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ABSTRACT 
 
This paper presents details of databases and automatic 

assembled shape generation. The databases store links of FR-DP-
FGF-INTERFACEs and their hierarchies generated based on the 
V-model. Each FGF is composed of links to a set of cells and 
relations of interfaces of the cells. The retrieval of proper FGFs 
from the database is performed by matching a query FR with 
stored FRs linked to the corresponding FGFs by a lexical search 
based on the frequency of words and the sequence of the words 
in the FR statements using a synonym checking system. The 
language-matching rate is calculated as a value of FR_metric 
between 0 and 1. A computer algorithm automatically combines 
and assembles the retrieved FGFs. Genetic algorithm (GA) 
searches for the best matching of interface types between FGFs 
and generates the corresponding assembly sequences based on 
the codes of the chromosomes. From the highest-valued 
chromosome, the computer algorithm operates automatic 
assembly of FGFs by coordinating, orienting, and positioning 
FGFs with reference to the given mating conditions. Geometric 
interface-ability between FGFs is calculated as a value of 
INTERFACE_metric between 0 and 1. The higher the values of 
FR_metric and INTERFACE_metric, the better the design 
solution for the given FRs that must be satisfied in the sense of 
language and geometric interface matching. The top-down 
decomposition and bottom-up integration in the V-model reduce 
the number of possible combinations of interfacing FGFs. The 
method presented in this paper has demonstrated that a 
"functional CAD" can aid designers in generating conceptual 
design solutions from functional descriptions, in reusing existing 
CAD models, and in creating new designs. 
  

Keywords: FR-DP-FGF-INTERFACES, database, language 
matching, assembled shape generation, interface-ability, axiomatic 
design 

 

1 INTRODUCTION 
 

The organization of  design information is one of  the most 
important factors that determine performance and functionality 
of  the CAD systems. Most CAD systems are primarily concerned 
with data structure and information flow for representing and 
constructing 3D shapes on computers. Those CAD systems 
enable us to generate complex shape and to utilize information 
on the shape in designing and manufacturing products. Feature-
based representation or design is one of  the well-known results 
of  such an effort. The concept of  design by features was firstly 
proposed for the feature-based design. (Pratt & Wilson 1985) It is 
generally agreed that one of  the key benefits using features is that 
designers can put their deign intent into the geometric model.  
 

Many techniques of  using geometric features have been 
developed for such applications as machining automation, 
diagnosis of  defects of  geometric models, generation of  finite 
element models, and so on. Nevertheless, there still exist two 
main bottlenecks for the feature-based design systems to be 
useful for design tasks. One bottleneck is the lack of  the means 
of  defining geometric features based on functions. The other is 
the lack of  a method to reuse a lot of  geometric features for 
design tasks. The bottlenecks have not been overcome yet, 
because most research on geometric features has been focused on 
their physical characteristics. For example, a feature-based design 
system, called design with features, has been proposed. (Dixon and 
Cunningham 1987) The geometric features used in the system 
have been classified by only geometric characteristics into types; 
primitives, intersections, add-ons, macros, and whole-forms. A 
feature library has been constructed based on the classified 
features. Another feature-based system has been proposed based 
on frame approach. (Sreevalsan and Shah 1992) Designers used 
templates to edit features by formal language. Taxonomy based 
on the templates has been useful to handle geometric features in 
the physical domain. However, those systems do not deal with 
information on functions of  the features. Pre-defined features 
collected using those approaches may not be useful for 
conceptual design tasks. 
 

There exist many CAD approaches to using database. Most 
of  them classify CAD models by similarity of  the shape, stored 
them in the database, and searched similar shape to an input 
geometric model. In these approaches, it is relatively easy to 
collect and classify CAD models and to find out similar shapes, 
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but still this database cannot help designers to generate design 
solutions. It is usually used to find out similar parts for 
manufacturing purpose and to classify shapes. 
 
