
Proceedings of ICAD2004
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

ICAD-2004-13

Copyright © 2004 by ICAD2004 Page: 1/6

ABSTRACT
Software products are managed by several activities over

their lifecycle. Requirements, Development, QA and
Documentation are common categories describing these activities.
Although the lifecycle is often referred to in linear terms, the
reality is an iterative dynamic between lifecycle activities. A
change in one activity can propagate indefinitely over the product
lifecycle. One major reason for the frequent failure of software
projects is the failure to deal with changes to requirements.
Requirements seldom remain constant throughout the product
lifecycle and must therefore be systematically managed to avoid
introducing chaos into the design process.

The axiomatic framework has been introduced to manage
the design process in a systematic manner. It starts with
requirements capture and continues the process by establishing
linkages between domains (i.e. activities) over the design hierarchy.
This requirements driven approach provides the insight to
objectively gauge the impacts of changing requirements. The
highly dynamic nature of software development provides an ideal
demonstration of the framework's capabilities.

This paper explains how to manage the software lifecycle in
conjunction with the Axiomatic Design framework. This
includes capturing requirements, developing the software
architecture in a solution domain, establishing development and
QA processes, evaluating the design by matrix analysis from
developed code, and producing documentation from
requirements. The paper also details a simulation of how
requirement changes impact the whole system, and how such
changes are manageable within the axiomatic framework.

Keywords: Axiomatic Design, traceability, unified modeling
language (UML), product lifecycle management (PLM), design
matrix (DM), design structure matrix (DSM)

1 INTRODUCTION
The software industry is a fairly young industry compared to

traditional design and manufacturing industries. Compared to
other industries, the relative lack of costs for equipment,
retooling, materials procurement, and packaging for example,
changing manufacturing lines and their related fixtures due to
design changes never applies for software products. The

reduction in traditional barriers to entry creates a highly
competitive market in which software products are under
constant pressure to integrate new requirements or change
existing ones. The total lifecycle for software products is almost
universally shorter than that of the manufacturing industry.

Due to the relative lack of costs for traditional cost drivers
for other manufacturing, software is particularly sensitive to
product development costs. Often, these costs escalate (and are
regularly deemed “out of control” on large projects) in response
to the inevitable reality of changing requirements. As a result,
systematic management is a key element in making software
products successful.

One of the major barriers to systematic management in the
software industry is the lack of traceability. A purely iterative
process for satisfying changing requirements is not sustainable
over time. In the manufacturing industry for example, the design
changes can be visualized throughout the process by using
modeling tools such as CAD, FEM analysis tools, etc. so that the
possibility of detecting failures is high. Managers in the software
industry, on the other hand, don’t have comparable tools.
Typically software development teams tend to leverage tools to
manage and debug their code, but this is a low level task which
doesn’t address the fundamental issues related to evolving
requirements. Other tools intended to fill this role, often fall
subject to misuse and ultimately irrelevance. UML tools, for
example, are often used only for reporting or documentation,
rather than managing the lifecycle as intended. This is one of the
reasons why most software design projects are not able to meet
the given specifications or to deliver on time and on budget.

Over the past twenty years, Axiomatic Design has been
applied in many different areas including mechanical engineering,
material science, software, organizational design and so on [Suh
(1990, 2001)]. One of the practical benefits of employing
Axiomatic Design in a commercial environment is the generation
of end to end traceability. This value proposition has only
recently been exposed due to the availability of software to
manage the decomposition software [ADSI].

Traceability can be performed using matrix analysis. Two
types of matrix analysis are available. Axiomatic Design uses a
design matrix (DM) to analyze adjacent domains (e.g. the
functional and physical domains.) Domain-to-domain matrix
analysis makes it possible to trace backwards and forwards

SOFTWARE PRODUCT LIFECYCLE MANAGEMENT USING AXIOMATIC
APPROACH

Sung-Hee Do
dosh@axiod.com

Axiomatic Design Solutions, Inc.
221 N. Beacon St., Boston, MA 02135, U.S.A.

