENTATION

As shown in Figure 1, the previous section provided a
high level mathematical description of the ADMARMS so as
to identify its member agents. This section now discusses the
contents of these agents from an implementation point of
view. It is understood that these agents would be
implemented in a multi-threaded programming language such
as JAVA and adhere to the latest multi-agent standard
platforms (e.g. FIPA, JADE) [Bellifemine et al. , 2007].

4.1 RESOURCE AGENT (RA)
The RA is an abstraction for all the potential manufactur-

ing entities in the system. It encapsulates the common features
of the specialized classes. Its parameters are described as
follows:
-resourceType : int - a type that identifies the implementa-
tion class.
-resourceID : String - a unique identifier in the form of a
serial number.
-location : pair<int,int> - a coordinate to keep track of its
location.
-negotiationBehaviour : Behaviour - a negotiation behavior
to mediate the interaction between the RA and a PA.
-commitments : Product Agent [0..*] - a list of commit-
ments to various production agents.
-hal : hardwareAbstractionLayer - a hardware abstraction
layer (HAL) that mediates low-level execution.
-selfManagementBehaviour : Behaviour - a persistent be-
havior that generically allows for self-management.
-resourceState : int - a state of the resource linked to its
availability in the scleronomic constraints matrix.
-processes : Production Process Agent [0..*] - a list of
production process agents that are associated with resource
agent.
-subordinates : ResourceAgent [0..*] - a list of resources
that are under the control of a specific resource in a master-
slave relation.
Additionally, the resource agent has a single method:
manage() : int - an abstract management method invoked
by the selfManagementBehavior parameter that monitors
and updates the resource state.

Furthermore, the commitment parameter gives a
measurement of the anticipated load on a resource and is
fundamental to robust system operation when making further
negotiations. It is necessarily updated after each successful
execution of a production process. Also, the HAL serves as a
generic interface that enables resources of the same type to
operate similar physical devices regardless of the specific low-
level implementation details. Therefore, the HAL decouples
the agent environment from controller specific implementa-
tions [Ribeiro and Barata, 2013a].

4.2 SPECIALIZATIONS OF THE RA
As shown in Figure 1, the RA is specialized as a BA,

TFA, SA and a TPA. These are discussed in turn.

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design

Campus de Caparica – September 24-26, 209

Copyright © 2014 by ICAD2014 161

4.2.1 BUFFER AGENT (BA)
The BA is a specialized resource that denotes a resource

with the ability of storing PAs. It has a single additional
parameter:
-capacity : int - a finite capacity of PAs.

The TFA and SA stand as specializations of the BA.

4.2.2 TRANSFORMER AGENT (TFA)
The transformer agent abstracts shop-floor entities with

transformation capabilities and therefore hosts both trans-
forming and holding process agents (inherited from the BA).
It has a single additional parameter.
-transformerType : int - a parameter that identifies the
various types TFAs be they assembly, additive and subtractive
in nature.

4.2.3 STORAGE AGENT (SA)
The Storage Agent is the implementation of the buffer

concept. It is responsible for the storage, introduction, and
removal of a PA within, into and from the system. Subse-
quently, it hosts the corresponding production processes. It
also has a single additional parameter:
-storageType : int - a parameter that identifies the various
types of SAs be they passive or active.

4.3 TRANSPORTER AGENT (TA)
The TA is responsible for moving a PA between buffer

agents. Consequently, it has two parameters:
-origin : BufferAgent - the identity of the origin BA.
-destination : BufferAgent - the identity of the destination
BA.

It hosts transportation process and holding process
agents as it executes the motion between these buffers.

4.4 PRODUCTION PROCESS AGENT (PPA) AND ITS
SPECIALIZATIONS

The PPA abstracts the different production processes
hosted by the system's resources. It has the following
parameters:
-processID : String - a unique identifier that identifies the
process and its instance.
-processType : int - a type that defines the specialized class
to which the PPA belongs.
-processState : int - a state of the PPA linked to its
availability in the scleronomic constraints matrix.
-selfManagementBehaviour : Behaviour - a persistent
behavior that generically allows for self-management.

Additionally, a production process has a single method:
manage() : int - a management method invoked by the
selfManagementBehaviour.

This method, whose implementation must be provided
by the specializing classes, is responsible for updating the state
of the PPA and embodies the PPA's proactive behavior
towards the emergence of constraints.

The PPA class has five specializations: the transformation
process agent (TFPA), the transportation process agent
(TPPA), the holding process agent (HPA), the entry process
agent (EPA) and the exit process agent (EXPA). Collectively
PPAs, Resource Agents and their associated specializations
define the production system knowledge base.

