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Abstract

In the conceptual design stage of new product development, one of the major challenges is how to effectively determine the single best scheme from
multiple alternatives. Based on the Axiomatic Design Theory, this paper proposes a new method to analyze and compare alternative schemes, and the
Markov function is then used to calculate cost and determine the optimization direction of the chosen scheme. The cost of the optimal solution is
estimated through calculations with utility functions. To add more details to the final design, it is necessary to consider both the working environment
and user preferences, then to further analyze the schemes via fuzzy intuitions in order to determine the best prototyping and optimization strategy. This
paper employs the design process of a library robot, which is designed in the context of university campus environment, as an illustrate example to

showcase how to use the proposed method.
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1. Introduction

Alongside rapid advancements in technology, the demand for
personalized products has increased substantially in recent years.
To create a successful product scheme, the designer must consider
both customer preferences and discrepancies in product usage.
Traditionally, the design scheme is transformed into fuzzy
set-theory for decision-making analysis [1]. Suggested by the
Axiomatic Design Theory, there are a variety of different design
decisions, which should be categorized into different domains.
Furthermore, design decisions of the same kind should be
organized into a hierarchy to accommodate their different
abstraction levels. Despite many obvious advantages of such a
two-dimensional design structure (i.e., domain and hierarchy), the
design decision making process inevitably becomes more
complicated, because design decisions are oftentimes fuzzy, in
particular, during the early design phases. In the past, many
researchers have attempted to address the fuzziness in axiomatic
design [2]. For example, Hu et al. used a Markov model to predict

the design direction of the discrete optimization design scheme [3].

By using a Markov model, Girard J. et al. proposed a set of
optimized control logic, which controls the robot by

mimic-learning [4]. Although these methods can only solve
decision-making problems within a single domain, however. Due
to the different preferences among decision-makers, several
decision-making methods should be comprehensively applied and
effectively integrated throughout the overall design process [5,6].
He et al. used the fuzzy intuition method to solve multi-program
decision-making problem sunder a variety of circumstances [7].
Through this method, the designer transforms the index of several
schemes into a compound matrix and then selects the best scheme
by analyzing the matrix priority [8]. In the robot design field,
Wallace et al. successfully improves the reliability of the robot
design through an axiomatic design method [9].

Based on the existing axiomatic design theory, related works,
and a combination of subjective and objective models, we
quantitatively analyzed the decision-making process of a complex
design scheme, and then comprehensively analyzed the possible
problems of a partial or overall decision-making process during
the design stage. We utilize the "I moving" robot, which works in
the university campus environment, as an example to prove the
effectiveness of this method.
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2. Theoretical framework

During the axiomatic design process, this paper established
three designs on different research levels: conceptual design,
product design, and technical design. The relationships among the
three design stages are progressive but also iterative. It is obtained
several conceptual design schemes, product design schemes, and
function design schemes applicable throughout the process. The
decision-making analysis was then applied to select the optimal
scheme of the three different designs. The Markov model is used
to predict the cost transition matrix of the product scheme in the
conceptual design stage. In the product design stage, the utility
function is used to discover the relationships between the risk,
profit, and cost of a product. In the technical design process, the
fuzzy intuition method is used to select the optimal scheme
among several design schemes.

Axiomatic design serves as the theoretical foundation of the
proposed framework. As shown in Fig. 1, cost estimation of the
next stage can be obtained through the cost probability matrix. By
doing so, we can preliminarily determine the cost of each function
module of the next stage.

Next, three sets of prototype machines were proposed, and the
one best suited to the operating environment. Due to the
subjective influence of many factors, after obtaining several
design schemes of the prototype machine, we analyzed the
schemes through a subjective decision-making method, the fuzzy
intuition method.
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Fig.1. Framework of the proposed method

3. Preliminary scheme design

3.1. Markov function analysis

According to the independence axiom, the matrix of product
design is determined by the mapping relationships between
functional requirement (FR) and design parameters (DP) during
the conceptual design stage [10]. A design matrix is used to
represent the FR-DP relationships:

[FRImx1 =[Alnwo*[DP]uxi )
Where the parameter matrix of A is determined by
_OFR;
i~ 5pp; @

If matrix A is a purely diagonal matrix, the scheme is
uncoupled, meaning that all its functional requirements can be
satisfied independent of each other.

