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ABSTRACT 
The Axiomatic Design theory allows finding the right 

solutions in order to respond to functional needs of a product. 
Adopting the best solution is important in order to avoid a 
non-optimal design that can result in losses of time and 
money. 

Axiomatic Design theory (or simpler AD theory) may 
concern not just the design of a product but it can also deal 
with defining processes or tools. 

The usage of the most efficient and effective tools is a 
more and more important issue in engineering activities in 
order to achieve results with short times and optimized 
resources and funds. From this point of view the Axiomatic 
Design theory can be used in order to select the proper 
calculation method that permits to achieve these goals. 
Pressure vessels are quite common parts in several machines 
or plants, usually they present round bottoms but sometimes a 
flat bottom is required to minimize their sizes. 

The scope of this paper is to introduce an optimized AD 
calculation method in order to perform structural analysis of a 
pressure vessel with a lower planeside and several reinforce-
ments. 

Two methods may be used to solve the structural issue. 
They will be introduced in the following passages. Their 
design matrices, according with the first axiom, will be found 
and on the basis of these matrices a comparison between 
these approaches will be carried out. 

Keywords: Stress and strain evaluation, pressure vessel, 
energy method, reinforced flat bottom. 

1 INTRODUCTION 
Choosing the best solution, according to the axiomatic 

design theory, is increasingly important in modern engineering 
activities to reach maximum performance in terms of 
timesaving and economical convenience. The theory [Suh, 
1990] and [Suh, 2001] is not valid just to perform the best 
design related to goods or services but it could be successfully 
applied also at physical models and calculation methods which 

are common in engineering practice. Choosing the wrong 
solution could lead to loss of time and higher costs for 
whatever these applications, not depending on their kind. The 
usage of calculation methods and tools, which permit to 
minimize the effort in order to simulate mechanical systems 
behaviour, is deeply important to achieve time reduction in 
several engineering issues and allows being able to absorb 
eventual delays in production or in other functions of the 
company. In this paper it will be shown how engineers can 
use Axiomatic Design in order to select and use the best 
model and calculation method to achieve valid results and 
solve some problems in designing goods with efficiency and 
efficacy. In this paper two different approaches will be 
described in order to solve the issue concerning the 
determination of stresses in a pressure vessel. Both of them 
will be compared from the point of view of the AD theory.  

2 SCOPE AND USED APPROACH 
This paper will show an alternative calculation approach 

to solve a structural problem, finding both stresses and strains 
at the bottom of a pressure vessel. This model will be 
optimized from the point of view of Axiomatic Design theory 
in respect of a more classical method. The design matrices for 
both the approaches will be drawn and their compliance with 
the best condition, according with the first axiom, will be 
examined. 

Both the two methods may be used to find stresses and 
strains of a vessel which is steel made and has some welded 
reinforcements under the lower plane side (Figure 1). The 
found values for stresses are useful to be compared with the 
maximum one for the material according with the most 
common failure criteria (Von Mises’s or Tresca’s). 

A case study for the validation of the proposed method is 
going to be presented in this paper. Both the alternative 
method and the FEM analysis will be applied to a pressure 
vessel with a cylindrical sidewall and a welded flat bottom. 
The vessel is pressurized inside and its upper side is tight 
closed by a cap. A hydrostatic pressure is assumed to be 
present within the vessel. Five beams are welded under the 

AN AD OPTIMIZED METHOD FOR THE STRUCTURAL ANALYSIS OF 
PRESSURE VESSELS 

Andrea Girgenti 
a.girgenti@unimarconi.it 

Department of Technologies and Innovation 
Development 

University Guglielmo Marconi 
Via Plinio, 44 - 00193 Roma –Italy 

 Cosimo Monti 
c.monti@unimarconi.it 

Department of Technologies and Innovation 
Development 

University Guglielmo Marconi 
Via Plinio, 44 - 00193 Roma –Italy 

 
Alessandro Giorgetti 
a.giorgetti@unimarconi.it 

Department of Technologies and Innovation 
Development 

University Guglielmo Marconi 
Via Plinio, 44 - 00193 Roma –Italy 

 Paolo Citti 
p.citti@unimarconi.it 

Department of Technologies and Innovation 
Development 

University Guglielmo Marconi 
via Plinio, 44 - 00193 Roma –Italy 

 



An AD Optimized Method for the Structural Analysis of Pressure Vessels 
The Eighth International Conference on Axiomatic Design 
Campus de Caparica – September 24-26, 2014 
 

166  Copyright © 2014 by ICAD2014 

lower flat end in order to improve both the stiffness and the 
strength and to avoid bending. The reinforced vessel can be 
seen in Figure 1. 