In this paper, we have attempted to answer the following 
questions related to the feature-based design. 
 
� How can we generate the geometric features starting 

from a given set of  functional requirements? 
� How can a computer reuse the geometric features to 

generate candidate shapes in the conceptual design 
phase? 

 
To answer these two questions, the following four sub-topics 

have been considered and will be explained in this paper as a 
method to automatically generate assembled shapes from 
functional descriptions. 
 
� Data structure 
� Functional geometric feature 
� Language matching 
� Automatic assembly of  the geometric features 

Introductory example 
The following is one design scenario that serves as an 

introductory example for the proposed method. In this scenario, 
a designer starts a design problem by describing FRs and DPs in 
the V-model as shown in Figure 1. The designer describes a top-
level FR and then a beverage can as the corresponding top-level 
DP. From the top-level DP, the designer can detail the design 
further by decomposing it into four lower-level FRs. Then, the 
corresponding underlined DPs (DP1 through DP4) and shapes 
can be found in the database by language matching between FR 
statements. The language-matching rate has been calculated to a 
value of FR_metric by a language-matching algorithm. Each FR 
has been linked to each ‘Functional Geometric Feature (FGF),’ 
which has its own interfaces (i.e. mating faces) in a local 
coordinate frame. Computer algorithms automatically assemble 
the FGFs into the candidate shapes using information on the 
interfaces of the FGFs. The algorithms rank each candidate shape 
by measuring its geometric interface-ability to a value of 
INTERFACE_metric and then discard lower-valued candidate 
shapes. From the candidate shapes with higher values of 
FR_metric and INTERFACE_metric, the designer can construct 
design matrices to finally decide the best shapes that satisfy all the 
FRs without any conflict. The shapes in Figure 1 (a) are 
determined as the best solutions among a lot of candidate shapes 
based on the INTERFACE_metric, and those in Figure 1 (b) 
must be discarded, because the corresponding values of 
INTERFACE_metric are lower that those in (a). Figure 1 (c) 
shows final results generated by scaling the shapes shown in (a) 
based on the boundary constraints.  
 
FR0 = contain and carry beverage 
 FR1 = enclose the bottom with resistance to an impact 

FR2 = provide a volume to contain beverage 

FR3 = reduce the material and increase stiffness of the 
body 

FR4 = cover the body and provide pathway of beverage 
 
DP0 = beverage can 
 DP1 = bottom  
 DP2 = hollow cylinder  
 DP3 = conical section of the body 
 DP4 = top 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Assembled shapes with INTERFACE_metric 

=1.0((2*3/6)*(3/3)*(3/3)) 

 
 

 
DATABASE

Language- matching 
FR_metric: 0 ~ 1 
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DP

Automatic assembly 
INTERFACE_metric: 0 ~ 1
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(b) Assembled shapes with INTERFACE_metric = 
0.67((2*2/6)*(1/1)*(1+1)/2) or 

0.583((2*3/6)*(1/1)*(1+(1+0.5)/2)/3) 
 

 
(c) Shapes through scaling with INTERFACE_metric =1.0 

 
Figure 1. Introductory example: beverage can 

 

2 DATABASE 
Figure 2 shows the system architecture and the flow chart. 

The flow chart shows how the proposed method can help 
designers in the V-model to generate assembled candidate shapes. 
The existing design knowledge should be collected and stored in 
the databases before the designers use the databases. The top two 
blocks on the flow chart show this knowledge engineering 
process. The flow chart has been modified from that of  Thinking 
Design Machine. (Suh & Sekimoto 1990) The proposed CAD 
system must consists of  knowledge engineering tool, databases, 
and a CAD engine. It is not easy to generalize design knowledge 
related to geometry. Thus, we collect design cases instead of  
generalizing all the existing design knowledge. (Aamodt & Plaza 
1994) The design knowledge is collected as linked lists of  FR-
DP-FGF-INTERFACES and the corresponding hierarchies. 