This paper establishes a conversion probability function for the
parameter matrix of the product via the Markov function. Under
the conditions of discrete-time and finite-state, the first order
Markov function forms a state sequence composed of random
variables that are dependent only on the random variables of the
previous stage. By using the transfer function, we can deduce the
probability matrix of the next state from the probability matrix of
the current state.

Let 6; be the risk of cost fluctuation under the current state, and
i=1,2,3,...,n.

The cost probability matrix for designing a certain function of
the robot is:

[T {ITRIINTIY

The converted cost probability matrix for adding a new

function or changing the original function on the robot is
) A Hi Hy

S TS TS

i,j,keC .

Adding or changing a function on the robot will lead to an
expected profit change (x), where:
X={Xi,Xj,Xk}, 1, J, keC.

The transition probability matrix is P. After analyzing the
conceptual scheme, we can obtain the parameters of the basic
functional system cost, the risk of cost fluctuation in the current
state, and the estimated profit. The above parameters construct
matrix P, which is the conversion probability matrix that converts
the current cost probability into the cost probability matrix of the
next stage. So,

3)

- ¥ )
ui, i k'Z‘ile_‘iLlZn:l ui, i k
The state transition matrix of the next stage is
tr1'_ b
w5 P teC ®

3.2. Dividing cost-utility stages

Because the Markov model can only predict the variation
tendency of the design cost for the next stage, modular design
should be adopted to realize the basic functions for moving,
steering, and bearing during the design process. These functions
are designed so that all functions meet the requirements of
axiomatic design. While making an axiomatic decision, the
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following two axioms must be complied with.

Axiom 1: The Independence Axiom, which maintains the
independence of functional requirements.

Axiom 2: The Information Axiom, which minimizes
information content.

Based on the above, it is found a relationship in matrix A:
m=n.

The cost of the movement system is determined by three
factors: The turning radius, the control difficulty, and the
hardware selection. These three factors should all meet the
Independence Axiom, so the cost distribution matrixes of the
three factors must meet the requirements of the diagonal matrix.
Therefore, m=n=3.

The utility function can help explain the relationships between
risk, cost and profit.

Assuming the cost () and the net profit distribution function
f(x) follow the linear plus exponential utility function, we have:

5,5 - €700/ et o

fe)= (0)
0 x<0
i,jeC.
The risk preference function is:
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v %)
/0ic ) dx
Under the risk preference theory, we have:
U0 = — 0 _ 2t st ®
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Taking the effectiveness function, the average expectancy of
decision risk is given by:

x fletPdx L m
EG)=6—2———+—
)= 7 >

According to the risk preference theory, when x=, the scheme
is a risk-neutral type; when x>, the scheme is a risk-seeking type;
when x<p, the scheme is a risk-aversion type. As the profit
increases, the risk increases correspondingly.

(10

4. Cost-utility preference analysis of the second generation
robot

4.1. “I moving™ robot

Taking the initial design of the library robot at Beijing
University of Civil Engineering and Architecture (BUCEA), as an
example, we discussed three key factors which influence the
movement system through the Markov-utility function model.
The cost is mostly related to the turning radius, control difficulty,
and hardware selection. Assuming that all three design schemes
are fit for the library’s operational demands, there are still other
factors that affect the design scheme such as comfort level, service
target and usage cost.

