
Axiomatic design of software systems
N.P. Suh (1), S.H. Do

Abstract

Software is playing an increasingly important role in manufacturing. Many manufacturing firms have problems
with software development. Software engineering is still labor- intensive and prone to errors. Industrial firms are
under pressure to shorten the lead-time required in introducing new software, increase the reliability of their
software, and increase their market share. Software must be designed correctly from the beginning to end. With
this end in mind, axiomatic design theory has been applied to software design. This paper presents how the
combination of axiomatic design has been combined with the object-oriented programming method to create a
large software system.

Keywords: software, axiomatic, design

1 INTRODUCTION
Software and computers are playing central roles in
manufacturing. Software controls manufacturing equipment,
manufacturing systems, and the operation of the
manufacturing enterprise. At the same time, the
development of software can be the bottleneck in
development of machines and systems, since current
industrial software development is full of uncertainties,
especially when new products are designed.
Software is designed and implemented by making
prototypes based on experience of software engineers.
Consequently, they require extensive ‘debugging’ – a
process of correcting mistakes made during the software
development process. It costs unnecessary time and money
beyond the original estimate. The current situation is caused
by the lack of fundamental principles and methodologies for
software design, although various methodologies have been
proposed [1].
Application of axiomatic design to software was presented
for the first time at the 1991 CIRP General Assembly [2] and
the system design concepts presented in the 1997 CIRP
General Assembly [3]. This paper includes many new
concepts that are specific only to software design, which
have been developed since then [4].
Software designed based on axiomatic design is self-
consistent, provides uncoupled or decoupled inter-
relationships and arrangements among ‘modules’, and is
easy to change, modify, and extend. This is a result of
having made correct decisions at each stage of the design
process, i.e., mapping and decomposition [5][6].
The final design of software is represented by a flow chart
that represents the entire system architecture of the
software, which can aid software programmers. The flow
chart can also be used as a management tool during the

software development phase [7][8]. It provides clear
guidelines to software engineers engaged in a collaborative
development effort and gives the order of execution of the
resulting program. Extensionality and reusability at any level
are guaranteed when the software is designed based on the
axiomatic design theory.
As a case study, the development of Acclaro--a commercial
software system designed to aid designers who use
axiomatic design -- is presented. This software is designed
based on axiomatic design and implemented using a
modified version of object-oriented techniques (OOT) and
the Java programming language -- a platform independent
language. The use of an OOT was necessary since the use
of Java requires OOT. When AD is used, OOT can be
considerably simplified.

2 AXIOMATIC DESIGN OF OBJECT-ORIENTED
SOFTWARE SYSTEMS

Based on Axiomatic Design and object-oriented technology,
we have developed a generic approach to software design.
The software system is called ‘Axiomatic Design of Object-
Oriented Software Systems (ADo-oSS)’ that can be used by
any software designers. ADo-oSS is a major new paradigm
shift in the field of software engineering. It combines the
power of axiomatic design with a popular software
programming methodology called object-oriented
programming technique (OOT) [9]. The goal of ADo-oSS is
to make the software development a subject of science
rather than an art and thus reduce or eliminate the need for
debugging and extensive changes.
ADo-oSS utilizes the systematic nature of axiomatic design,
which can be generalized and applied to all different design
tasks, and the infrastructure created for object-oriented
programming. It overcomes many of the shortcomings of the

current software design techniques which result in high
maintenance cost, limited reusability, extensive need to
debug and test, poor documentation, and limited
extensionality of the software. ADo-oSS overcomes these
shortcomings.
One of the final outputs of ADo-oSS is the system
architecture, which is represented by the Flow Diagram. The
flow diagram can be used in many different applications for
a variety of different purposes such as:
a. Improvement of the proposed design through

identification of coupled designs.
b. Diagnosis of the impending failure of a complex system.
c. Reduction of the service cost of maintaining machines

and systems.
d. Engineering change orders.
e. Job assignment and management of design tasks.
f. Management of distributed and collaborative design

tasks.
g. Reusability and extensionality of software.
In axiomatic design a ‘module’ is defined as the row of
design matrix that yields the FR of the row when it is
multiplied by the corresponding DP (i.e., data). The AD
framework ensures that the modules are correctly defined
and located in the right place in the right order. A ‘V model
for software’ shown in Fig. 1 will be used here to explain the
concept of axiomatic design of object-oriented software
systems (ADo-oSS). The first step is to design the software
following the top-down approach of axiomatic design, build
the software hierarchy, and then generate the full design
matrix (i.e., design matrix that shows the entire design
hierarchy) to define modules. The final step is to build the
object-oriented model with a bottom-up approach, following
the AD flow chart for the designed system.

