
Proceedings of ICAD2004
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

ICAD-2004-14

Copyright © 2004 by ICAD2004 Page: 1/7

ABSTRACT
The automatic design of engineering systems has been

accomplished by the development of engineering optimization
techniques. The methods find design solutions that minimize the
cost function while given constraints are satisfied. The types of
design variables are classified into continuous and discrete ones.
Generally, available designs are discrete in design practice.
However, optimization has been developed to determine designs
in a continuous space. In recent research, a sequential algorithm
using orthogonal arrays (SOA) has been proposed for design in a
discrete space.

A software system is developed for the developed algorithm
according to the process in the V-model, which is proposed as a
design process for the object-oriented software system. In the
conceptual design of the software, the axiomatic approach is
utilized. Functional requirements (FRs) and design parameters
(DPs) of the software are defined according to the Independence
Axiom and decomposed by the zigzagging process. The objects
in object-oriented programming (OOP) can be generated by
analysis of the full design matrix and each object is coded as a
class. The design results are discussed.

Key Words: Axiomatic Design, Independence Axiom, OOP
(Object-Oriented Programming), SOA (Sequential
algorithm with Orthogonal Arrays), Orthogonal
Arrays

1 INTRODUCTION
Engineering optimization is an automatic design technique

minimizing the objective function over satisfying constraint
conditions after formulating design variables and requirements of
main performance [Arora, 1989; Vanderplaats, 1984]. Recently,
due to advances of the finite element method (FEM) and
computer techniques, the method is being applied actively to the
structural design field. The design variables are classified into
continuous and discrete ones. Available designs are generally
discrete in design practice. In structural design, design variables
should be determined frequently among some given values or
standard parts [Haftka, 1990; Arora, 1994]. But optimization has

been developed to determine designs in continuous space.
Therefore, it is needed to develop the method which can be
applied to problems with discrete design variables.

Various algorithms for optimization in discrete design space
have been proposed. Algorithms such as the branch and bound
(B&B), the simulated annealing, the genetic algorithm and the
taboo search serve as examples [Gutkowski, 1997; Osman, 1996;
Tseng, 1995; Kirkpatrick, 1983; Gen, 2000]. These methods are
applied to various areas, however, they are quite costly for large-
scale problems due to many function evaluations. Recently, an
efficient algorithm is proposed by Lee, et al [2003]. This
algorithm, called SOA (sequential algorithm using orthogonal
arrays), can decrease the function evaluations efficiently by using
orthogonal arrays.

Axiomatic design (AD) provides a framework for general
designs. Design involves a continuous interplay between what we
want to achieve and how we want to achieve it. Axiomatic design
helps a designer create a method for solving the synthetic
problem. It consists of two axioms which are the Independence
Axiom and the Information Axiom. When a design process is
defined according to the Independence Axiom, the design can be
performed sequentially without feedback [Suh, 1990, 2001; Park,
2005]. Since the design process is well organized, a software
system can be easily developed for automatic design by using the
axiomatic approach. Various software systems have been
developed by axiomatic design [Do, 2001; Park, 1999]. Recently,
the axiomatic approach is adopted for object-oriented
programming (OOP) [Do, 1999]. Software design is carried out
by the AD framework. It is noted that the software design and
the design process are almost identical and the design process is
automated by the software system.

The design process for embodying a sequential algorithm
using orthogonal arrays (SOA) is analyzed and constructed based
on the axiomatic design. The software system is developed by
the object-oriented programming language. The V-model has
been proposed for the idea of object-oriented software design
with an AD framework [Do, 1999]. The system is designed by
using the V-model and coded according to the design.

SOFTWARE DEVELOPMENT OF A SEQUENTIAL ALGORITHM WITH
ORTHOGONAL ARRAYS (SOA) USING AXIOMATIC DESIGN

Jeong-Wook Yi
yijwook@ihanyang.ac.kr

Post Doctoral Fellow,
Center of Innovative Design Optimization Technology,

Hanyang University
17, Haengdang-Dong, Sungdong-Gu, Seoul, 133-791,

Korea

Gyung-Jin Park
gjpark@hanyang.ac.kr

Department of Mechanical Engineering,
Hanyang University

1271, Sa-1-Dong, Ansan, Gyeonggi-Do, 425-791,
Korea

Software Development of a Sequential Algorithm with Orthogonal Arrays (SOA) Using Axiomatic Design
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 2/7

2 SEQUENTIAL ALGORITHM USING
ORTHOGONAL ARRAYS (SOA)

A matrix experiment for DOE consists of a set of
experiments. The settings of design variables are defined to
obtain the characteristics. After all of the experiments are
conducted, ANOM (analysis of mean) is performed to determine
the optimum levels [Park, 2002]. Since the DOE with orthogonal
arrays uses discrete values of design variables, discrete design can
be easily carried out.