Previous studies indicated that the influencing factors of the
robot’s production cost include: turning radius, control difficulty
and hardware selection [12]. The detailed classifications of

different cost schemes affected by various influencing factors are

shown in Fig.2.
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Fig. 2. Influencing factors of the robot’s movement system.
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Fig. 3. Age distribution of the library user in BUCEA.
4.2. Cost-function parametric index of the robot

Figure 3 shows the age distribution of library users in BUCEA.
As illustrated, college students are the primary target customers of
the library robot. Therefore, during the fuzzy intuition analysis,
we preferentially selected the scheme most suited to young
people.

The relevant parameters determined through market research
are shown in Table 1.

Based on the complete data of the completed basic movement
system, we can obtain the cost of design and construct ;= [2300,
1400, 1500]. Therefore, we can calculate the cost distribution
probability as p=[0.442, 0.269, 0.289].

Table 1. Cost distribution of walking robot system.
Cost 1 (RMB)
2300

3300

1600

1400

3500

1500

Turning radius

Control difficulty

Hardware selection
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Due to Eq.(4), we have:
1.032 0 0
P=l 0 0878 0
0 0 1.066

Substituting the result P into Eq.(5), we get the estimated cost
distribution probability in p=p;"P=[0.457, 0.236, 0.307].

Thus, without adding additional cost, choosing the right
hardware and truncating the turning radius can further improve
the robot's performance.

The estimated profit of this first generation engineering
prototype machine is RMB(means China monetary unit) 5,000
and the cost is RMB 8,000. Through Eq.(8) and Eq.(9), we have
U(x)>0, which shows the scheme of this first generation is a risk
aversion type.

Based on Markov function calculations, we found that the
robot’s performance can improve the cost distribution probability,
where (11=[0.457, 0.236, 0.307]. Through Eq. (8) and Eq.(9), we
found: Let U(x)=0, so x=u. With Eq.(10), we have:

E(u)=59326+g .

When ¢ is at a minimum, E(p)=0, which means the risk of cost
fluctuation () can be ignored.

Using the Markov function, it was found that the library robot
design has a high demand for hardware selection and turning
radius; demands for control precision and accuracy are low. Using
the utility function, we discovered that when the total cost is RMB
5,932, the Markov-utility function is at its best decision point.
Thus, controlling the cost of the robot at RMB 5,932 allows us to
obtain the maximal return probability. To secure a higher profit, it
should consider not only the robot’s functional parameters but
also the adapt ability of its appearance in a service group using

Table 2. Features profiles of three schemes.

fuzzy intuition analysis.
4.3. Three design schemes

The optimized cost was subdivided into three parts and three
sets of movement system schemes were designed accordingly.
The objective calculation shows that in addition to the movement
demands, the designers should consider subjective factors like the
robot’s appearance, service target and unique environmental
factors at BUCEA. Table 2 shows the three basic library robot
schemes. Three sets of prototype robots are shown in the Fig. 4.

4.4. Expert valuation indicators of the fuzzy schemes

Table 3 facilitates analysis the schemes through the subjective
evaluation of the movement system, appearance and service target.
However, it is difficult to find subjective factors relative to an
objective analysis of the schemes through factors such as research
cost, service life and operative difficulty index. Figures 3-5 show
three sets of scheme evaluations given by three experts who
analyzed the schemes by a multi-attribute fuzzy preference
decision-making method. This paper distributed the weight of the
three decision-makers as (L, Vi,7 ), as shown in table 6.

Fig. 4. (a) As; (b) Az (c) As.

Wheel Steering System

Bearing and Movement System

Product Future Service Target

Ar Normal train wheel Turning radius stays at

Separate bearing and movement

(small), Elastic, with
brake, easily causes a
side skid.

zero, inflexible direction
turning, the wheel has an

off-center problem.

systems.

Equipped with battery indicator.

Easy installation.
. 18-26 years old
Small in appearance.

A, Compound wheels. Wheel steering system. Integrated bearing and movement Small in appearance.
systems. Fixed- height. 10-36 years old
Hard installation.
As  Normal train wheel Turning radius stays at Separate bearing and movement Adjustable-height.

(large), steady running.