 
 

Model an existing design
problem and its solution

Format input information as
design knowledge and store it

Definition of FRs

Find a plausible set of DPs and
FGFs by language matching of FRs

Combine FGFs and find sets of FGFs
interfacable as candidate solutions

Evaluate Information Content

[DM]
diagonal or
triangular

Yes

Hierarchical trees of FR-DP-FGF links
Relations of internal interfaces between cells
Information of interfaces of FGFs
Links to geometry of cells

No
Arrange and visualize FGFs

Knowledge Engineering Tool

FR tree
DP tree

Cells from CAD models
Relations between cells

Design Matrix

CAD Engine

Algorithms for language matching
Algorithms for integrating FGFs

  
 

Figure 2. System architecture and flow chart 

 
The V-model design process generates two types of  

design knowledge; one is knowledge about how FRs, DPs, and 
geometric entities (GEs) are related with each other, and the 
other is knowledge about how FRs, DPs, and GEs are 
decomposed in depth. A shape decomposition technique is used 
in the V-model to generate cells from the GEs in the CAD 
models, which decomposes the existing CAD models into solid 

cells based on FRs. These cells are stored and reused during the 
integration process. A set of  cells mapped to an FR is called a 
functional geometric feature (FGF) to differentiate it from 
geometric features defined by only geometric characteristics. 
Figure 3 shows the design database, which store both types of  
design knowledge. 
 
 fr-decomposition(“A”, [FR0(FR1(FR1_1, FR1_2),  

FR2 
FR3(FR3_1(FR3_1_1, FR3_1_2), FR3_2)]) 

 
dp-decomposition(“A”, [DP0(DP1(DP1_1, DP1_2),   

DP2 
DP3(DP3_1(DP3_1_1, DP3_1_2), DP3_2)]) 

 
 dp-geometry(“DP1_A”, “FGF1_A”)  
 

Figure 3. Fundamental structure of database 

 
The database is used to search proper candidate DPs 

and FGFs for a given FR. The fr-decomposition database stores 
information of  hierarchies of  decomposed FRs and the dp-
decomposition database stores information of  hierarchies of  
decomposed DPs. A character, “A” is an index to the 
corresponding design case. The dp-geometry database stores 
information of  FGFs mapped to the corresponding DPs. The fr-
decomposition database and the dp-decomposition database can 
be constructed through the V-model design process.  
 

Our hypothesis on FGFs is 
 
“Functional geometric features (FGFs) can be geometrically separated from a 
whole solid body.”1 
 
This hypothesis must be true, if  the V-model is used so that 
geometric entities can be mapped to each FR. However, there 
may exist more than one way to separate the geometric entities 
into solid cells in practice. This is because an FGF is not defined 
by geometric characteristics but by FRs, which is different from 
other techniques for feature recognition or cell decomposition. 
(Sakurai & Gossard 1990; Sakurai 1995; Wang & Kim 1998; Li & 
Liu 2002; Woo 2002) In this paper, different decompositions of  a 
CAD model are considered as different design cases.  
 

The guideline of  separating correct FGFs satisfying a 
certain FR from the whole solid body for collecting a set of  cells 
is as follows: 
 
“To determine the correspondence between an FR and an FGF, the cells 
corresponding to the FGF can be removed from the whole solid body. If the 
resulting solid body can no longer satisfy the FR, the removed cells are the 
proper FGF for the FR.” 
 

                                                           
1 This is consistent with the Independence Axiom and the FR/DP mapping 

of  axiomatic design. 
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In this paper, only cut operation has been used. The whole 
solid is decomposed into solid cells by the cut operation s shown 
in Figure 4.  

 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Cut operations 
 

The cells of  a lower level FGF is a subset or elements of  its 
parent FGF, because FGFs are defined by zigzagging 
decomposition between functional domain and physical domain 
as explained in the part 1. Information on the geometry of  the 
cell can be encapsulated, but only information on the interfaces 
of  the cell is used for the computer algorithms to interface the 
cell. All the geometry of  the cell is needed only for visualization 
of  the assembled shape.  