4.4.1 TRANSPORTATION PROCESS AGENT (TPA)
The TPPA has a single method that is hosted by the

TPA:
-transport() : void - a method responsible for executing the
displacement of parts between buffers.

4.4.2 TRANSFORMATION PROCESS AGENT (TFPA)
The TFPA has a single method that is hosted by the

TFA:
-transform(parameters : objective) : void - a method
responsible for the transformation of a part.

TFPAs execute differently depending on their parameter-
ization to accommodate the distinct transformation require-
ments.

4.4.3 HOLDING PROCESS AGENT (HPA)
The HPA has two parameters that relate to the product

agent:
-holdable : product agent [1..*] - a parameter to define
which parts can be held.
-orientation : int - a parameter to define the orientation of
that part.
In addition, the holding process agent has two methods:
hold() : void - a method to allow the PA to be held.
release() : void - a method to allow the PA to be released.

The HPA is hosted conjointly with either a TFPA or a
TPPA by a TFA or TPA respectively.

4.4.4 ENTRY & EXIT PROCESS AGENTS (ENPA &
EFPA)

The ENPA and the EXPA create and destroy product
agents with their respective methods.
-createProductAgent(product : Product Agent) : void -
allows for a new order to spawn a new product agent.
-destroyProductAgent(product : Product Agent) - allows
a completed product to be registered as a fulfilled order.

4.5 PRODUCT AGENT (PA)
The PA abstracts each active product under production

in the system and has the following parameters:
-productID : String - a serial number as a string.
-location : pair<int,int> - a location coordinate.
-executionState : int - a state variable that captures the
condition of the overall process.
-subordinates : Product Agent [0..*] - a list that is used
when the PA has subordinate PAs. From a structural point of
view, each product may be composed of other subordinated
products. This composition models sub-assemblies and
component parts.
-parent : Product Agent - a string that is used when the PA
is subordinate to another PA. This string mirrors the
composition relationship with the aggregation relationship.
Parent product agents can proceed to complete their product
events only after the completion of the subordinate PA's
product events.
-productionProcessDescription : product net - captures
the flow of product events. Its hierarchical decomposition
encourages a similar decomposition of the resulting product
nets hence creating different views, with levels of abstraction,
over the entire set of product events that define the

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design
Campus de Caparica – September 24-26, 2014

162 Copyright © 2014 by ICAD2014

production of a product. Each PA establishes an identity with
a final form of an assembly, sub-assembly, part or material.

The autonomy of the PA is defined by its main persistent
behaviour:
-selfProduceBehaviour : Behaviour - a behaviour that
controls the production process of the PA. It has two main
phases: configuration and runtime.

The configuration phase is responsible for initialization
routines, evaluation and instantiation of the PA's production
process. These are carried out by different methods:
-spawn() : void - a method that spawns all the PA's
subordinates.
-instantiateProductionSequence() : void - a method that
evaluates and instantiates the production process description
and subsequently populates the product net's associated
production processes.
-productionProcess : product net - a net that stores the
association between product events and production processes.
It provides the required information to devise the path
connecting all the resources allocated in this process.
-negotiationBehaviour : Behaviour - a behaviour that
encapsulates the communication and negotiation logic
between the PA and the system's resources. It is activated in
the configuration phase to ensure the initial association of
processes and resources and later, in runtime, as a response to
disturbances.

The runtime phase controls and monitors the production
process and disturbances. These actions are implemented in
the execute method.
-execute() : void - this method implements a supervisory
state machine that governs: resource activation, agent
unification/termination and re-negotiation. It describes all the
PA to PA and PA to RA interaction logic. This state machine
is therefore supported by three methods:
-unify() : void - a method that signals the parent PA that this
subordinate PA has successfully terminated its process and the
resulting sub-product can be integrated in the parent's
process.
-fail() : void - a method that signals the parent PA that this
subordinate has encountered an unrecoverable fault and
cannot be integrated in the parent's process.
-terminate() : void - a method that removes a subordinate
PA from the system in a clean way or removes the top level
PA at a resource hosting an exit process agent.

4.6 RECONFIGURATION AGENT (RCA)
The RCA's behaviour is mainly defined by one function:

-Reconfigure(resource : Resource) : void - reconfigures
the process agents in a specific resource and ensures that the
instantiation of new process is conflict free.

