
Proceedings of ICAD2013
The Seventh International Conference on Axiomatic Design

Worcester – June 27-28, 2013

ICAD-2013-28

 Copyright © 2013 by ICAD2013

ABSTRACT

Today, software engineering is a well-defined structured
discipline. Many new software engineers enter the workforce
with a fundamental understanding of a software development
life cycle. Unfortunately, new software engineers lack the
necessary design techniques to move from requirements
through the design phase. The idea of applying Axiomatic
Design to software development was first proposed over two
decades ago, yet is scarcely used today. Axiomatic Design
provides a systematic approach to software design that
programs of any size can use. This paper reviews several
powerful attributes of Axiomatic Design for software
engineering and evaluates the application of the embedded
software engineering technique: sequence enumeration. In the
case study, we show how to use both concepts seamlessly to
yield a proper design for embedded systems.

Keywords: software engineering, Axiomatic Design, sequence
enumeration.

1 INTRODUCTION

Traditionally, software programming was thought of as
more art than science. Software engineering has evolved over
the last forty years from simply programming or coding into
the well-defined discipline that it is today. Through this
evolution, software engineering has had countless software
process models and various methodologies applied to it.
These numerous process models were created to address the
complexities associated with the software development life
cycle. Each process model has advantages and disadvantages
[Munassar and Govardhan, 2010]; however, all share one
major disadvantage: They neglect the design phase. They also
tend to over complicate the fundamental engineering process.

Axiomatic Design (AD) provides a basic established set
of activities necessary for engineering design. Though it has
been in use since the mid-nineties in other disciplines it hasn’t
garnered the similar attention from software engineering.
Axiomatic Design facilitates the generation of only some the
necessary software engineering artifacts for interphase
transitions. Sequence enumeration can help fill in the artifact
gap while providing a simple method for doing so.

Sequence enumeration is typically an embedded software
engineering technique that provides the engineer with a
formalized method for analyzing a system. It further aids the
creation of a requirements specification that is in turn used to

implement system state machine. Sequence enumeration is at
the heart of creating a sequence-based software specification
[Prowell, 1996]. Oshana [2006], used sequence enumeration as
a method for developing use-case-based requirements
specifications. This provides the embedded software engineer
a valuable tool for creating correct end-to-end traceability in
his or her designs.

2 BACKGROUND

2.1 RELATED WORK
Based on the work of Kim et al. [1991a; 1991b], Do and

Suh extended the application of Axiomatic Design to
software development to include object-oriented
programming. Suh and Do illustrated the benefits of
combining AD and object-oriented programming [Do and
Suh, 2000; Do and Suh, 1999; Suh and Do, 2000]. These
benefits include the ability to identify modules affected by a
requirement change and a way to ensure low coupling through
functional independence. AD also suggests the use of a
design matrix to order the development tasks. For better
understanding, consider Equation 1 [Suh, 2005].

 (1)

The above relationship can be expanded to show the effect of
the Independence Axiom on a design. For example, Figure 2
contains a functionally dependent (or coupled) design where
more than one design parameter satisfies more than one
functional requirement.

Figure 1. Coupled design (left) and decoupled design
(right).

Additionally, the second part of Figure 1 represents a
functionally decoupled (independent) design where the DPs
and FRs have been rearranged into a lower-triangular matrix.
This will provide the design enough functional independence
by reducing the complexity (ergo coupling). The decoupled
matrix also illustrates an order of task execution starting from
the left side and moving to the right. This arrangement
identifies the DPs with the most functional interdependence
and these should be implemented first.