 
The cells of  a lower level FGF is a subset or elements of  its 

parent FGF, because FGFs are defined by zigzagging 
decomposition between functional domain and physical domain 
as explained in the part 1. Information on the geometry of  the 
cell can be encapsulated, but only information on the interfaces 
of  the cell is used for the computer algorithms to interface the 
cell. All the geometry of  the cell is needed only for visualization 
of  the assembled shape.  

 
Interface types of  mating faces can be classified as follows. 
 
� Rigid attachment: two cells are merged into a solid. A 

face should be rigidly attached with another face. 
� Assembly: two solid cells contact each other. 

o Static: two cells contact without relative motion 
between each other.  

o Kinematic: two cells contact with relative 
motion between each other. This interface can 
be classified further into “slide”, “roll”, and 
“rotate”. 

 
Two types of  mating between components such as ‘against,’ and 
‘fits’ have been considered in most mechanical assemblies. (Lee & 
Gossard 1985) 2 In this paper, the following types of  interfaces 
are thought, but all kinds of  rigid attachments have been grouped 
into only ‘against:rigid_attachment.’ Thus, four types of  interfaces, 
‘against:rigid_attachment’ ‘against:assembly,’ ‘fits:assembly,’ and 
‘tight-fits:assembly,’ are mainly dealt with. A normal vector of  the 
planar face and one point on the face are needed for ‘against.’ 

                                                           
2 ‘Against’ applies between planar faces and ‘fits’ applies between a solid 

cylinder and a hole. 

Two points on the centerline of  each cylindrical face are needed 
for ‘fits.’ Below are the all kinds of  interfaces must be considered. 
 
� Against:assembly: two planar faces are located on a 

plane with opposite normal vectors. 
� Against_equal:rigid_attachment: all the boundaries of  

two planar faces are exactly matched together. 
� Against_inside:rigid_attachment: a planar face is placed 

inside of  the other planar face. 
� Against_intersected:rigid_attachment: two planar faces 

are intersected on a plane. 
� Fits:assembly: two centerlines of  cylinder and hole are 

located on a line. This interface type is classified into 
‘cylinder,’ or ‘hole’ for each mating face. 

� Tight-fits: assembly: two centerlines of  cylinder and hole 
are located on a line and two points on the cylindrical 
faces locates on a cylindrical face. This interface type is 
classified into ‘cylinder,’ or ‘hole’ for each mating face. 

 
Table 1 shows a simple practice of  how to generate the 

FGFs for a beverage can. The generated FGFs are decomposed 
by simple disassemblies or cut operations in the V-model. Figure 
5 shows the detailed data structure between FGFs and cells for 
the beverage can example. Each leaf  level FGF has been linked to 
each cell. Each cell keeps information on its interfaces, i.e. mating 
faces, and encapsulated geometry. A higher level FGF has been 
composed of  a set of  lower level FGFs. For example, FGF_0, 
FGF_1, FGF_2, or FGF_3 does not keep all the geometry of  the 
corresponding shapes, but only a set of  lower level FGFs, a list 
of  internally matched interfaces between the lower level FGFs, 
and dangling interfaces that have not been used, but will be used 
to be interfaced. The shapes of  the FGFs and their dangling 
interfaces are shown in the Table 1. As notably shown in the 
Table, two A6’s are stored for FGF1_6 in the database, if  one 
mating face (A6) may be used for mating two other faces (C3 and 
A5). This will give complete interface matching based on the 
existing knowledge on interface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FGF1

FGF2

FGF1_A

FGF2_A

Interface+
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Table 1. FRs, DPs and the corresponding FGFs of 
beverage can 

 
 

 
 

 
 
 
 

 
Figure 5. Data structure between FGFs and cells for 

beverage can 
 

3 GENERATION OF DESIGN SOLUTIONS 
The first step of  generation of  design solutions is language 

matching between a query FR and saved FRs in the databases. 
Through this step, any candidate FGFs are found. In the second 
step, the candidate FGFs should be combined and assembled as 
candidate shapes. During the step, geometric interface-ability 
between the FGFs must be checked to rank the candidate shapes 
based on the geometric interface-ability.  

