

Ship design (Overview)

Limitations of Ship Design

Parent(Basis) Ship based Design

In most shipyard designs, practical ship design is based on the parent or basis ship.

- > Modifications of ship design are very little.
- > Depends on empirical formulation.
- > Case-Based Design more appropriates for ship design.

Burdens of Rules and Regulations

Owing to many Rules and Regulations, ship design is restricted.

Part 1. Axiomatic Design

Introduction

Motivation of Design Axiom

avoid intuitive way -> trial and error, empiricism, and know-how. develop more systematic and rational approach.

Axiomatic design is

a scientific basis to the design process a consistent set of analysis tools to assess each design decision

The roles of Design Axioms in Marine design are

Preliminary Barge design(redundant design, the similarity-based design) selects which parameters should be changed and in what order they should be changed

Part 1. Axiomatic Design Barge Design Example

In the early design stage of a complex product difficulty in exactly specifying all requirements and constraints. Similarity-based design finds a good solution from past experience. minimizes the risk of failure based on a verified solution with less effort.

In a preliminary structural design (Redundant Design)

many design variables compared to its simple functional requirements. a functional requirement is usually associated with more than one design variable.

the Independence Axiom

finds which DPs should be changed and which change order is best for minimizing iterations.

the Information Axiom

selects a design point to have the largest probability of attaining the attributes.

Part 1. Axiomatic Design
Barge Design Example-Independence Axiom
Selecting partial DP sets using the Independence Axiom
$ \begin{cases} \Delta Dwt \\ \Delta Z \\ \Delta Swt \end{cases} = \begin{bmatrix} 0.316 & 0.323 & 0.010 & 0.333 & 0.018 \\ 0.0 & 0.245 & 0.422 & 0.0 & 0.333 \\ 0.304 & 0.179 & 0.184 & 0.0 & 0.333 \end{bmatrix} \begin{bmatrix} \Delta L \\ \Delta B \\ \Delta D \\ \Delta T \\ \Delta t \end{bmatrix} $
choose three DPs for an uncoupled or decoupled design matrix type. measure the independence by the reangularity (R) and the semangularity (S).
The two sets having the largest R and S.
$ \left(\begin{array}{c} \Delta Z \\ \Delta Swt \\ \Delta Dwt \end{array} \right) = \begin{bmatrix} 0.422 & 0.0 & 0.0 \\ 0.184 & 0.304 & 0.0 \\ 0.010 & 0.316 & 0.333 \end{bmatrix} \begin{bmatrix} \Delta D \\ \Delta L \\ \Delta T \end{bmatrix} (2) \begin{bmatrix} \Delta Z \\ \Delta Swt \\ \Delta Dwt \end{bmatrix} = \begin{bmatrix} 0.333 & 0.0 & 0.0 \\ 0.333 & 0.304 & 0.0 \\ 0.018 & 0.316 & 0.333 \end{bmatrix} \begin{bmatrix} \Delta t \\ \Delta L \\ \Delta T \end{bmatrix} $
InSDeL. Seoul National University

Part 1. Axiomatic De	sign
How to find a new solution for Case ① ?	$\frac{Minimize}{Steel weight(Swt)} = 2t(2DB + 1.9DL + LB)\rho_s$
$ \left(\begin{array}{c} \Delta Z \\ \Delta Swt \\ \Delta Dwt \end{array} \right) = \begin{bmatrix} 0.422 & 0.0 & 0.0 \\ 0.184 & 0.304 & 0.0 \\ 0.010 & 0.316 & 0.333 \end{bmatrix} \begin{bmatrix} \Delta D \\ \Delta L \\ \Delta T \end{bmatrix} $	Subject to $Dwt \ge 1200 \text{ ton, } GM \ge 0.3 \text{ m}, \frac{D}{T} \ge 1.1$ $2.156 \le \frac{Z}{Z_{req}} \le 3.0, 5 \le \frac{L}{B} \le 7.5$
	<i>Given</i> $B = 7.54$, $t = 0.005$ <i>Find</i> D, L, T
i) change D in order to satisfy the constra	int, $2.156 \le Z/Z_{req} \le 3.0$
$Z = \{(2D^{2}t/3) + (t^{3}B/3D) + tDB\}, Z_{req} =$	$0.1021m^4 \Longrightarrow \boxed{D = 4.25 m}$
ii) in order to satisfy the constraint, Dwt increase T which has little influence on $Dwt = \rho_w LBT - 2t(2DB +$	$\geq 1200 \text{ ton}$ the objective, Steel Weight and let $L = 41.94 \text{ m}$ $1.9DL + LB)\rho_s \implies T = 3.983 \text{ m}$
iii) since the constraint $D/T = 1.067$, is view iv) in order to satisfy the constraint, , inc Swt = 2t(2DB)	blated, decrease T. $\Rightarrow T = 3.86 m$ rease L $\Rightarrow L = 43.34 m$ $+ 1.9DL + LB)\rho_s \Rightarrow Swt = 61.45 ton$
	InSDeL, Seoul National University