When orthogonal arrays are properly selected, the minimum
number of experiments would have an effect that substitutes the
full factorial experiments. If interaction among the design
variables is strong, the interaction should be considered in
choosing the smallest size of an orthogonal array. However, it is
not easy to comprehend the interactions in structural design. In
this research, the effect of the interaction is disregarded.

For discrete designs without interaction or with mild
interaction, the Taylor series method can be utilized. In the
Taylor series method, perturbations of the design variables are
made forward and backward one at a time from the current
design. It can be superior to the suggested method for that kind
of problem. However, in problems with strong interaction, the
Taylor series method depends on only the current design point,
which may lead to the solution far from the real optimum. On
the contrary, the method using the orthogonal array offers a
closer solution to the real optimum since it determines the
optimum level using the average effect of each design variable.

An algorithm has been proposed using the estimation values
by ANOM [Park, 2002]. Since the algorithm uses orthogonal
arrays, the number of function evaluations can be decreased
greatly. Also, it can obtain a local discrete optimum by
sequentially moving the searching region. The overall flow of the
algorithm is illustrated in Fig. 1. The steps of the proposed
algorithm are as follows:

Step 1: Definition of the problem
An optimization problem is defined through the

identification of the design variables, an objective function, and
constraints. The factors in DOE are equivalent to the design
variables in optimization. The levels and the characteristic
function in the DOE are regarded as the discrete values and the
objective function in optimization, respectively. The candidate
values of each design variable should be given for the discrete
design. These values are considered as the levels in the matrix
experiment.

Step 2: Selection of an orthogonal array
In this research, three-level experiments are adopted for

finding a new design in an iteration. Thus, the minimum
orthogonal array is selected according to the number of design
variables. Minimum orthogonal array is utilized to save
computational time. The minimum orthogonal array is the
smallest one where all the design variables can be assigned to its
columns.

Step 3: Arrangement of the levels for design variables
In this step, the discrete values of design variables are

assigned to the columns of the orthogonal array selected in Step

2. The assignment can be arbitrarily performed, because the
interactions are not considered.

The candidate values of design variables should be given
before the design process is applied. In the initial design, an
arbitrary discrete value can be selected. The selected value is
assigned to the second level. From the neighboring values, the
discrete value with one step larger than the second level is
assigned to the first level while the one step smaller value is
assigned to the third level. Safe design is important in structural
design. Therefore, larger values are assigned to the first levels,
because the first levels appear more in orthogonal arrays. If an
initial design has the smallest or the largest from the candidates,
the two successively increased or decreased discrete values are
selected as the levels.

Step 4: Matrix experiment
The characteristic function is calculated for each row of the

orthogonal array. Using the optimization formulation, the matrix
experiment for each iteration can be expressed as follows:

Find b (1a)

to minimize f(b) (1b)
subject to gi(b) ≤ 0 i=1,…, l (1c)

Fig. 1 Flow of sequential algorithm using orthogonal
arrays (SOA)

Software Development of a Sequential Algorithm with Orthogonal Arrays (SOA) Using Axiomatic Design
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 3/7

where b is the design variable vector, f(b) is the objective function
and gi(b) is the constraint function, and l is the number of
constraints.

Step 5 : Determination of a new design
The conventional DOE methods do not consider the

constraints defined in design optimization. Thus, a new response
called the characteristic function, newR̂ is defined to include the
estimation value for the constraint violations as follows:

())(ˆˆˆ bb PfRnew += (2a)

∑
=

×=
m

i
ivsP

1
]ˆ,0max[)(ˆ b (2b)

where ()bP̂ is the penalty function, iv̂ is the maximum violation
of the estimation value of the i-th constraint, and s is the scale
factor. The scale factor is imposed to emphasize the constraint
violation. In this research, the scale factor is set to a value so that
the order of the penalty function is one-order larger than that of
the original objective function, f(b).