{FR} [A]*{DP}

FR1

FR2

FR3

X X 0
0 X X
X X X

DP1

DP2

DP3

FR1

FR2

FR3

X 0 0
X X 0
X X X

DP1

DP2

DP3

THE APPLICATION OF SEQUENCE ENUMERATION TO THE AXIOMATIC DESIGN
PROCESS

Brandon Woolley
brandon.woolley@ttu.edu

Department of Mechanical
Engineering

Texas Tech University
7th and Boston

Lubbock, TX 79409, USA

 Zhen Li
zhen.li@ttu.edu

Department of Mechanical
Engineering

Texas Tech University
7th and Boston

Lubbock, TX 79409, USA

 Derrick Tate
d.tate@ttu.edu

Department of Mechanical
Engineering

Texas Tech University
7th and Boston

Lubbock, TX 79409, USA

The Application of Sequence Enumeration to the Axiomatic Design Process
The Seventh International Conference on Axiomatic Design
Worcester – June 27-28, 2013

Page: 2/5 Copyright © 2013 by ICAD2013

Pimentel and Stadzisz [2006] integrated AD with the
unified software development process and utilized use cases to
support functional decomposition. Moreover, they linked the
need of a use-case-driven design to AD and functional
requirement decomposition.

Schreyer and Tseng [2000], analyzed the application of
Axiomatic Design to the design of PLC software. In their
paper, Schreyer and Tseng illustrated the usefulness of state
charts to support the decomposition and zigzagging of FRs
and DPs. The key take-away was the application of state
diagrams and sequence evaluation methods to the Axiomatic
Design process.

Do [2004], pointed out that most software processes have
difficulty dealing with changing requirements. As a result,
most Unified Modeling Language (UML) tools intended to
manage requirements are often used for tracking and
reporting functions. This renders the tools irrelevant. Do goes
on to demonstrate how the Axiomatic Design approach could
benefit software product management.

2.2 SEQUENCE ENUMERATION
Sequence enumeration is an embedded software

engineering technique used to expose buried requirements and
for producing thorough specifications. The process ensures
correct, complete, and traceable requirement specifications as
well as a source for decisions. Oshana [2000], explained how
this approach considered unforeseen permutations of stimuli
to bring out ambiguities and omissions in the requirements.
Prowell et al., [1999], provided an orderly step-by-step process
for defining system behavior and Oshana [2012], extended
this into a systematic specification development method:

1. Establish the system boundary
2. Define the interfaces
3. Itemize the stimuli and the responses
4. Perform sequence enumeration
5. Identify the canonical sequence
6. Generate the state machine specification
7. Convert the state machine to code

Sequence enumeration is broadly applicable to many different
types of systems. For example, it can be used to quickly model
the behavior of a soda machine or to model the interfaces of
a weapons system. The best way to express the usefulness of
the sequence enumeration process is by example (see the next
section).

3 CASE STUDY - SIMPLE WATCH EXAMPLE

Axiomatic Design has been used to augment the software
engineering process to aid the design phase. Sequence
enumeration can add more detail and fidelity in generating
requirements as well as modelling initial system behavior. To
illustrate the effectiveness of combining axiomatic design and
sequence enumeration, a simple digital watch example is
explored.

3.1 APPLYING AXIOMATIC DESIGN
The watch should display the time. A tick event should

occur every second. And the time should be updated and
output to display. In this paper, we concentrated on the
watch’s internal mechanism – tick and update. Therefore, two
top FRs were:

FR1: Tick
FR2: Update watch

For a watch, buttons are often reused to perform multiple
functions that are more practical for small devices such as a
watch in our case. DP2 reflects this intuition. Equation 2 is
the matrix for the top-level design.

DP1: Tick Event
DP2: Button sequential operations

ቂ1ܴܨ
2ܴܨ

ቃ ൌ ቂܺ 0
0 ܺ

ቃ ቂ1ܲܦ
2ܲܦ

ቃ (2)

Further decomposing FR2, we discovered several sub-

FRs. And these FRs should be met with two buttons (Button
A & Button B). The question is: how can we determine a
sequence of buttons to satisfy five FRs? We rely on sequence
enumeration to explore appropriate DPs.

FR2.1: Mode Change
FR2.2: Mode Change (hour)
FR2.3: Minute Set
FR2.4: Hour Set
FR2.5: Mode Update (normal)

3.2 APPLYING SEQUENCE ENUMERATION
In general, the fundamental progression for sequence

enumeration is:
 Start with the smallest length stimulus sequences and

define the appropriate response
 Record derived requirements as necessary
 Extend sequences that are not illegal or have

equivalencies
 Continue until all sequences are either illegal or

equivalent to previous sequences
 Identify the canonical sequences

Table 1. Simple watch requirements.