Zero.

systems, but cannot move when a load

is being applied.

Large in appearance, heavy weight, 14-26 years old

ergonomic design, rides comfortably.

Table 3. Evaluation by Expert Di

Movement System Appearance Target User
Al C11(0.7,0.1,0.2) C12(0.6,0.2,0.2) C13(0.5,04,0.1)
A C2(0.3,0.6,0.1) C2(0.1,0.6,0.3) C2(0.5,0.2,0.3)
As C31(0.3,0.6,0.1) C(0.1,0.5,0.4) C3(0.4,0.1,0.5)
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Table 4. Evaluation by Expert D»

Movement System Appearance Target User
Al C11(0.5,0.2,0.3) C12(0.5,0.3,0.2) C13(0.6,0.3,0.1)
A C21(0.2,0.7,0.1) C2(0.1,0.8,0.1) C2(0.7,0.2,0.1)
As C31(0.3,0.5,0.2) C»(0.1,0.7,0.2) C33(0.2,0.2,0.6)
Table 5. Evaluation by Expert Ds.
Movement System Appearance Target User
Ay C11(0.6,0.1,0.3) C12(0.7,0.2,0.3) C13(0.3,0.6,0.1)
A C21(0.5,0.2,0.3) C2(0.2,0.6,0.2) C2(0.8,0.1,0.1)
As C51(0.2,0.7,0.1) C3(0.1,0.6,0.3) C33(0.3,0.3,0.4)

Table 6. Policymaker’s weight distribution.

Expert Weight Numerically Value
D I(important) (0.75,0.20,0.05)
D> VI(very important) (0.90,0.05,0.05)
Ds M(medium) (0.50,0.40,0.10)

Table 7. Complex multi-attribute matrix.

Travel System Shape Suitable Crowd
Ay C11(0.5936,0.1420,0.2654) C12(0.5820,0.2421,0.2235) C13(0.4958,0.4051,0.1001)
Ar C21(0.3050,0.5493,0.4212) C2(0.1234,0.6844,0.1932) (23 (0.6542,0.1769,0.1699)
As C31(0.2770,0.5820,0.1420) C32(0.1001,0.6076,0.2933) C33(0.2933,0.1886,0.5191)

4.5. Analysis of the characteristic environmental suitability by
using fuzzy intuition analysis method

Changing the weights of the policymakers into weight
coefficients, we have:
_ Amin+p-Amax

=—— (11

Ajj+p-Amax
Where ke(1,3) is substituted k into Eq.(11) as follows:

L1=0.349, A;=0.419, 1;=0.233.

With the above values we obtained the complex
multi-attribute fuzzy intuition matrix shown in Table 7. The
fuzzy intuition entropies of the three attributions can be
obtained by

3

1
Hj:- m Z [,UIJIn/,lu"'VuInV”-(l-ﬂ'l])In(l-ﬂ'U)] (12)
=

So we have: H;=0.613, H»=0.526, H3=0.659. The entropy
weight of the above values can be obtained by
__ (13)
n- ZJn:l H j '

And thus: ©;=0.322, ,=0.394, ©;=0.284.

After setting the corresponding grey correlation coefficient
corresponding to different attributes, this paper obtained the
value difference between the minimum and maximum. The
fuzzy intuition entropy values of the three properties in Eq. (12)
are: H;=0.613, Hy=0.526, Hs=0.659. The weights of the

@

corresponding  attribute entropy are: ®=0.322, @=0.394,
®3=0.284. So each attribute’s corresponding gray correlation
coefficient value between the minimum and maximum can be
determined.

It can substitute the value into &;; = Amin?p Amax
Ajjtp-Amax

Where p is a resolution ratio, in normal circumstances, p=
0.5. The Aij value shows the difference in value between the
single-line maximum and the single-line minimum.

The corresponding gray relational degree v; is given by:

Vi:st:1 Wj&jj
(14)
Through the above equation, we have:

v1=0.7412, 7,=0.8298, y5=0.7135.