Next, after sorting the estimation values newR̂ in increasing
order, we can select the value and condition in the top as an
optimum one. It produces new levels of design variables. The
confirmation analysis with new levels should be carried out since
it does not always guarantee the design feasibility or the statistical
validity of additivity. The constraint feasibility is not always
guaranteed due to the definition of the characteristic function.
Furthermore, if interaction between design variables exists, the
interaction can cause an unreasonable determination of the new
levels. Thus, we compare the new levels evaluated by estimation
values of full factorial with the best combination from the matrix
experiments and the best levels are selected as the new levels in
the iteration. In structural design, one experiment requires finite
element analysis.

Step 6: Convergence criteria
The convergence criteria in the algorithm are as follows:

The algorithm is terminated (1) if the optimum levels of each
factor are all 2-levels in the current iteration, (2) if the number of
iterations in which the responses at the new levels are
consecutively not feasible is more than five. In case of
termination criterion (1), the current design is a local optimum
solution. If none of convergence criteria is satisfied, the design
process returns to Step 3. In this step, the second levels for the
design variables are replaced into former optimum levels.

3 DEVELOPMENT OF A SOFTWARE FOR
EMBODYING SOA USING THE AXIOMATIC
APPROACH

3.1 AXIOMATIC DESIGN FOR OBJECT-ORIENTED
PROGRAMMING

Axiomatic design (AD) is the framework for a good design.
It helps to create synthesized solutions that satisfy perceived
needs through mapping between functional requirements (FRs)

and design parameters (DPs). An FR is the goal to achieve and is
defined in the functional domain, while a DP is determined in the
physical domain as the means to achieve the goal. Mapping is a
process to choose a relevant DP in the physical domain, which
satisfies the corresponding FR in the functional domain.
Designers begin the design from comprehensive FRs. A design
can decompose FRs into many hierarchies. But the
decomposition of FRs must be carried out at the same time with
the decomposition of DPs. The zigzagging between FRs and
DPs is necessary because the two sets of each level are connected
and mutually dependent.

Axiomatic design consists of two axioms which are the
Independence Axiom and the Information Axiom. The first
axiom tells us about the selection of FRs and DPs. The second
axiom shows a quantitative method of judging which design is
more desirable. The two axioms present the most fundamental
means needed to choose the best design.

For a design to be acceptable, the design must satisfy the first
axiom. A design matrix (DM) is defined to pursue the
relationship between FRs and DPs as following:

{ } []{ }DPsAFRs = (3)

where {FRs} is a vector for FRs, {DPs} is a vector for DPs and
[A] is a design matrix.

When the Independence Axiom is satisfied, the design
matrix takes the form of a diagonal matrix or a triangular matrix.
A diagonal matrix represents a perfectly uncoupled design and is
the most desirable form. A triangular matrix represents a
decoupled design. This form of design is also a proper design,
but the DPs need to be determined in a specific order. The third
form is the coupled design where some diagonal elements are not
zero in the design matrix. This type of design is undesirable
because when a DP is modified, multiple FRs are changed. Thus,
the Independence Axiom is not satisfied.

The Information Axiom is related to the complexity of a
design, and implies that the simpler design is the better one.
Generally, information content is quantitatively defined by the
probability of success. The Information Axiom is utilized to
select the best one out of multiple designs which satisfy the
Independence Axiom. The information content is not yet
defined rigorously in software development. Therefore, only the
Independence Axiom is employed in this research.

System modules should be independently constructed to
design an efficient software system [Roger, 1997]. It is needed to
introduce the axiomatic design approach so that modules in the
functional domain can be maintained independently in the
physical domain. Do and Park have developed a software for the
glass bulb design with a conventional language using axiomatic
design [Do and Park, 2001]. Recently, object-oriented
programming (OOP) is utilized with the axiomatic approach and
the V-model is proposed as a design process for the object-
oriented software system [Do and Suh, 1999]. In the V-model,
the first step is to build the hierarchy, which follows the top-down
approach, and is the generation of the full design matrix table for
module definition. The second step is to build the object-
oriented model with a bottom-up approach. As illustrated in Fig.
2, several steps are needed.