Software Product lifecycle management using axiomatic approach
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 2/6

through the entire design. A second type of matrix analysis −
design structure matrix (DSM) − analyzes only a single domain
[Ulrich, et al. (2003)]. One of the benefits of DSM is clustering,
a technique which provides the capability to group given tasks
and/or components based on their inter-relationships [Pimmler,
et al. (1994)]. Through the use of these matrix driven traceability
concepts, systematic management of the software lifecycle is
made possible and overcomes the problems of rapidly changing
requirements, as will be detailed in this paper.

2 EXTENDING THE AXIOMATIC PROCESS
Axiomatic Design (AD) proposes the use of four domains as

shown in Figure 1. Design decomposition spans the functional,
physical and process domains. As the hierarchies in each of these
domains converge on an identical structure, these domains be
called symmetric domains in this paper. In addition, Axiomatic
Design defines a customer domain which captures external
requirements (such as marketing requirements, safety regulations,
etc.) Traditional Axiomatic Design was done mostly in
mechanical engineering, where the customer needs are usually
clear and seldom change. The static method of requirements
handling of the traditional axiomatic approach doesn’t support
the dynamic nature of changing requirements very well, since
every requirement change forces the design team to revisit the
design decomposition and amend it appropriately. A key goal is
to support frequent requirement changes by reducing the
overhead involved in re-establishing the design decomposition
hierarchies.

Figure 1. Concept of domains and mapping.

Another lesson learned from recent design activities using
the axiomatic approach is that it takes a lot of time to decompose
to the levels at which most design engineers feel comfortably in
their territory of expertise. Starting from the zero level and
decomposing to the conceptual level is difficult. If design
engineers are trying to create a new “clean sheet” design in a
solution neutral environment, the conceptual level design
decomposition is very valuable. However, if they are trying to
improve an existing design, decomposing the whole design from
the very top level doesn’t always provide value and becomes
somewhat painful before they really begin to reap the rewards. In
the re-design case, they need to have fast approach.

Recent design activities have demonstrated that the process
of reverse engineering the design decomposition from a pre-
existing design is often perceived to be more trouble than it’s
worth. Absent the ability to effect meaningful change to the
fundamental design of the product (due to the investment in

CAD drawings, customer trial prototypes, tooling, etc.), the
process of obtaining the full FR/DP decomposition after the fact
can be seen as more trouble than it’s worth. In these instances a
rapid approach to design capture for the purposes of improving
some aspect of the design is critical.

Figure 2 is a modified control block diagram that defines an
alternative decomposition process approach to resolve difficulties
mentioned above. The detailed explanations for the Figure 2 are
described below:

Figure 2. Extended domain concept.

Symmetric Domains: Design decomposition is a core activity
for the proposed process. It is captured in symmetric domains
(FR, DP and PV) to satisfy the independence axiom of
Axiomatic Design which claims there should be a one-to-one
mapping between domains. These symmetric domains may
maintain several decomposition islands in order to avoid
difficulties with top-down decomposition of existing systems.
Each individual island is responsible for subsystems where design
engineers begin decomposing their subsystem without worrying
about the conceptual level organization. Managers may arrange
these subsystems under zero level of their product
decomposition or develop a conceptual level decomposition
structure to gain a better system design understanding. Both of
these approaches are valid since inter-relationships
(dependencies) will be revealed when the full design matrix is
completed. Since the full design matrix shows all of the leaf level
relationships, by definition, it will show interactions between
subsystems.

Customer domain: For practical reasons it is often helpful to
consider the traditional customer domain as an abstract entity
under which a variety of concrete domains can exist. Industry
standards and government security requirements represent static
requirements that must be satisfied over the product lifecycle.
Functional flows from systems engineering and use cases in
software systems are candidates for inputs to a category of
requirements which represents the dynamic nature of
requirement changes. Dynamic requirements have more impact
on the symmetric domains since they change over the product
lifecycle. DSM clustering analysis is useful for this dynamic
requirement domain to categorize subsystem requirements. If
such a proposed categorization is carried out from given
requirements, efficient and logical structuring for individual
subsystem islands is possible in the symmetric domains.