Customer
Attributes

Software
Product

Define
Modules

Define FRs

Mapping

Decomposition
Identify classes

Establish Interfaces

Coding with System
Architecture

Build the software hierarchy

(Top-Down Approach)

Bu
ild

 th
e

ob
jec

t o
rie

nt
ed

 m
od

el

(B
ot

to
m

-U
p

Ap
pr

oa
ch

)

Identify Leaves
(Full Design Matrix)

Figure 1: Axiomatic Design Process for Object-Oriented
Software System (The V model)

Axiomatic design of software can be implemented using any
software language. However, in the 1990’s most software is
written using an object-oriented programming language
such as C++ or Java. Therefore, axiomatic design of
software is implemented using object-oriented methodology.
To understand ADo-oSS, it is necessary to review the
definitions of the words used in OOT and their equivalent
words in axiomatic design [9]. The fundamental construct for

the object-oriented method is the object1, which is
equivalent to FRs. Object-oriented design decomposes a
system into objects. Objects ‘encapsulate ‘ both data
(equivalent to DPs), and method (equivalent to relationship
between FRi and DPi, i.e., module) in a single entity. Object
retains certain information on how to perform certain
operations, using the input provided by the data and the
method imbedded in the object. (In terms of axiomatic
design, this is equivalent to saying that an object is [FRi =
Aij DPj].)
Object-orient design generally uses four definitions to
describe its operations: identity, classification, polymorphism
and relationship. Identity means that data – equivalent to
DPs -- are incorporated into specific objects. Objects are
equivalent to an FR -- with a specified [FRi = Aij DPj]
relationship-- of axiomatic design, where DPs are data or
input and Aij is a method or a relationship. In axiomatic
design, the design equation explicitly identifies the
relationship between FRs and DPs. Classification means
that objects with the same data structure (attributes) and
behavior (operations or methods) are grouped into a class.
The object is represented as an instance of specific class in
programming languages. Therefore, all objects are
instances of some classes. A class represents a template
for several objects and describes how these objects are
structured internally. Objects of the same class have the
same definition both for their operations and for their
information structure.
Sometimes an ‘Object’ is also called a tangible entity that
exhibits some well-defined ‘Behavior’. ‘Behavior’ is a special
case of FR. The relationship between ‘Objects’ and
‘Behavior’ may be compared to the decomposition of FRs in
the FR hierarchy of axiomatic design. ‘Object’ is the ‘parent
FR’ relative to ‘Behavior’ which is the ‘child FR’. That is, the
highest FR among the two layers of decomposed FRs is
‘Object’ and the children FRs of the ‘object FR’ are
‘Behavior’.
The distinction between ‘Super Class’, ‘Class’, ‘Object’ and
‘Behavior’ is necessary in OOT to deal with FRs at
successive layers of a system design. In OOT, Class
represents an abstraction of Objects and thus, is at the
same level as an Object in the FR hierarchy. However,
Object is one level higher than Behavior in the FR hierarchy.
The use of these key words, while necessary in OOT, adds
unnecessary complexity when the results of axiomatic
design is to be combined with OOT. Therefore, we will
modify the use of these key words in OOT.
In ADo-oSS, the definitions used in OOT is slightly modified.
We will use one key word ‘Object’ to represent all levels of
FRs, i.e., Class, Object, and Behavior. ‘Objects with indices’
will be used in place of these three key words. For
example, Class or Object may be called Object i, which is
equivalent to FRi, Behavior will be denoted as ‘Object ij’ to
represent the next level FRs, FRij. Conversely, the third
level FRs will be denoted as Object ijk. Thus, Object i,
Object ij, and Object ijk are equivalent to FRi, FRij, and
FRijk, which are FRs at three successive levels of the FR
hierarchy.
To summarize, the equivalence between the terminology of
axiomatic design and those of OOT may be stated as:
• An FR can represent an Object.
• DP can be data or input for the Object, i.e., FR.