Part 1. Axiomatic Design

Barge Design Example-Independence Axiom

$\operatorname{Result} \, \mathbb{1} \, \operatorname{is}$

a little inferior to the optimization result regarding objective function (Swt). But, superior in aspect of the computational time.

The resul	ts of applying the	Independent Ax	iom and optimi	zation
	Initial Point	① {D,L,T}	② {t, L,T}	Optimization {L,B,D,T,t}
L	41.94	43.34	45.17	42.03
В	7.54	7.54	7.54	7.77
D	4.09	4.25	4.09	4.28
Т	3.37	3.86	3.72	3.89
t	0.0050	0.0050	0.0053	0.0050
Dwt	1007.3	1200.3	1200.1	1209.4
Z/Z _{req}	2.056	2.159	2.180	2.233
Swt	58.4	61.45	66.27	60.99

Part 1. Axiomatic Design

Barge Design Example-Information Axiom

Information content of Similarity

the more similar to mother ship, less information content the design ship has

 $I_{Similarity} = \left(\frac{L_b}{B_b} - \frac{L_c}{B_c}\right)^2 + \left(\frac{L_b}{D_b} - \frac{L_c}{D_c}\right)^2 + \left(\frac{B_b}{D_b} - \frac{B_c}{D_c}\right)^2 \quad (L_b:mother\ ship,\ L_c:design\ ship)$

Final Results

The result of applying the Information Axiom

	$I_{\cos t}$	$I_{similarity}$	I _{total}
① {D, L, T}	2.144	0.097	2.241
② {t, L, T}	2.279	0.807	3.086

InSDeL, Seoul National University

Part 1. Axiomatic Design

Conclusion

investigate the possibility of applying of the Design Axioms to marine design examples

the Independence Axiom

guides for checking the correctness the decomposition process. assists in deciding what to change and what order in similarity-based design. leads less iteration and effective changes in redundant design.

the Information Axiom

a good criterion for a probabilistic estimation under the uncertain condition.

However,

Further research on the application of Axiom Design to structural design. (redundant design)

Part 2. QFD (Quality Function Deployment)

QFD Optimization - Response Surface Method for Pareto Set

Experiment	Set	built	bv	Central	Composite	Desian
CAPOINTOIN	001	Dunit	~,	oonda	composito	Doolgii

		Input(×1)	Input(×2)	Input(×3)	Response(Y)
Objective Function	on	Max(2.0) - Strength(Z)	Welding Length	Inertia of Tank	Steel Weight
Min(Ximin)		0.53332	422.304	111.657	61.147
Max(Ximax)		1.82554	639.228	839.364	586.989
Actually Observed	1	-0.975(-1.000)	-0.856(-1.000)	-1.000(-1.000)	371.338
(Expected)	2	1.000(1.000)	-0.889(-1.000)	-1.000(-1.000)	135.571
	3	-0.976(-1.000)	-0.864(1.000)	-1.000(-1.000)	370.913
	4	1.000(1.000)	-0.293(1.000)	-1.000(-1.000)	168.565
	5	-1.000(-1.000)	0.190(-1.000)	0.334(1.000)	432.704
	6	1.000(1.000)	0.668(-1.000)	1.000(1.000)	159.135
	7	-1.000(-1.000)	0.986(1.000)	1.000(1.000)	493.577
	8	1.000(1.000)	1.067(1.000)	1.000(1.000)	174.346
	9	-1.363(-1.682)	-0.001(0.000)	0.000(0.000)	449.720
	10	1.682(1.682)	-0.028(0.000)	0.000(0.000)	78.458
	11	-0.000(0.000)	0.030(-1.682)	-0.001(0.000)	278.107
	12	-0.000(0.000)	1.012(1.682)	0.000(0.000)	326.474
	13	0.000(0.000)	-0.675(0.000)	-1.593(-1.682)	284.007
	14	-0.000(0.000)	1.497(0.000)	1.682(1.682)	471.487
	15	-0.000(0.000)	0.778(0.000)	0.000(0.000)	309.476
			InSD	eI. Seoul Nat	ional Univ