Control domain: The control domain is a new addition to the
concept represented by the diagram. Constraints are the best

User’s
needs

Customer
Domain

Functional
Domain

FRs

Physical
Domain

DPs

Process
Domain

PVs

Symmetric Domains

…

Control
Domain

Customer Domains

Static
Requirements

Dynamic
Requirements

Dynamic
Requirements

Dynamic
Requirements

Complementary
Domain

Complementary
Domain

Complementary
Domains

Software Product lifecycle management using axiomatic approach
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 3/6

example of this type of domain, since they impact overall
product performance.

Complementary domains: Complementary domains are also
added to address additional needs specific to the industry or
problem domain. In the manufacturing industry for example,
this domain should capture the data - that are controlled by
product data management (PDM) systems, such as product
structures, cost units, CAD models, bill of materials (BOM) and
other manufacturing related items. In the software industry,
example domains designed to snapshot and check the
development status along with the design are Quality Assurance
(QA), testing, risk management, and source code reverse
engineering.

Linking among domains: The correct establishment of the
relationships between these domains is the key requirement for
running the proposed traceability model successfully. As long as
the correct relationships between the objects in the domains are
preserved, managers are able to review the genesis and
consequence of design artifacts over time.

3 SOFTWARE PRODUCT LIFECYCLE
MANAGEMENT

Software is not manufactured in the classical sense. Instead,
the engineering function serves the role of the manufacturing
process. Also, software performance doesn’t degrade over time.
Given these characteristics, the principle performance concern is
related to software failure – commonly referred to as “bugs”.
Figure 3 demonstrates how software failure profile responds in
response to the introduction of changes to the system over time.
Each change fundamentally degrades the failure profile for the
system [Pressman, (1997)]. Many software process models have
been introduced in an attempt to address this problem. They
include the waterfall model, the rapid application development
(RAD) model, the spiral model, the rational unified process
(RUP) [Kroll et al. 2003] and so on. All of these process models
are converging on an iterative approach due to the fundamental
realities of significant requirements change. However, most of
these processes tend to handle each iteration step as a discrete
event that often becomes an island removed from the core
process of the system. Unlike manufacturing, one last critical
difficulty is the difficulty of visualizing the part (in this case code)
that is being actively developed. The axiomatic approach offers
matrix manipulations as a visualization method. It thus provides
a whole new way of managing the software lifecycle.

Figure 3. Failure curve for software.

Using matrix traceability, the axiomatic process model
recommends cycling through each step iteratively. Each new
requirement should be processed via the flow in Figure 2, from
the customer domain, to the symmetric domains and the
complementary domains. An example of this process specific to
software development follows. This process focuses on the
object-oriented development paradigm. However, it could be
adapted to other software methodologies as well.

Requirement handling in the customer domain
The object oriented approach to software engineering is

widely accepted and practiced within the software industry. In
the object oriented approach, each subject or task is modeled as
an object. An object encapsulates and exposes its behavior to
other objects via the use of methods. These methods, in turn,
utilize data maintained by the object itself. Ideally, the only direct
access to the data within the object is via the object’s methods.
This approach, in theory, allows strong separation between the
behavior of the object and the internal details necessary for
clients of the object to leverage its behavior.

At a process level, use cases are a common means of
defining and managing requirements for a system. Use cases are
often articulated as a textual decomposition of processes the
system must support, and can in turn be mapped to use-case or
sequence diagrams represented in UML that capture the object
interactions required to support each use-case.

The axiomatic process model recommends establishing a use
case domain in order to model the dynamic nature of
requirements in software. Every customer requirement should be
mapped into the use case domain and scenario and decomposed
in accordance with the use case’s process steps. In this model,
customer requirements drive use cases that, in turn, drive
functional requirements and other artifacts of symmetric
decomposition. While it is possible to drive from customer
requirements directly to functional requirements (as defined in a
core Axiomatic Design process), using a use case centric
decomposition process allows a clear separation between the
underlying functions of the system (FRs) and the processes
which leverage those functions (as captured in the form of use
cases). This makes for a more consistent and easier to
implement decomposition.