Req. # Requirement
1 The watch displays the time and a tick event

occurs every second; the time is updated
and output to display

2 The watch has two external buttons A & B.
Whenever ‘A’ is pressed in normal mode,
the watch enters set mode, with minute
update mode first

3 Each depression of ‘B’ causes the minutes
field to update by 1(mod 60)

4 Pressing the ‘A’ button again will cause the
watch to enter the hour update mode

5 Each successive depression of the ‘B’ button
will increment the hour field by 1(mod 12)

6 Pressing ‘A’ again causes the watch to return to
normal mode (displaying current time)

First, the requirements and DPs (buttons) are gathered in
Table 1 using natural language in the voice of the customer.

The Application of Sequence Enumeration to the Axiomatic Design Process
The Seventh International Conference on Axiomatic Design

Worcester – June 27-28, 2013

Copyright © 2013 by ICAD2013 Page: 3/5

With these requirements a system boundary definition
with interfaces can be crafted. First, defining the system
boundary allows for the identification of external interfaces.
Generically speaking, the interfaces are the system’s inputs and
outputs. Once the interfaces are defined, the external stimuli
and their corresponding responses can be drawn.

Figure 2. Simple watch system boundary.

Next, an itemized set of stimuli and responses (Table 2
and 3) can be created recording their requirements trace. Note
the abstractions used are meant to obscure well-understood
and previously recorded details. These abstractions are
necessary for the management of the enumeration process.

Table 2. Itemized stimuli.

Stimuli Description Trace

Tick Event Occurs every second 1
A-Button Used to select time field to

increment
2, 4, 6

B-Button Used to increment the minute and
hour fields

3, 5

Table 3. Itemized response.

Response Description Trace

Time Update Updates the time accordingly 1
Mode

Change
Cycles between minute, hour, and

normal mode
2, 4, 6

Minute Set Sets the minute field 3

Hour Set Sets the hour field 5

There are two supplementary responses not identified in

the system boundary nor the preceding itemizations:
 NULL Response – occurs when there is no external

response for the given stimuli
 Illegal Response – is an impossible sequence
A stimulus can be illegal by definition or by design. An

illegal by definition is one where it is impossible for the
system to encounter it or for the system to generate it. An
illegal by design is one that the system is designed explicitly to
prevent. Moreover, a sequence can be 'equivalent' to another
sequence if they share the responses to the same future
stimuli. It is 'reduced' if it has been declared equivalent to a
previous sequence. Finally, it is 'canonical' if it is legal and
unreduced when the enumeration process is complete. The
sequence enumeration process produces:

Table 4. Sequence enumeration.

Seq. # Stimuli Response Equivalence Req.
0 Empty NULL D1
1 T Time Update 1

A Mode Change 2
B NULL Empty D2

2 TT Time Update T 1
TA Mode Change A 2
TB NULL B D2
AT NULL A D3
AA Mode Change

(hour)
 4

AB Minute Set 3
3 AAT NULL AA D3

AAA NULL Empty D3
AAB Hour Set 5
ABT NULL AB D3
ABA Mode Change

(hour)
AA 4

ABB Minute Set AB 3
4 AABT NULL AAB D3

AABA Mode Update
(normal)

Empty 6

AABB Hour Set AAB 5

To reiterate, one of the most important aspects of
sequence enumeration is that it can uncover unforeseen
sequence permutations. These unforeseen permutations often
become derived requirements. By definition, a derived
requirement is one that is not defined by the customer but is
generally uncovered by the design process. During the
enumeration process it is normal to create, record, and include
derived requirements like D1, D2, and D3. These newly added
requirements become a part of the enumeration process and
are evaluated accordingly. Notice that this simple system has
equivalences at sequences of length 4 and the enumeration
process is concluded. Each sequence has been mapped to a
response providing a complete and consistent scenario of use.
Enumeration exposes all possible, impossible, intended, and
unintended uses of the system. A sequence of use
characterizes a use case scenario.