1 Italicized words in this section have specific definitions.

• The product of a module of the design matrix and DP
can be a method, i.e., FR = A*DP.

• Different levels of FRs are represented as Objects with
indices.

The Axiomatic Design of Object-Oriented Software System
(ADo-oSS) shown in Figure 1 involves the following steps:
a. Define FRs of the Software System

The first step in designing a software system is to
determine the customer attributes, in the customer
domain, which the software system must satisfy. Then,
the functional requirements (FRs) of the software in the
functional domain and constraints (Cs) are established to
satisfy the customer needs.

b. Mapping between the Domains and the Independence
of Software Functions
The next step in axiomatic design is to map these FRs
of the functional domain into the physical domain by
identifying the design parameters (DPs). DPs are the
‘how's’ of the design that satisfy specific FRs. DPs must
be chosen to be consistent with the constraints.

c. Decomposition of {FRs}, {DPs}, and {PVs}
The FRs, DPs, and PVs must be decomposed until the
design can be implemented without further
decomposition. These hierarchies of {FRs}, {DPs},
{PVs} and the corresponding matrices represent the
system architecture. The decomposition of these
vectors cannot be done by remaining in a single
domain, but can only be done through zigzagging
between domains.

d. Definition of Modules – Full Design Matrix
One of the most important features for the AD
framework is the design matrix, which provides the
relationships between the FRs and DPs. In the case of
software, the design matrix provides two important
bases in creating software. One important basis is that
each element in the design matrix can be a method (or
operation) in terms of the object-oriented method. The
other basis is that each row in the design matrix
represents a module to satisfy a specific FR when a
given DP is provided. In most cases, the off-diagonal
terms in the design matrix are important since most of
the coupling comes from these off-diagonal terms.
It is important to construct the full design matrix based
on the leaf-level FR-DP-Aij to check for consistency of
decisions made during decomposition.

e. Identify objects, attributes, and operations
Since all the DPs in the design hierarchy are selected to
satisfy FRs, it is relatively easy to identify the objects.
The leaf is the lowest level Object in a given
decomposition branch, but all leaf-level objects may not
be at the same level if they belong to different
decomposition branches. Once the Objects are defined,
the attributes (or data) – DPs -- and operations (or
methods) – products of module times DPs -- for the
Object should be defined to construct the object model.
This activity should use the full design matrix table.

 The full design matrix with FRs and DPs can be
translated into the OOT structure as shown in Figure 2.

f. Establish interfaces by showing the relationships
between objects and operations

Most efforts are focused on this step in the object-
oriented method since the relationship is the key feature.
The axiomatic design methodology presented in this

paper utilizes the off-diagonal element in the design
matrix as well as the diagonal elements at all levels. A
design matrix element represents a link or association
relationship between different FR branches that have
totally different behavior.

P
ar

en
t l

ev
el

 F
R

 (N
A

M
E

)

Le
af

 le
ve

l F
R

 (B
eh

av
io

r)

Leaf level DP
(DATA Structure)

Parent level DP

Design Matrix
Elements

(METHOD)

DATA Structure

NAME

METHOD

Mapping

(a) Full Design Matrix Table (b) Class Diagram

Figure 2: The correspondence between the full
design matrix and the OOT diagram

The sequence of software development begins at the lowest
level, which is defined as the leaves. To achieve the
highest-level FRs, which are the final outputs of the
software, the development of the system must begin from
the inner-most modules shown in the flow chart that
represent the lowest-level leaves. Then, move to the next
higher level modules (i.e., next innermost box) following the
sequence indicated by the system architecture; that is, go
from the innermost boxes to the outer most boxes. In short,
the software system can be developed in the following
sequence:
a. Construct the core functions using all diagonal

elements of the design matrix.
b. Make a module for each leaf FR, following the

sequence given in the flow chart that represents the
system architecture.

c. Combine the modules to generate the software system,
following the module junction diagram.
When this procedure is followed, the software
developer can reduce the coding time since the logical
process reduces the software construction into a
routine operation.