Software Development of a Sequential Algorithm with Orthogonal Arrays (SOA) Using Axiomatic Design
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 4/7

The system, which can embody a sequential algorithm using
orthogonal arrays (SOA), is designed by using the V-model and
coded according to the design. We will describe the development
process of the software system according the design step in the
V-model. Parts of the development will only be introduced
because the entire process is too long to describe.

3.2 DEFINITION OF FRS FOR THE SYSTEM AND
DECOMPOSITION (STEPS 1, 2 AND 3)

First, the process for SOA is analyzed from an axiomatic
viewpoint. The SOA software has to conduct the link with other
commercial analysis packages and be composed of functions
which users can easily use. Also, each iterative process has to be
executed automatically and the results should be shown to users.
These requirements are defined as engineering terms. As a result,
FRs, DPs and their relations for the top level are defined as
shown in Table 1. An FR is expressed by a function that the
software system should achieve. Rhetorically, the sentence starts
with a verb. DPs are data to achieve the FRs and they are the
input and output of programs in software design. Rhetorically,
they start with nouns. “X” in the design matrix means an
algorithm to materialize the logical relations.

The design process is a decoupled one because the design
matrix is triangular. Thus, the software design should be carried
out according to the sequence that the design matrix indicates.
And then each FRx is decomposed to FRx’s based on the selected
DPx. DPs in a certain level play roles for standards to
decomposed FRs of the next lower level. It is noted that the
independence of FRs should be maintained by appropriate
selection of DPs.

As shown in Table 1, FR1 is “construct the user’s
environment.” And DP1 is input and output data of software
environment such as working folder and information of a
commercial analyzer. Environmental data is a set consisting of
many data. Therefore, it is defined as a structure type in the C-
language. FR2 is “construct the input condition of design.” DP2
for the satisfying function of FR2 is input data set of the design,
and FR2 also needs environmental data of DP1, which is
expressed by “X” in Table 1. For example, for performance of
FR2, the function of FR1 is needed. Then, since the name of the
working folder involved in the environmental data set has to be
used, information of DP1 must be used. Similarly, FR3, FR4 and
FR5 are defined and DP3, DP4 and DP5 are defined accordingly.

From DP1, the detailed operations of FR1 can be defined.
That is, various data constructions should be made for data for

Fig. 2 Axiomatic design process for object-oriented
software system (the V-model)

Customer
needs

Software
product

Define
modules

Define FRs

Map to
DPs

Decompose
Identify classes

Establish interfaces

Code with system
architecture

Build the software hierarchy

(Top-down approach)

Bu
ild

 th
e

ob
je

ct
 o

rie
nt

ed
 m

od
el

(B
ot

to
m

-u
p

ap
pr

oa
ch

)

Identify leaves
(Full design matrix)

7
1

2

3

4

5

6

Table 1 FRs of the top level
 FRx DPx

P
Develop the SOA
software

DM SOA software

1
Construct the
user’s environment X O O O O

Data set of
software
environment

2
Construct the input
condition of design

X X O O O
Input data set of
the design

3

Conduct the
sequential process
for optimum
solution

O X X O O
Condition data for
iterative process

4 Show the results O X X X O
Result data set and
output resource

5
Manage the
information for
software

X X X O X Information data

Table 2 FRs of the first level for FR1x
FR1x DP1x

P Construct the user’s
environment

DM1 Data set of software
environment

1 Construct the working
folder X O

Data set of setting the
option information

2
Construct the
information of analyzer O X Data set of analyzer

Table 3 FRs of the second level
FR12x DP12x

P
Construct the
information of
analyzer

DM12 Data set of
analyzer

1 Define the name
of analyzer X O O O O O

Name of
analyzer

2
Search the
position of
analyzer

O X O O O O
Position of
analyzer

3
Define the file
name of analyzer O X X O O O

File name
of analyzer

4
Define the
extension of
analyzer

O X O X O O
Extension
of analyzer

5
Define the
extension of
output file

O O O O X O
Extension
of output
file

6
Define the
format type of
input file

O O O O O X
Format
type of
input

Software Development of a Sequential Algorithm with Orthogonal Arrays (SOA) Using Axiomatic Design
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 5/7

running software and data of analyzer. Therefore, FR1 is
decomposed into FR11 and FR12 as shown in Table 2. The type
of design is an uncoupled design in the lower level. Therefore,
each function of FRs can be performed independently. DP12,
“Data set of analyzer,” consists of name, position, file extension,
type of data, etc. FR12 is decomposed into six FRs from FR121
to FR126 based on each DPs, as shown in Table 3.