 
Figure 1 Pressure vessel with reinforced flat bottom. 

Before taking into account how to model and find the 
stresses in the reinforced lower end, the issue of the structural 
strength under load for the whole vessel and its parts has been 
analyzed from an axiomatic design point of view. 

2.1 DECOMPOSITION OF THE PROBLEM 
CONCERNING DETERMINATION OF STRESSES. 

Obviously the whole vessel has to resist to the internal 
pressure, so the complete map of the requested checks can be 
defined by decomposing the highest-level functional 
requirement (FR) and the corresponding design parameter 
(DP), creating hierarchies of FRs, and DPs. This is done 
through zigzagging among the physical and functional 
domains, according with the Thompson’s notes [Thompson, 
2013]. 

The main functional requirement (FR) at the higher level 
expresses what the vessel should do. According with the 
axiomatic theory several main FRs could be found by 
referring to specific regulations about this kind of application.  

This case deals with one FR design since the main FR is 
“To resist under the stresses due to pressure” and it is 
common for both the methods since it is a general 
requirement at this level of decomposition. This is valid for 
the whole vessel, not depending by how the calculation of 
stresses in the reinforced bottom is achieved. A way to 
achieve this main FR is obviously the right “sizing of all 
parts”, that is DP1. The main FR is further split into several 
FRs at the second layer of zigzagging depending on where the 
vessel shall resist; so the FR1.1 is “to resist the lateral 
pressure, FR1.2 is “to resist the pressure on the cap” and 
FR1.3 is “to resist the pressure at the bottom side”. The DPs 

that respond to the stated FRs are: “stresses in the sidewall” 
(DP1.1), “stresses in the cap” (DP1.2) and “stresses in the 
bottom area” (DP1.3). Figure 2 shows the design matrix for 
these upper layers of mapping which links requested checks 
(FRs) and corresponding design parameters (DPs). 

 
Figure 2 Design matrix concerning first checks and 

upper layers decomposition. 

This design matrix links through its diagonal the first 
checks (or functional requirements) to the corresponding 
design parameters. This means that each check can be solved 
independently from the others.  
At a lower layer, continuing the decomposition, single 
formulas can be found. These link geometries to the stresses 
values at least for FR1.1 and FR1.2. Finding internal stresses 
in the sidewall and in the cap is quite easy using models that 
are dealt in literature [Jawad, 1994], [Moss, 2004] [Nerli, 2005], 
considering the hypothesis of small thickness wall because of 
the big ratio between thickness and diameter of the vessel. 
Referring to Figure 3 the values for tangential stresses , 
radial stresses  and axial stresses are those shown through 
(1): 

 
Figure 3 Pressure vessels theory small thickness walls. 

     (1) 

The cap and the sidewall are solved quite easily through 
the application of the classical theories of pressurized vessels. 
On the other hand, computing the contributes of the five 
beams on the overall strength of the bottom is a bit more 
complicated since we have to solve a hyperstatic system with 
several unknown variables. Due to this, finding the stresses 
and the strains in the bottom of the vessel could be expensive 
in terms of time and resources. An alternative is represented 
by an energy criterion which permits to compute stresses 
through the width of an equivalent system whose the elastic 
energy is the same as the sum of those from the single bottom 
and the five reinforcements. These two ways to compute 
stresses will be compared evaluating the agreement level to the 
best condition described in the first axiom of the AD theory, 
i.e. the decoupled design. 
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The algorithms are adopted as functional requirements 
since they express mathematical functions which link input 
and output variables. Each algorithm has to be 
deterministically solved; therefore it sets what input values are 
needed in order to find outputs. These FRs are different for 
all methods since they are the requested algorithms to solve 
the problem. Also the main DP is split in several lower DPs: 
they are all the requested variables to solve the algorithms.  