The next step is canonical sequence analysis. This step is
used to extract the sequences without equivalences, thereby
constructing the canonical sequences depicted in Table 5:

Table 5. Canonical sequence.

Seq. # Stimuli Response Equivalence Req.
0 Empty NULL D1
1 T Time Update 1

A Mode Change 2
2 AA Mode Change

(hour)
 4

AB Minute Set 3
3 AAB Hour Set 5
4 AABA Mode Update

(normal)
 6

The Application of Sequence Enumeration to the Axiomatic Design Process
The Seventh International Conference on Axiomatic Design
Worcester – June 27-28, 2013

Page: 4/5 Copyright © 2013 by ICAD2013

The canonical sequence table represents the legal and
unique sequences for system usage. The analysis also reveals
state data to be used to capture and preserve components of
stimulus history to produce the correct system response.
From the canonical sequence a state data table (Table 6) can
be extracted. Also, we can use information from Table 5 to
derive our DPs to meet sub-FRs derived from FR2.

DP2.1: A
DP2.2: A → A
DP2.3: A → B
DP2.4: A → A → B
DP2.5: A → A → B → A

The design matrix for FR2 can be re-written in the form
of Equation 3. The matrix indicates that the design we
obtained is a decoupled design. However, it’s not likely to
obtain an uncoupled form since the number of buttons is
fewer than the number of FRs.

ۏ
ێ
ێ
ێ
ۍ
2.1ܴܨ
2.2ܴܨ
2.3ܴܨ
2.4ܴܨ
ے2.5ܴܨ

ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
ܺ 0 0 0 0
ܺ ܺ 0 0 0
ܺ 0 ܺ 0 0
ܺ ܺ 0 ܺ 0
ܺ ܺ ܺ ܺ ےܺ

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
2.1ܲܦ
2.2ܲܦ
2.3ܲܦ
2.4ܲܦ
ے2.5ܲܦ

ۑ
ۑ
ۑ
ې

 (3)

Table 6. State data creation.

Sequence State
Variable

Before
Stimulus

After
Stimulus

Empty N/A
T;
a tick event has

occurred

MODE
TIME

NORMAL
CUR_TIME

NORMAL
CUR_TIME+1

s
A;
the user has

pressed the
A-button

MODE
TIME

NORMAL
CUR_TIME

SET_MIN
CUR_TIME

AA;
user pressed the

A-button
twice

MODE
TIME

SET_MIN
CUR_TIME

SET_HOUR
CUR_TIME

AB;
user pressed the

A then B-
button

MODE
TIME

SET_MIN
CUR_TIME

SET_MIN
CUR_TIME+1

m

AAB;
user pressed the

A-button
twice
followed
by the B-
button

MODE
TIME

SET_HOUR
CUR_TIME

SET_HOUR
CUR_TIME+1

h

The newly created variables represent state data for the

system. These state variables can then be recast into a state-
based specification using natural language. Generation of the
following state transition diagram in Figure 5 is the last artifact
necessary before implementation.

Figure 3. Simple watch state transition diagram.

It should also be noted that the sequence enumeration
process calls for the conversion of the state transition diagram
to source code. A step that can use the information in Table 6
can be automated.

As indicated by Oshana [2006], sequence enumeration
provides complete, consistent, traceable, verifiably correct
specifications. For example, each element of the state-based
specification can be compared to the sequence-based
specification to confirm that correctness is preserved.

4 DISCUSSION

Axiomatic Design and sequence enumeration are
employed to deal with complexity within their respective
disciplines. Sequence enumeration and Axiomatic Design have
a set of complementary design activities. AD is used at a
higher level while sequence enumeration is generally employed
at a lower level. The deployment of sequence enumeration
helps explore proper DPs at low-level design without
sacrificing exhaustiveness of all logical sequences. The design
matrix derived from sequence enumeration can be used for
determining if the Independence Axiom is satisfied or not.
The integration of two theories makes it possible to yield a
design with the low complexity (avoid coupled design) and
high completeness (ensured by sequence enumeration).