The decomposition is continued up to the minimum unit of
the algorithm. The flow of the software system is the same as
that of the design process except for the options of the software
system and data management.

3.3 DEFINITION OF MODULES AND IDENTIFICATION OF
OBJECTS (STEPS 4 AND 5)

The entire full design matrix is established from the
zigzagging process of decomposition. The full design matrix is
exploited for definition of software modules and objects. Fig. 3
illustrates the full design matrix. The rows of the matrix
represent FRs and the columns represent DPs. In software
design FRs and DPs are modules and input/output for functions,
respectively.

The rectangular matrices with thick lines represent
independent sub matrices. Each FR is defined as a module and
each module is defined in the functional domain while each DP is
defined in the physical domain. Therefore, the design matrix
shows the relationship between the functional domain and the
physical domain.

In view of object-oriented programming (OOP), we link
methods and attributes in an object into FRs and DPs and objects
in Fig. 3 are defined. An object, which is represented by the
rectangle with thick lines, consists of the methods in the row of
the design matrix and the attributes of the column. Main module
is defined by an object of “ExteriorPenalty” which is inherited by
the “DOEMethod” object and involves objects such as
“OptionDlg.” In the lower level, the module of FR1 is
performed by objects of “OptionDlg” and “AnalyzerInfoDlg.”
FR2 consists of objects of “InputInfoSettingDlg,”
“FactorInfoDlg” and “OATableSettingDlg.” Similarly, FR3, FR4
and FR5 consist of other objects as shown in Fig. 3.

In the lower level, the module of FR1 can be decomposed
into FR11 and FR12. FR11 sets a working folder and FR12
defines the information of an analyzer for user, as illustrated in
Fig. 4. The function of FR12, which is decomposed into FR122,
FR123 and FR124, can be performed by objects of
“AnalyzerInfoDlg.” An object of “DirSearchDlg” is involved in
the object of “OptionsDlg.” All the data related to these objects
are involved in the object of the “ExteriorPenalty” which has the
structure data of “Analyzer_Info,” “Option_Info,” etc. All the
objects are defined in this way.

3.4 ESTABLISHMENT OF INTERFACES AND CODING
(STEPS 6 AND 7)

Classes are defined by the set of objects as illustrated in Fig.
5. The only one class for FR1 is presented in Fig. 5. Almost all
of the names of the classes are the same. Class “OptionsDlg” is
defined from the relation of “Aggregation” for the two classes,

Fig. 3 Full design matrix

Fig. 4 Design matrix for FR1

Fig. 5 Class diagram for FR1

OptionsDlg

OptionInfo option;
……

ReadAnalyzerDataFile ();
…….

DirSearchDlg

DirTreeCtrl m_treeDir;
……

OnClickTreeDir();
………..

AnalyzerInfoDlg

AnalyzerInfo analyzer;
……

OnAnalyzerSearchBtn()
;

FileDialog

filestruct struct;
……

GetFileName();
………..

Software Development of a Sequential Algorithm with Orthogonal Arrays (SOA) Using Axiomatic Design
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 6/7

“DirSearchDlg” and “AnalyzerInfoDlg.” Class “OptionsDlg” has
a function of input for constructing the configuration file. It is
automatically executed and fixed when the system starts. Class
“AnalyzerInfoDlg” handles the data for management of other
commercial analysis package or user defined execute file. Any
classes defined in this step are used as the new objects in another
process. For example, in Fig. 5, class “FileDialog” is used for the
function of FR211, which sets the path of an input file for an
analyzer.

Using the above process, a software system is coded. The
overall menus are illustrated in Fig. 6. After setting design
variables and selecting the table of orthogonal arrays, the system
iteratively conducts experiments according to the selected
orthogonal arrays and shows the optimal condition.