As previously stated, the two methods are diversified by 
how they achieve these functions in the lower layers of 
zigzagging. 

2.2 FIRST METHOD: MODELING OF REINFORCED 
BOTTOM LIKE AN HYPERSTATIC SYSTEM 

The calculation of stresses in the lower end which is 
composed by a round flat plate, reinforced through welded 
beams, is quite difficult. A cross section of the bottom of the 
vessel and of the welds is shown in Figure 4. The calculations 
about the welds are omitted because they are well present in 
literature [Caffè, 2012]; therefore they can be executed apart. 

 
Figure 4 Detail of a section of the bottom. 

The welded beams are used in order to enhance the 
strength and stiffness of the flat end of the vessel. These five 
reinforcements, which are equally spaced, have the same cross 
section but different lengths to follow the perimeter of the 
lower round shaped plate. 
Due to this assumption the flat plate and these beams may be 
considered as a standalone structure which is welded to the 
sidewall. A way to reduce the 3D problem in a 2D simpler 
case is achieved through considering of a narrow diametric 
slice of this standalone part, composed by the plate and the 
five beams. This passage is possible because of the specific 
boundary condition, i. e. the internal pressure that is uniformly 
distributed on the surface of the plate. The result is a structure 
that is loaded by a homogeneous pressure distribution, whose 
moments of inertia of beams are calculated in the original 

cross section. In Figure 5 a scheme of this representation can 
be seen. 

 
Figure 5 2D structural scheme. 

This is clearly hyperstatic and quite complicated to solve, 
so it has usually calculated through FEM analysis. This 2D 
hyperstatic system has three degrees of freedom since it can 
be considered as a single structure. The authors suppose it has 
seven fixed joints. They are constraints that eliminate three 
degrees of freedom for each one. The degrees of hyperstaticity 
are counted through the difference between the degrees of 
constraints and the degrees of freedom. In this case the 
degrees of constraints result twenty one while the degrees of 
hyperstaticity are eighteen. 
The authors assume that the functional requirements are 
satisfied by DPs; therefore, assuming a right handed 
orthonormal reference system whose axles are “x”, “y” and 
“z” and the centre is “O”, it allows defining the FRs. FR1.3.1 
is the sum of all external forces along x axle which is equal to 
zero, FR1.3.2 is the sum of all external forces along y angle 
which is equal to zero and FR1.3.3 is the sum of all external 
moments along z axle which is equal to zero. These three 
equations are written below as the system (2):  

   (2) 

The DPs are assumed to be the variables which appear in the 
three equations, therefore there are twenty one DPs 
numbered from DP1.3.1 to DP1.3.2. Since the three equations 
are not linearly independent all DPs will be present in every 
equation. The design matrix takes into account these 
considerations (Table 1). 

The third layer of decomposition is represented through a 
complex matrix because equations are not linearly 
independent. To solve these equations and find the stresses in 
the bottom of the vessel, the hyperstatic system can be 
manually calculated; otherwise its behaviour can be simulated 
through a FEM analysis. 
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Table 1 Design matrix of the hyperstatic system 

2.3 SECOND METHOD: CALCULATION OF THE 
BOTTOM THROUGH THE ENERGY BALANCE. 

The energy method avoids solving the structural analysis 
since it calculates the thickness of an equivalent lower plate 
taking into account the overall stiffness of the bottom area 
including the reinforcements and the plate. To achieve this 
simplified model, the effects of the reinforcements have been 
taken into account, decomposing them and neglecting which 
are not important. This way to look at the problem allows 
modelling the beams like springs, neglecting secondary effects 
like internal damping that is given by material. The authors 
suppose the lower plate and the reinforcements have the same 
displacements and strains since their material is the same and 
there are no clearances between them. Calculation about the 
welds is neglected and the boundary condition about pressure 
is the same as in paragraph 2.2. In Figure 6 a scheme of the 
model applied to the case study is shown. 