There have been other approaches to enhance
Axiomatic Design for software. Do’s early work [Do and Suh,
1999] highlighted the application of AD to OOP to ensure a
higher degree of functional independence while Schreyer and
Tseng [2000], applied state charts to support decomposition,
and Pimentel and Stadzisz [2006], employed use case based
OO software design.

The sequence enumeration process has many practical
advantages for software engineering. The process provides
various artifacts for specifications and provides a systematic
method for development. Combining both AD and sequence
enumeration has the potential to enhance the software design
phase by adding greater detail and fidelity. Furthermore,
sequence enumeration aids the generation of a system model
that early AD phases will benefit from. The advantages of
sequence enumeration emphasized by Oshana, in [2000] are:

The Application of Sequence Enumeration to the Axiomatic Design Process
The Seventh International Conference on Axiomatic Design

Worcester – June 27-28, 2013

Copyright © 2013 by ICAD2013 Page: 5/5

 The ability to model system functionality early
 Provide the customer operational system

understanding
 A conduit to analyse and improve functional

requirements
The lower level applicability of sequence enumeration

can augment the AD process to provide some measure of
checks and balances. Further investigation will be needed in
order to develop a more formalized model or framework of
integration.

5 REFERENCES

[1] Do, S.-H., "Software product lifecycle management using
axiomatic approach". The 3rd International Conference on
Axiomatic Design, 2004.

[2] Do, S.-H. and Suh, N. P., "Systematic OO programming
with axiomatic design." Computer, Vol. 32, No. 10, pp.121-
124, 1999.

[3] Do, S.-H. and Suh, N. P., "Object-oriented software
design with axiomatic design". Proceedings of the 1st
International Conference on Axiomatic Design, Cambridge,
MA, 2000.

[4] Kim, S.-J., Suh, N. and Kim, S.-G., "Design of software
system based on axiomatic design." CIRP Annals-
Manufacturing Technology, Vol. 40, No. 1, pp.165-170, 1991.

[5] Kim, S.-J., Suh, N. P. and Kim, S.-G., "Design of software
systems based on axiomatic design." Robotics and Computer-
Integrated Manufacturing, Vol. 8, No. 4, pp.243-255, 1991.

[6] Munassar, N. M. A. and Govardhan, A., "A Comparison
Between Five Models Of Software Engineering." IJCSI

International Journal of Computer Science Issues, Vol. 7, No. 5,
pp.94-101, 2010.

[7] Oshana, R., "Sequence Enumeration." from
http://www.embedded.com/design/debug-and-
optimization/4403169/Sequence-Enumeration, 2000.

[8] Oshana, R., DSP software development techniques for embedded
and real-time systems, Newnes, 2006.

[9] Oshana, R., DSP for Embedded and Real-time Systems,
Newnes, 2012.

[10] Pimentel, A. R. and Stadzisz, P. C., "A use case based
object-oriented software design approach using the
axiomatic design theory". The 4th International Conference on
Axiomatic Design, 2006.

[11] Prowell, S. J., "Sequence-based software specification",
University of Tennessee, Knoxville, 1996.

[12] Prowell, S. J., Trammell, C. J., Linger, R. C. and Poore, J.
H., Cleanroom software engineering: technology and process,
Addison-Wesley Professional, 1999.

[13] Schreyer, M. and Tseng, M., "Hierarchical State
Decomposition for Design of PLC Software by applying
Axiomatic Design". Proceedings of the 1st International
Conference on Axiomatic Design, Cambridge, MA, 2000.

[14] Suh, N. P., Complexity: Theory and Applications, Oxford
University Press on Demand, 2005.

[15] Suh, N. P. and Do, S.-H., "Axiomatic design of software
systems." CIRP Annals-Manufacturing Technology, Vol. 49,
No. 1, pp.95-100, 2000.