4 CONCLUSIONS
A design software system is developed to perform the

sequential algorithm using orthogonal arrays (SOA). The system
is systematically designed by using the axiomatic approach. The
V-model for object-oriented programming is adopted in this
process and coding is conducted based on the software design. It
is found that the axiomatic approach makes software
development quite handy. The process is incorporated exactly in
the flow of the software system with various menus. For strength
analysis, the system is interfaced with a finite element analysis
system.

In the future, application to commercial products will be
made because the time for software development is considerably
reduced due to the axiomatic approach.

5 ACKNOWLEDGMENTS
This research was supported by the Center of Innovative

Design Optimization Technology, which was funded from the
Korea Science and Engineering Foundation. The authors are
thankful to Mrs. MiSun Park for her correction of the manuscript.

6 REFERENCES

[1] Arora, J.S., Introduction to Optimum Design, New York:
McGraw-Hill Book Company, 1989. ISBN 0-07-100123-9

[2] Arora, J.S., Huang, M.W., “Methods for Optimization of
Nonlinear Problems with Discrete Variables: A Review,”
Structural Optimization, Vol. 8, pp. 69-85, 1994.

[3] Do, S.H., Park, G.J., “Application of Design Axioms for
Glass Bulb Design and Software Development for Design
Automation,” Journal of Mechanical Design of the ASME, Vol.
123, No. 3, pp. 322-329, 2001.

[4] Do, S.H., Suh, N.P., “Systematic OO Programming with
Axiomatic Design,” Computer, Vol. 32, No. 10, pp. 121-124,
1999.

[5] Gen, M., Cheng, R., Genetic Algorithms and Engineering
Optimization, New York: John Wiley & Sons, Inc., 2000.

[6] Gutkowski, W., Discrete Structural Optimization, New York:
Springer-Verlag, 1997.

[7] Haftka, R.T., Gurdal Z., Kamat, M., Elements of Structural
Optimization, Dordrecht: Kluwer Academic Publishers, 1990.

[8] Kirkpatrick, S., Gelatt, C.D., Jr., M.P. Vecchi, “Optimization
by Simulated Annealing,” Science, Vol. 220, No. 4598, pp.
671-680, 1983.

[9] Lee, K.H., Yi, J.W., Park, J.S., Park, G.J., “An Optimization
Algorithm Using Orthogonal Arrays in Discrete Design
Space for Structures,” Finite Elements in Analysis and Design,
Vol. 40, pp. 121-135, 2003.

[10] Osman, I.H., Kelly, J.P., Meta-Heuristics: Theory & Applications,
Boston: Kluwer Academic Publishers, 1996.

[11] Park, G.J., Analytic Methods in Design Practice, Springer-Verlag,
in preparation, 2005.

[12] Park, G.J., Do, S.H., Suh, N.P., “Design and Extension of
Software Systems Using the Axiomatic Design Framework,”
Transactions of the Korean Society of Mechanical Engineers (A), Vol.
23, No. 9, pp. 1536-1549, 1999 (in Korean).

[13] Park, S.H., Modern Design of Experiments, Minyoung-Sa, 2002
(in Korean).

[14] Roger, SP., Software Engineering: A Practitioner’s Approach, 4th
Ed. NY: McGraw-Hill, 1997. ISBN 0-07-052182-4

[15] Suh, N.P., The Principles of Design, NY: Oxford University
Press, 1990. ISBN 0-19-504345-6

[16] Suh, N.P., Axiomatic Design: Advances and Applications, NY:
Oxford University Press, 2001. ISBN 0-19-513466-4

[17] Suh, N.P., Sekimoto S., “Design of Thinking Design
Machine,” Annals of the CIRP, Vol. 39, No. 1, pp. 145-148,
1990.

[18] Tseng, C.H., Wang, L.W., Ling, S.F., “Enhancing Branch-
and-Bound Method for Structural Optimization,” Journal of
Structural Engineering, ASCE, Vol. 121, pp. 831-837, 1995.

Fig. 6 Screen of the developed software (SOA)

Software Development of a Sequential Algorithm with Orthogonal Arrays (SOA) Using Axiomatic Design
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 7/7

[19] Vanderplaats, G.N., Numerical Optimization Techniques for
Engineering Design, NY: McGraw-Hill Book Company, 1984.