3 ACCLARO SOFTWARE
In the preceding section, the basic concept for designing
software based on Axiomatic Design of Object-Oriented
Software Systems (ADo-oSS) was presented. In this
section, a case study involving a large, commercial software
designed based on ADo-oSS will be presented. The
software – called Acclaro – is general-purpose software for
designers who practice axiomatic design. The Acclaro
software – which means ‘to make clear’ in Latin -- was
developed in a relatively short period of time because the
ADo-oSS methodology was used. The entire software has
many layers of decomposition with more than a thousand of
FRs and DPs.
Acclaro is an interactive software system for designers of
hardware, software, and systems. It is designed to help
designers in creating original designs. This software makes

suggestions for design improvements based on the
theorems of the design axioms. This computer software
automatically generates the ‘Flow Diagram’ of the system
architecture when the hierarchies in the FR and DP domains
or in the DP and PV domains are established as a result of
axiomatic design of systems.
The ultimate output of the software is a design that satisfies
the functional requirements (FRs) and constraints (Cs). The
designer provides inputs to the software such as {FRs},
{DPs}, and {PVs} when prompted by Acclaro software. The
designer then answers questions on the relationships
between these characteristic vectors, again prompted by the
software. Based on these inputs, Acclaro creates design
matrices and helps the designer to make correct design
decisions. It also prompts the designer when he/she has
made a mistake based on various theorems of axiomatic
design. The final outcome of the software is the system
architecture, which is represented in the form of the
{FRs}/{DPs}/{PVs} tree diagram, the module-junction
diagram, and the flow diagram. The Acclaro software also
generates the final design documentation. It can also be
used to manage the software development task.
Acclaro software was developed top-down as shown in
Table 1 to meet the customer needs given in Table 2. A
constraint is that the software must be independent of
specific operating systems and run on many computers
without change or modification. Therefore, the JAVA
language was chosen as the programming language. These
top-level FRs and DPs are decomposed until the design
task is completed.

FR1: Make the decision-making tool which has
 impact on the design world

DP1: Computerized system with the Axiomatic
Design Software

Constraints: Independent from the operating system
Table 1 Top-level decomposition of Acclaro

CA1 Make design document
CA2 User friendly Graphical User Interface
CA3 Indicate the user’s mistake or guide
CA4 Provide the collaborative design environment
CA5 Provide efficient database
CA6 Provide decision-making environment
CA7 Manage the design activity

Table 2 An example of Customer Attributes for Acclaro

The desired first level functional requirements of the
software are described in Table 3.

Functional Requirements
FR1.x

Design Parameters
DP1.x

P
Make the decision making
tool which has impact on the
design world

Computerized system
with the Axiomatic
Design Software

1 Manage design workflow Design Roadmap

2 Provide decision-making
environment

Decision making
criterion

3 Support ease of use while
using software

Graphical User
Interface (GUI)

4 Provide efficient data I/O Data manager
5 Provide utility function Plug in software

Table 3 First-level decomposition of Acclaro

Equation (3) shows the first-level design equation. It is a
decoupled design. The design matrix shows that the
graphical user interface is the most complex module in the
first level because it is affected by all DPs.

FR11
FR12
FR14
FR15
FR13






 






 
=

X 0 0 0 0
X X 0 0 0
X X X 0 0
0 0 X X 0
X X X X X















DP11
DP12
DP14
DP15
DP13






 






 

 (3)

FR2 (Provide decision-making environment) may be
decomposed into a sub level with DP2 (Decision making
criterion). Table 4 shows the second level decomposition for
FR2 and Eq. (4) shows the relationships in the second level
for FR2.