Pa	rt 2. QFD	(Qı	lal	ity	Fu	nci	tion	Dep	oloy	ment)
	Identificati	on of	Rela	ative (Posit	ion				
		L(m)	B(m)	T(m)	D(m)	t(m)	Steel Weight (ton)	Strength (m ³)	Welding Length (m)	Inertia of Tank (m ⁴)
	Our Product	52.63	10.32	2.00	4.00	0.005	85.738	0.262	514.503	398.927
	Competitor's Product	52.98	9.75	2.62	4.00	0.025	350.823	1.108	376.895	1801.940
of	Steel Weight(Y) Strength(X ₁) Welding Length(X ₂) Competitor's Produ	uct		Regre of O	ssion ur Pro	Model duct	1	Inert with	Compar tia of Tai Compe	e nk(X ₃) t <mark>itor's</mark>
		Steel W	eight)	Strength (m³)	Weld	ing Leng (m)	ıth	Inertia (r	of Tank n ⁴)	
	Our Product	350.8	23	1.108	3	76.895	287.2	45(m4) (est	t.) < 1801.8	340(m4)
	Competitor's Product	350.8	23	1.108	3	76.895		180	1.940	
						1	nSDeL	, Seoul I	Nationa	ıl University

L B T D t Steel Weight Steel Steel Steel Steel </th <th>Velding Length Inertia of Tank OCS 0.262 514.503 398.927 0</th> <th>Strength</th> <th>t Stee</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Velding Length Inertia of Tank OCS 0.262 514.503 398.927 0	Strength	t Stee					
Current Level 52.63 10.32 2.00 4.00 0.005 85.738 0.4 Competitor's Product 52.98 9.75 2.62 4.00 0.025 350.823 1.1 Preference Method with AHP 48.58 9.70 2.95 4.00 0.025 381.001 1.4	0.262 514.503 398.927 0		vveig	D	т	в	L	
Competitor's Product 52.98 9.75 2.62 4.00 0.025 350.823 1.1 Preference Method with AHP 48.58 9.70 2.95 4.00 0.025 381.001 1.2		0.262	0.005 85.7	4.00	2.00	10.32	52.63	Current Level
Preference Method with AHP 48.58 9.70 2.95 4.00 0.025 381.001 1.4	.108 376.895 1801.940 +0.18	1.108	0.025 350.8	4.00	2.62	9.75	52.98	Competitor's Product
	.237 478.820 300.002 +0.13	1.237	0.025 381.0	4.00	2.95	9.70	48.58	Preference Method with AHP
Preference Method with HOQ 45.20 9.00 3.31 4.00 0.025 341.344 1.	.167 447.561 217.210 +0.23	1.167	0.025 341.3	4.00	3.31	9.00	45.20	Preference Method with HOQ
QFD Optimization 48.13 9.58 2.94 4.00 0.0234 351.47 1.	.148 474.46 285.258 +0.26	1.148	0.0234 351.	4.00	2.94	9.58	48.13	QFD Optimization

rt 3. I	- <u>R2</u>				
S Exam	ole – 330I	< VLCC			
			Traditional	FBS(Op	timization)
		Units	Design	WO/Hullform	W/Hullform
Object (I	Build Cost)	\$	1.11913×10 ⁸	9.94635×107	9.91975×10 ⁷
	L	m	325.8	310.0	310.0
	В	m	60.4	60.6	57.3
	D	m	31.6	29.6	29.4
	Ci	-	-	-	0.99
	C _B	-	0.8087	0.8499	0.8112
	v	knots	15.6	15.6	15.6
Results	DMCR	PS	40006.10	35433.97	35159.70
	D _P	m	9.83	9.61	10.39
	Pi	-	7.07	6.82	7.17
	A _E /A _O	-	0.44	0.44	0.56
	CV	m ³	378700.0	420702.4	396745.7
	DWT	ton	330,000	330,000	330,000
	LWT	ton	39957.7	36969.3	35441.9
System	Iteration	-	-	5	7
Funct	ion Call	-	-	70	141