Once use-cases are defined, the next recommended step is to
utilize DSM clustering techniques to identify highly
interdependent aspects of the system. In this technique, highly

Software Product lifecycle management using axiomatic approach
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 4/6

interdependent aspects are grouped into architectural chunks.
Because of the interdependent nature of these chunks, DSM
prescribes that the best approach to organize responsibility for
the handling of the various aspects that are contained in a given
chunk, is to consider, manage and define them along with all
other aspects of the same chunk.

In order to apply this technique in this process, use cases
must be elaborated in order to identify interrelationships between
them. Once accomplished, the use-cases can then be grouped
into intrinsic sub-system entities which can identify optimal group
organization to proceed with transforming the use-cases into the
functional and physical domains. Figure 4 illustrates this process.
A, B, C and D in the figure are candidates sub systems.

Constraints in control domain
Constraints identify system wide performance limitations on

the system. Depending on the functional and physical
decomposition of the system, these constraints may be satisfied
passively, by never violating the constraint in the solution, or
actively, requiring the creation of new FRs or alternative DP
selections to keep the system from violating the constraint.
Concrete artifacts of constraints in software systems are
robustness and conditional handling, etc. Explicitly identifying
these exceptional conditions in the constraints allows developers
to be more productive and prescribe responses at design time,
rather than after the fact.

Figure 4. Control dynamic requirements.

Design decomposition in the symmetric domains
One of the most important and therefore difficult aspects of

functional decomposition is defining the right high level FRs.
When high-level FRs are defined well, the decomposition process
is straightforward. However, if the high-level FRs are poorly
conceived, the rest of the decomposition process will suffer as
well.

The utilization of a use case domain in the process described
here helps assure the correct high-level FRs, by pre-defining sub-
systems and process steps and reducing the scope of the
functional decomposition problem. By reducing the scope of
work in the functional domain, designers can more easily
decompose each subsystem to perform and create object
hierarchies as design parameters (DPs) that satisfy corresponding
FRs with the zigzagging process between domains.

To allow for evolution of the decomposition over time, the
proposed process recommends decomposing each subsystem
down to a class level of granularity. This should result in roughly
four to five levels of decomposition per subsystem.

While it’s possible that designers would choose to
decompose beyond the class level all the way down to the method

and attribute level (the software equivalents of “nuts and bolts”),
this is not necessarily recommended. Decomposition down to
too low a level has the potential to balloon into an incredibly large
and difficult-to-manage representation of the system. Given that
in the software space, the source code for the system not only
implements the behavior of the system, but also documents that
behavior (albeit in an unconventional form), this level of detail in
the decomposition is unnecessary. Another option for capturing
this level of detail will be proposed in an optional complementary
domain later in this document.

The decision to drive the decomposition to a class level of
granularity parallels object oriented development’s separation
between the object’s external behavior (which defines its
functions relative to the system) and its internal behavior (which
defines its functions relative to itself).

Once the required subsystems are constructed as part of
each iteration, the full design matrix should be checked to see that
the proposed design is feasible without any coupled interactions.
At this point, it is important to identify relationships between the
customer domains (the use case domain in this case) and the
functional domain such that each process step in every use case
should be satisfied by at least one functional requirement. At this
point, programmers can start the implementation of classes
leveraging the guidance provided by interactions identified in the
full design matrix.

Verifying iterations using complementary domains.
The complementary domains have been introduced to verify

and bridge between requirements, conceptual design and physical
structure. Additional complementary domains can be defined
based on the applicable industry or nature of the problem. The
following discussion identifies complementary domains particular
to software:

Product structure domain: The software class hierarchy is
a good example of a product structure. While DPs could in
theory represent an appropriate class hierarchy, conceptual DPs,
as part of their symmetric nature, are typically organized
functionally. The product structure domain in turn maps the
functionally organized DPs to a physically organized
decomposition. This mapping is common in a variety of
problem contexts. For example, a DP may be decomposed to
handle the inputs to a circuit and elsewhere another DP may be
decomposed to handle the outputs. In the product structure each
of these DPs would be mapped to the same physical circuit, a
part which implements both the inputs and the outputs.