Functional
Requirements

FR1.2.x

Design Parameters
DP1.2.x

P Provide decision-
making environment Decision making criterion

1
Provide design
sequence in terms of
Axiomatic Design

Decomposition roadmap

2 Maintain functional
independence

Criterion for Independence
Axiom

3 Make suggestions for
better design

Criterion for Information Axiom
and Robust Design

Table 4 Second level decomposition for the FR 1.2

FR121
FR122
FR123









=
X 0 0
0 X 0
0 X X



 


 
DP121
DP122
DP123









 (4)

In this manner, the software system can be designed using
the AD framework. The Acclaro software design has nine
level hierarchies and well over 1000 leaves, which may
increase as other features are added.
Figure 3 illustrates the full design matrix table with module
information for FR1141 branch, which deals with the data
structure for FRs, DPs, and design matrices in Acclaro
software. The off-diagonal term reveals the interrelationship
between FRs and DPs located in different branches. It will
guide the integration sequence between objects or classes
that will be defined later.
The representation of the design for the FR1141 branch
based on the FRs and DPs hierarchies and the design
matrix can be transformed into the OOT representation as
shown in Figure 4. The representation is done using indices
for objects in a manner consistent with the indices for FRs
and DPs, and also treating the object as consisting of a
diagonal element identified by ‘d’ after each indices and an
off-diagonal element denoted by ‘*’ after indices. Using this
system, the software designer can generate an object-orient
model such as that shown in Figure 4, which is derived from
Figure 3.
The system architecture for the FR1141 branch may be
illustrated as Fig. 5. After the diagonal element in the full
design matrix is coded, this flow diagram guides the coding
sequence as well as maintenance sequences.

1 2 1 2 3
1 2 3 1 2 3 1 2 1 1 2

1 2 3 4 1 2 3 4 1 3 4 1 2 1
1 2 3 4 1 2

O
n/O

ff changing m
ethod

E
xchange m

ethod
R

ow
 change m

ethod
C

olum
n change m

ethod

R
ow

 check
C

olum
n check

1 X M114121
2 X M114122

1 X X X M11412341
2 X X X M11412342
3 X X X M11412343
4 X X X X X M11412344

1 X X X X X X X M1141231
2 X X X X X X X M1141232
3 X X X X X X X M1141233

1 X M114141
2 X M114142
3 X X M114143

1 X X X X X X X X X M11414441
2 X X X X X X X X X M11414442
3 X X X X X X X X X M11414443
4 X X X X X X X X X X X M11414444

1 X X X X X X X X M1141441
2 X X X X X X X X X X M1141442
3 X X X X X X X X X X M1141443
1 X X X X X X X X X M1141611
2 X M1141612

1 X X X X X M11416131
1 Change each element X M114161321
2 Change between def. DP and Alt. DP X M114161322
3 Change row element X M114161323
4 Change column element X M114161324