The reconfiguration occurs on request from a RA and
through a negotiation procedure whereby the RA asks the
RCA to enable new processes or re-parameterize existing
ones. The RCA will then assess the availability and potential
reconfiguration conflicts on the desired processes and
reconfigure the RA accordingly.

5 CONCLUSION
To our knowledge, this paper is the first multi-agent

system reference architecture for reconfigurable manufactur-

ing systems driven by a quantitative and formal design
approach. This is in contrast to existing reference architec-
tures (e.g. PROSA, HCBA, ADACOR) which were
qualitatively developed on the basis of experienced design
intuition. The ADMARMS architecture is rooted in an
established engineering design methodology called axiomatic
design for large flexible engineering systems and draws upon
design principles distilled from prior works on reconfigurabil-
ity measurement. The resulting architecture is written in
terms of the mathematical description used in
reconfigurability measurement which straightforwardly allows
instantiation for system-specific application. Future work will
seek to 1.) implement this architecture in virtual and hardware
testbeds and measure the consequent reconfigurability and 2.)
benchmark this reference architecture with respect to the
existing alternatives.

6 REFERENCES
[1] Babiceanu RF, Chen FF. Development and applications

of holonic manufacturing systems: a survey. Journal of
Intelligent Manufacturing. 2006;17:111-31.

[2] Baca EES, Farid AM, Tsai I-T. An Axiomatic Design
Approach to Passenger Itinerary Enumeration in
Reconfigurable Transportation Systems. Proceedings of
ICAD2013 The Seventh International Conference on
Axiomatic Design2013. p. 8.

[3] Bellifemine FL, Caire G, Greenwood D. Developing
multi-agent systems with JADE: John Wiley & Sons;
2007.

[4] Brennan RW, Norrie DH. Agents, holons and function
blocks: distributed intelligent control in manufacturing.
Journal of Applied Systems Studies. 2001;2:1-19.

[5] Chirn J-L. Developing a reconfigurable manufacturing
control system: a holonic component-based approach:
University of Cambridge; 2001.

[6] Dashchenko AI. Reconfigurable manufacturing systems
and transformable factories: Springer; 2007.

[7] Farid A. Reconfigurability measurement in automated
manufacturing systems. University of Cambridge,
Cambridge. 2007.

[8] Farid A. Facilitating ease of system reconfiguration
through measures of manufacturing modularity.
Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture.
2008a;222:1275-88.

[9] Farid A. Product Degrees of Freedom as Manufacturing
System Reconfiguration Potential Measures.
International Transactions on System Science and
Applications. 2008b;4:227-42.

[10] Farid A. Static Resilience of Large Flexible Engineering
Systems : Part I - Axiomatic Design Model. 4th
International Engineering Systems Symposium2014a.

[11] Farid AM. An Axiomatic Design Approach to
Production Path Enumeration in Reconfigurable
Manufacturing Systems. Systems, Man, and Cybernetics
(SMC), 2013 IEEE International Conference on: IEEE;
2013. p. 3862-9.

[12] Farid AM. Axiomatic Design & Design Structure Matrix
Measures for Reconfigurability & Its Key Charactersitics
in Automated Manufacturing Systems. International

An Axiomatic Design of a Multi-Agent Reconfigurable Manufacturing System Architecture
The Eighth International Conference on Axiomatic Design

Campus de Caparica – September 24-26, 209

Copyright © 2014 by ICAD2014 163

Conference on Axiomatic Design. Caparica, Portugal
2014b. p. 1-8.

[13] Farid AM, Covanich W. Measuring the effort of a
reconfiguration process. Emerging Technologies and
Factory Automation, 2008 ETFA 2008 IEEE
International Conference on: IEEE; 2008. p. 1137-44.

[14] Farid AM, McFarlane D. Production degrees of freedom
as manufacturing system reconfiguration potential
measures. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture.
2008;222:1301-14.

[15] Heilala J, Voho P. Modular reconfigurable flexible final
assembly systems. Assembly Automation. 2001;21:20-30.

[16] Ho JK, Ranky PG. An object-oriented and flexible
material handling system. Assembly automation.
1995;15:15-20.

[17] ISA. Enterprise Control System Integration Part 3:
Activity Models of Manufacturing Operations
Management. Tech. Rep.2005.

[18] Koren Y, Heisel U, Jovane F, Moriwaki T, Pritschow G,
Ulsoy G, et al. Reconfigurable manufacturing systems.
CIRP Annals-Manufacturing Technology. 1999;48:527-
40.

[19] Landers RG, Min B-K, Koren Y. Reconfigurable
machine tools. CIRP Annals-Manufacturing Technology.
2001;50:269-74.