In software, the product structure domain can be used to
verify code by automatically deriving the structure from the
existing code base and examining the relationships of the derived
domain against the DPs in the system. The same could also be
done with mechanical modeling tools or other tools which
maintain structurally-oriented product data.

This mapping allows project teams to verify that the set of
conceptual DPs are appropriately allocated to physical parts.
Moreover, the product structure itself can be further analyzed via
DSM techniques for additional optimization of the structure and
maintenance of the system. In theory, clustering analysis of both
the use case domain and the physical structure domain should
produce highly similar subsystem clusters. Testing this hypothesis
is outside the scope of this document and remains to be proven.

*XXXU7

*XXU6

X*XU5

XX*XXU4

XX*XU3

XX*U2

XXX*U1

U7U6U5U4U3U2U1

*XXXU7

*XXU6

X*XU5

XX*XXU4

XX*XU3

XX*U2

XXX*U1

U7U6U5U4U3U2U1

*XXXU7

X*XXU3

X*XU2

XXX*XU4

X*XU5

X*XU6

XXX*U1

U7U3U2U4U5U6U1

*XXXU7

X*XXU3

X*XU2

XXX*XU4

X*XU5

X*XU6

XXX*U1

U7U3U2U4U5U6U1

Software Product lifecycle management using axiomatic approach
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 5/6

Product activity domain: Most software today is “event”
driven. In an event driven system behavior is initiated in response
to the receipt of an event. Conceptually, this is the equivalent of
the mail man ringing your doorbell to alert you that your mail is
present, rather than requiring you to continuously check your
mailbox to test whether mail has arrived. In software, events take
the form of mouse clicks, file system alerts, and other
notifications which alert the software that a response may be
required (at the software’s discretion). These activity events
represent the dynamic nature of the software and serve as
starting points for interactions between objects. Software failures
can occur if the software does not respond appropriately to an
event based on its internal state which is rarely deterministically
defined over time. From a management perspective, these
activities should be categorized by a set of process iteration steps
which are identified in the use case domain for every
development cycle. Accumulating these activities represents the
actual status of software project schedule.

Test case domain: Use cases are the primary source of test
cases. Every relationship between the use case domain and the
functional domain is subject to be a single test case. These test
cases should also be mindful of testing the limitations of the
system as defined in the constraints. Additional tests can be listed
in this domain. Maintaining tests this way allows teams to
visualize the impact (in terms of system behavior) of the test
failures. Because of these linkages, managers can travel among
use cases, FRs, DPs, product structures and product activities to
figure out whether each customer requirement can be satisfied.
Another benefit of the links is ability to generate test case
scenarios for each iteration or build cycle and, if the test case fails,
use the results as inputs to the quality assurance domain.

Quality assurance (QA or Risk Assessment) domain:
Every software organization has a QA division to quantify failures
in the software. Most of the QA team maintains a bug reporting
system as part of the QA process of keeping track of the
lifecycle of the failures. The QA domain records the failures
coordinated by elements of the case domain and categorizes
them by creating hierarchies depending on the origin of the
failure. Failures can be ranked by risk strength. Probability of
occurrence and potential severity of consequence for each failure
item could be captured from test case execution. These particular
custom attributes then are used to rank risks. Figure 5 shows a
graphical depiction of risk ranks for a series of failures. In this
representation, failures appearing in the upper right portion of
the graph are considered most critical [Haimes, 1998]. By
maintaining traceability throughout the various domains,
managers can trace high risk failures back through the test case
domain, to the product activity domain to the product structure
domain, to the FR/DP domain, to the use case, and ultimately to
the customer requirement that is in jeopardy.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Potential Severity of Consequence (Cf)

P
ro

ba
bi

lit
y o

f O
cc

ur
re

nc
e

(P
f)

RA8

RA2RA7

RA4

RA1

RA3RA5

RA6

RA9

P
ro

b
a
b
ili

ty
 o

f
O

c
c
u
rr

e
n
c
e
 (

P
f)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Potential Severity of Consequence (Cf)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Potential Severity of Consequence (Cf)

P
ro

ba
bi

lit
y o

f O
cc

ur
re

nc
e

(P
f)

RA8

RA2RA7

RA4

RA1

RA3RA5

RA6

RA9

P
ro

b
a
b
ili

ty
 o

f
O

c
c
u
rr

e
n
c
e
 (

P
f)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Potential Severity of Consequence (Cf)
Figure 5. Example of risk profiles.