3 X X X X X M11416133
4 X M11416134

1 X X X M1141621
1 X X M11416221
2 X M11416222

1 X X X X X X M1141631
2 X X X X X M1141632

1 X X X X X X X M11416331
1 Find parallel flow X X X M114163321
2 Find serial flow X X X X M114163322

Describe the FRs
Deisplay to the graphics

Support copying
Support cutting
Support pasting
Support moving

Make a new storage

Support cutting

Support changing

Display to the graphics
Support copying

Support deleting

Support pasting
Support moving

Make a new storage
Support changing

Check the status of design matrix

Define the rearranged design matrix

Make a new storage

Make a new storage
Support matrix rearrange

Define the system architecture
Display to the graphics

D
elete m

ethod

A
ttribute for G

U
I

Make a new storage

Support copying

Support deleting
Define the design matrix
Display to the graphics

A
ttribute for FR

A
ttribute for G

U
I

A
ttribute for D

P

A
ttributes for system

 architecture

C
opy m

ethod
S

tatus check m
ethod

N
ew

 m
ethod

R
earrange m

ethod

FR
11

41

2 4 6
3 4 1

A
ttributes for G

U
I

C
opy m

ethod
C

ut m
ethod

N
ew

 m
ethod

DP1141

P
aste m

ethod
D

rag &
 D

rop m
ethod

C
opy m

ethod
C

ut m
ethod

P
aste m

ethod
D

rag &
 D

rop m
ethod

N
ew

 m
ethod

A
ttribute for design m

atrix

3
4 4 3 3P

ointer to the child level

N
ew

 m
ethod

C
hange m

ethod

2
3

4

2

A
ttribute for G

U
I

A
ttributes for rearranged design m

atrix

2D
elete m

ethod

N
ew

 m
ethod

C
hange m

ethod

6

2

3
3

Module
Infomation

2

3
2

2

4

Describe the DPs
Connect the child level

2
2

O
bj

ec
t C

O
bj

ec
t

D
O

bj
ec

t E
Attributes a

O
bj

ec
t A

O
bj

ec
t B

4

4

1

Attributes b Attributes c Attribu-
tes d

Attributes e

Fd

Gd

G*

H*

J*

Id

Hd

Jd

I*

Figure 3 Full design matrix table for FR1141 branch

Class FR11412
& FR11414 Class FR11416

Class B Class C Class DClass A
a

Fd

Class E

Class Bd
b

Gd

Class B*
a

G*

Class Cd
c

Hd

Class C*
a, b
H*

Class Dd
d
Id

Class D*
a, b
I*

Class Ed
e
Jd

Class E*
a, b, c, d

J*

Figure 4 Object-oriented model generation

M11416

M114163
M1141633

M11416332

M114162 M1141622

M114161 M1141613
M11416132

M11412 M114123
M1141234

M114121

M114122 M11412342

M11412343

M11412341

M11412344

M1141231

M1141232

M1141233

M1141611

M1141612

M11416131

M114161321

M114161322

M114161323

M114161324

M11416133

M11416134

M11416221

M11416222
M1141621 M1141631

M1141632
M114163321 M114163322

M11416331

Summation Junction

Control Junction

M11414 M114144
M1141444

M114141

M114143 M11414442

M11414443

M11414441

M11414444

M1141441

M1141442

M1141443

M114142

Figure 5 Flow diagram at the fourth level decomposition for Acclaro software.

4 CONCLUSION
Software development can be done efficiently in a shortest
possible time, reliably with full confidence when it is done
based on axiomatic design. The use of axiomatic design
also provides many other benefits such as distributed
system design, rational management of the development
process, ease of engineering change orders, tracing of
malfunctions during service and maintenance, and others. It
certainly leads to short lead-time, reliability, low
development cost and high productivity.
Acclaro software system has been developed to help
designers to develop rational and correct designs from the
beginning without resorting to prototypes and debugging.
This software was designed quickly as a result of axiomatic
design.

5 REFERENCES
[1] R.S. Pressman, Software Engineering, 1997, A

Practitioner’s Approach, 4th ed., McGraw Hill, New
York.

[2] Kim, S.J., N.P. Suh, and S.-K. Kim, 1991, Design of
software systems based on axiomatic design, Annals
of the CIRP, Vol. 40, No. 1 [also Robotics & Computer-
Integrated Manufacturing, 3:149-162, 1992].

[3] Suh, N.P., 1997(a), Design of Systems, Annals of
CIRP, Vol. 46, No. 1.

[4] S.H. Do and G.J. Park, 1996, Application of Design
Axioms for Glass-Bulb Design and Software
Development for Design Automation, 3rd CIRP
Workshop on Design and Implementation of Intelligent
Manufacturing, pp. 119-126, June 19-22, Tokyo, Japan.

[5] Suh, N.P., 1990, The Principles of Design, Oxford
University Press., New York.

[6] Suh, N.P., 2000, Axiomatic Design: Advances and
Applications, Oxford University Press, New York (to be
published).

[7] Suh, N.P., 1995(b), Design and Operation of Large
Systems, Journal of Manufacturing Systems, Vol. 14,
No.3, pp. 203-213

[8] Suh, N.P., Cochran, D. S., and Lima, P.C., 1998,
Manufacturing System Design, CIRP Annals, Volume
47, No. 2.

[9] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, 1991, Object-Oriented Modeling and
Design, Prentice Hall, New Jersey.