 
Figure 6 Scheme of the energy model applied to the case study. 

Another hypothesis is that the stiffness coefficients for 
each spring, i.e. a single beam, are all the same, so the 
equation for the energy balance can be written as: 

  (3) 

In the equation (3)  is the amount of the elastic 
energy for the i-th beam,  is the amount of the elastic 
energy for the flat plate and  is the amount of the elastic 
energy for a dummy system which takes into account the 
inertia moments of the several parts. The formula for the 
elastic energy is well known as: 

  (4) 

where “k” is the stiffness coefficient and “Δl” is the 
elongation. It can be considered that following relationships 
are valid for springs and in presence of a normal force: 

  (5) 

  (6) 

where “A” is the normal surface in respect with the applied 
force. Two more formulas have to be considered: 

  (7) 

  (8) 

where  is the initial length (no applied loads) of these springs 
or the initial thickness for the plate (named in such case). If 
(5), (6), (7) and (8) are substituted in (4) it can be obtained that 

 and (3) becomes: 

 (9) 

The product  is the same for all polynomials since 
both the vessel and several beams are made by the same steel, 
according with the hypothesis, so it is easily elided from the 
equation above and (9) becomes: 

  (10) 

where  can be found using equation (10) and taking into 
account the moments of inertia of the system. Then the 
stresses can be calculated as the stresses in a round plate 
under a constant pressure distribution. The formulas for the 
calculation are present in literature [Jawad, 1994], [Moss, 2004] 
and [Szilard, 2004] and the problem is reduced just to one 
equation with one unknown variable. 

According with the defined functional requirements and 
the design parameters, the two equations to calculate  and 
the equivalent state of stresses  are assumed as FR1.3.1 
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and FR1.3.2, while  and  are DP1.3.1 and DP1.3.2. The 
design matrix for this method is shown in Table 2. 

 
Table 2 Design Matrix for the Energy Method. 

2.4 RESULTS AND VALIDATION OF THE MODEL. 
The energy model has been applied to a case study in 

order to compare results with those achieved from a FEM 
analysis. The aim of this comparison is having a first 
validation of the proposed energy method that has been 
obtained considering AD first axiom. A pressure vessel made 
by steel with a flat bottom and a cylindrical sidewall has been 
considered for the case study. Under the flat plate five beams 
are welded and the hydrostatic pressure inside is 3 bar. The 
result of the FEM analysis for stresses is shown in Figure 7. 

 
Figure 7 Results of the FEM Analysis for stresses. 

The maximum value for stresses in the bottom is almost 
102 MPa. The achieved stress value from the AD optimized 
approach is 99,7 MPa, therefore the comparison between 
equivalent stresses from both the methods has shown an 
estimated difference next to 2.3%. This slight difference 
between results leads to consider valid the proposed model in 
order to perform a first sizing or structural check using the 
AD optimized method. 

3 CONCLUSIONS 
In this paper an AD optimized example for structural 

analysis of pressure vessels is proposed. Pressure vessels are 

very common in industrial applications and although the 
round bottom ones are often better choices, in several cases 
the flat bottom vessels are requested. This kind of vessels is 
often reinforced through beams and two approaches to 
calculate stresses within the parts have been presented. 

 Two methods to calculate stresses into the structure 
have been examined according to Axiomatic Design Theory: 
The first method is the classical approach which is achieved 
through the resolution of a hyperstatic system, the second one 
takes into account a balance among the elastic energies of the 
parts under pressure. This alternative model, which is 
optimized from an AD point of view, has been proposed in 
order to solve structural analysis that otherwise would be quite 
complicated. The diagonal matrix, which links FRs and DPs, 
has been drawn out for this method, resulting in a decoupled 
design. 

A validation of the proposed model has been performed 
comparing the achieved results to the obtained ones from a 
FEM analysis. This comparison has shown how values for 
stresses in the reinforced flat bottom from both the 
approaches are quite near and the proposed model can be 
used in a first structural check with good level of 
approximation. 
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