4 VISUALIZING THE AXIOMATIC ITERATIVE
PROCESS MODEL

Suppose that a design group has executed the initial iteration
that contains every element in Section 3 starting from
requirements and culminating in risk analysis. As requirements are
added to the process, the next process iteration unfolds. First,
the new requirements should be translated into use cases. Next,
the DSM analysis with a newly added use results in impact change
analysis. Two modes for impact change assessment are shown in
Figure 6, which extends from Figure 4 and indicates the “U8” as
change: one is a matrix and the other is a diagram that shows
chain links across each domain. This visual representation is
consistent with the past decisions that the new change should
consider during the lifecycle of the iteration and provides a high
degree of implementation reliability.

T
C

/Q
A

…
F
R

/D
P

U
C

/F
R

U
C

*XXXU8

*XXXU7

X*XXU6

X*XU5

XX*XXU4

XX*XU3

XX*U2

XXX*U1

U8U7U6U5U4U3U2U1

*XXXU8

*XXXU7

X*XXU6

X*XU5

XX*XXU4

XX*XU3

XX*U2

XXX*U1

U8U7U6U5U4U3U2U1

*XXXU7

X*XXU3

X*XU2

XXX*XU4

X*U5

X*XXU8

X*XU6

X*U1

U7U3U2U4U5U8U6U1

*XXXU7

X*XXU3

X*XU2

XXX*XU4

X*U5

X*XXU8

X*XU6

X*U1

U7U3U2U4U5U8U6U1

Software Product lifecycle management using axiomatic approach
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 6/6

Figure 6. Process visualization.

5 DISCUSSION
Product lifecycle management requires coordination among a

variety of different disciplines and organizational responsibilities.
By adopting a systematic approach, many of the pitfalls inherent
in this type of coordination can be avoided. The axiomatic
design based framework illustrated here defines a repeatable, yet
flexible solution to this problem.

Such as process is highly compatible with the Software
Engineering Institute’s Capability Maturity Model, which
characterizes organizational processes based on how well defined
and practiced they are. In theory, the features of this framework
could support CMM certification all the way through to level 5.
However, additional research is required to characterize the
specific role of this framework in a CMM context.

This type of process requires the support of collaborative
software which can organize and capture information from a
variety of team members simultaneously. This is one of the
fundamental design points for ADSI’s Acclaro Designer.

6 REFERENCES

[1] ADSI, Axiomatic Design Solutions, Inc.
http://www.axiomaticdesign.com

[2] Haimes, Y. Yacov, Risk Modeling, Assessment, and Management,
Wiley-Interscience, 1998, ISBN 0471240052

[3] Kroll, Per and Kruchten, Philippe, The Rational Unified Process
Made Easy: A Practitioner’s Guide to Rational Unified Process,
Addison-Wesley, 2003, ISBN 0321166094

[4] Pimmler, Thomas U. and Eppinger, Steven D., "Integration
Analysis of Product Decompositions", Proceedings of the
ASME Sixth International Conference on Design Theory and
Methodology, Minneapolis, MN, Sept., 1994.

[5] Pressman, Roger S., Software Engineering: A practitioner’s
Approach, McGraw-Hill, New York, 1997. ISBN 0-07-
052182-4

[6] Suh N.P., The Principles of Design, New York: Oxford
University Press, 1990. ISBN 0-19-504345-6

[7] Suh N.P., Axiomatic Design, Advances and Applications, New
York: Oxford University Press, 2001. ISBN 0-19-513466-4

[8] Ulrich, K.T. and Eppinger, Steven D., Product Design and
Development, McGraw-Hill, New York, 2003. ISBN
0072471468

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