Therefore, using the library environment, shape is more
important than suitable crowd, while suitable crowd is more
important than travel system. It is assigned different weight
coefficients to different characters: The coefficient of travel
system is 0.35, of shape is 0.45, and of suitable crowd is 0.20.
The results are shown in Table 9.

Therefore, in the college environment where the floor is
smooth and the running speed is high, it found A; preferential
to A, and A; preferential to As.
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Table 8. Grey correlation coefficient of each attribute.

Ci C G Min. Max.
61 0.4064 0.4180 0.5042 0.4064 0.5042
& 0.6950 0.8766 0.3458 0.3458 0.8766
& 0.7230 0.8999 0.7067 0.7067 0.8999
Amin 0.3609
Amax 0.3957

Table 9. Overall merit of the programs.

Ay Ay As

0.5123 0.3472 04176

4. Conclusion

By using the Markov function, it is found that hardware
selection and turning radius are the two driving forces that
affect the robot’s performance. By analyzing the utility
functions, it was concluded that the risk of increasing cost is
low. Above all, it came to the conclusion that the
second-generation robot design will satisfy basic demands
when operating in the library environment. It is also found that
the cost-profit distribution conforms to the basic investment
principle where profit increases with risk.

It was found that individuals pay the most attentions to the
robot’s appearance among all the factors it explored. Therefore,
the first consideration when establishing the basic design
scheme is that the appearance should satisfy the usage demand
and ergonomic demand of the target users.

Acknowledgments
This work was supported by the Scientific Research Project

of Beijing Educational Committee (Project number:
KM201610016003), the Importation and Development of

High-Caliber Talents Project of Beijing Municipal Institutions
(CIT&TCD20140311), the Beijing Natural Science
Fund(KZ201510016019), the Small-medium City Settlement
Enviorment Index System (csy2015021), the School of
Mechanical-Electronic and Vehicle Engineering, Beijing
University of Civil Engineering and Architecture, and the
Beijing Key Laboratory of Performance Guarantee on Urban
Rail Transit Vehicles.

References

[1] Cebi S, Kahraman C. Extension of axiomatic design principles under fuzzy
enviorment.Expert systems with applications2010;37:2682-2689.

[2] Cengiz D, Cengiz K, Selcuk C. A new multi-attribute decision making
method: hierarchical fuzzy axiomatic design. Expert Systems with
Applications 2009;36:4848-4861.

[3] Hu QY, Yue WY. Markov decision processes with their application.
USA:Springer Science Business Media2008;14:25-40.

[4] Girard J, Emami MR. Concurrent Markov decision processes for robot team
learning. Engineering applications of artificial intelligence 2015;39:223—
234.

[5] Abbas AE. Invariant multi-attribute utility functions. Theory and
Decision2010;68:69-99.

[6] Abbas AE, Sun ZG. A utility copula approach for preference functions in
engineering design.Journal of Mechanical Design, Transactions of the
ASME2015;Article ID094501, 19 pages. 2015.

[7] He P. Crime pattern discovery and fuzzy information analysis based on
optimal Intuition decision-making.Advances in Soft
Computing2009;54:426-439.

[8] Wang YM,ChinKS. Multi-attribute comparision of advanced manufacturing
systems using fuzzy vs. crispaxiomatic design approach. International
Journal of Approximate Reasoning2011;52:541-553.

[9] Wallace R, Suh NP. Information-Based Design for Environmenttal
ProblemSolving Annals of the CIRP 1993;42:175-180.

[10] Suh NP. Design-in of quality through axiomatic design. IEEE Tranctiongs
on Reliability 1995;44:256-264.

[11] Gu PH, Lu B, Spiewak S. A new approach for robust design of mechanical
systems. Annals of the CIRP 2004;53:129-133.

[12] Al-Widyan K, Angeles J. A model-based formulation of robust design.
Journal of Mechanical Design2005;127:388-396.