[20] Leitão P. Agent-based distributed manufacturing
control: A state-of-the-art survey. Engineering
Applications of Artificial Intelligence. 2009;22:979-91.

[21] Leitão P, Barbosa J, Trentesaux D. Bio-inspired multi-
agent systems for reconfigurable manufacturing systems.
Engineering Applications of Artificial Intelligence.
2012;25:934-44.

[22] Leitão P, Restivo F. ADACOR: A holonic architecture
for agile and adaptive manufacturing control. Computers
in industry. 2006;57:121-30.

[23] Lepuschitz W, Zoitl A, Vallée M, Merdan M. Toward
self-reconfiguration of manufacturing systems using
automation agents. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on.
2011;41:52-69.

[24] Marík V, Fletcher M, Pechoucek M. Holons & agents:
Recent developments and mutual impacts. Multi-Agent
Systems and Applications II: Springer; 2002. p. 233-67.

[25] Marik V, McFarlane D. Industrial adoption of agent-
based technologies. IEEE Intelligent Systems.
2005;20:27-35.

[26] McFarlane D, Farid A. A design structure matrix based
method for reconfigurability measurement of distributed
manufacturing systems. International Journal of
Intelligent Control and Systems. 2007;12:118-29.

[27] McFarlane DC, Bussmann S. Developments in holonic
production planning and control. Production Planning &
Control. 2000;11:522-36.

[28] McFarlane DC, Bussmann S. Holonic manufacturing
control: Rationales, developments and open issues.
Agent-based manufacturing: Springer; 2003. p. 303-26.

[29] Mehrabi MG, Ulsoy AG, Koren Y. Reconfigurable
manufacturing systems and their enabling technologies.
International Journal of Manufacturing Technology and
Management. 2000;1:114-31.

[30] Mehrabi MG, Ulsoy AG, Koren Y, Heytler P. Trends
and perspectives in flexible and reconfigurable
manufacturing systems. Journal of Intelligent
manufacturing. 2002;13:135-46.

[31] Pine BJ. Mass customization: the new frontier in
business competition: Harvard Business Press; 1999.

[32] Ribeiro L, Barata J. Deployment of Multiagent
Mechatronic Systems. Industrial Applications of
Holonic and Multi-Agent Systems: Springer; 2013a. p.
71-82.

[33] Ribeiro L, Barata J. Self-organizing multiagent
mechatronic systems in perspective. Industrial
Informatics (INDIN), 2013 11th IEEE International
Conference on: IEEE; 2013b. p. 392-7.

[34] Ribeiro L, Barata J, Cândido G, Onori M. Evolvable
production systems: an integrated view on recent
developments. Proceedings of the 6th CIRP-Sponsored
International Conference on Digital Enterprise
Technology: Springer; 2010. p. 841-54.

[35] Setchi RM, Lagos N. Reconfigurability and
reconfigurable manufacturing systems: state-of-the-art
review. Industrial Informatics, 2004 INDIN'04 2004
2nd IEEE International Conference on: IEEE; 2004. p.
529-35.

[36] Shen W, Norrie DH. Agent-based systems for intelligent
manufacturing: a state-of-the-art survey. Knowledge and
information systems. 1999;1:129-56.

[37] Shen W, Norrie DH, Barthès J-P. Multi-agent systems
for concurrent intelligent design and manufacturing:
CRC press; 2003.

[38] Shirinzadeh B. Flexible fixturing for workpiece
positioning and constraining. Assembly Automation.
2002;22:112-20.

[39] Suh NP. Axiomatic Design: Advances and Applications
(The Oxford Series on Advanced Manufacturing). 2001.

[40] Tharumarajah A, Wells A. A behavior-based approach to
scheduling in distributed manufacturing systems.
Integrated Computer-Aided Engineering. 1997;4:235-49.

[41] Townsend W. The BarrettHand grasper–programmably
flexible part handling and assembly. Industrial Robot:
An International Journal. 2000;27:181-8.

[42] Van Brussel H, Wyns J, Valckenaers P, Bongaerts L,
Peeters P. Reference architecture for holonic
manufacturing systems: PROSA. Computers in industry.
1998;37:255-74.

[43] Viswanath A, Baca EES, Farid AM. An Axiomatic
Design Approach to Passenger Itinerary Enumeration in
Reconfigurable Transportation Systems. 2013.

[44] Vyatkin V. IEC 61499 function blocks for embedded
and distributed control systems design: ISA-Instrumen-
tation, Systems, and Automation Society; 2007.