3.1 LANGUAGE MATCHING OF FRs 

In language matching of  FRs, computer algorithm firstly 
searches all the saved FRs similar to a query FR in the fr-database. 
If  the algorithm found an FR1 in a hierarchy “A” and an FR2 in a 
hierarchy “B” from a query FR (FR0) in the case base, the 
corresponding “DP1_A” and “DP2_B” can be thought of  as 
different design solutions to satisfy the query FR. Many DPs can 
be found for a query FR as candidate solutions through this 
process. The matching a query FR (FR0) to DP1_A and DP2_B 
can be expressed as 
 
FR0 $ DP1_A, DP2_B. 
 
Each DP has been also linked to each FGF in the database. Thus, 
the language matching finally gives 
 
FR0 $ FGF1_A, FGF2_B. 
 
  One difference in the structure of  the database 
proposed in this paper from that of  Thinking Design Machine 
(Suh and Sekimoto 1990) is a stored tree structure of  FRs, DPs 
and FGFs. Hierarchical information flow using the tree structure 
is more compact and effective, because all the lower branches 
from a certain node in a tree can be extracted. 
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The language matching between a query FR and the 

saved FRs is performed by counting the frequency of  appearing 
common words and the sequence of  words. Both the query FR 
and a selected saved FR are decomposed into a set of  words and 
pairs of  words. For example, “engage the pawl to the engaged 
position,” is decomposed into two sets as 
 
Word set = {engage, pawl, to, engaged, position} 
Word pair set = {(engage, pawl), (pawl, to), (to, engaged),  

(engaged, position)}. 
 
Here, ‘the,’ ‘a,’ ‘and,’ ‘or,’ and pronouns are trimmed, because the 
word is not closely related to the meaning of  the sentence. The 
word set is used to check the number of  words common in the 
query FR and the saved FR. The word pair set is used to check 
the sequence of  the matched words. When the words are 
compared, synonyms of  each word are brought and matched by 
WordNet. (Miller et al. 1993) The metric is mathematically 
represented as 
 

FR input of pairs  wordhed # of matc words # of total
FR  savedof pairs  wordhed # of matced words # of match FR_metric 

+
+×

=
2

  (a) 
 

If  a query FR is exactly the same as a saved FR, this 
metric gives a value, 1.0, for the language matching between the 
FR statements. If  not, it calculates the difference between the FR 
statements by the equation (a) defined as FR_metric. Synonym 
checking reduces errors of  describing a word. A threshold value 
between 0 and 1 can be set to control the search space using the 
FR_metric. Higher threshold value means smaller search space of  
language matching. 
 

3.2 ASSEMBLED SHAPE GENERATION 

Integration of  various FGFs to a complete shape is one 
of  the key factors for geometry design with FRs. In the 
integration process, candidate FGFs are assembled, and 
geometric interface-ability between them are measured. The 
combination of  FGFs is performed by genetic algorithm (GA) 
and geometric interface-ability is measured by an algorithm that 
automatically simulates human assembling operations to integrate 
them in the physical space. The following attributes are checked 
to quantify the geometric interface-ability. Firstly, interface types 
(IT) are checked by graph matching of  mating faces of  FGFs. 
Graph matching is known as NP-complete problem. (Gold and 
Rangarajan 1996) Secondly, relative angles between faces are 
measured. Thirdly, the success of  positioning mating faces is 
checked. 
 
� Interface type (IT): against:assembly, 

against:rigid_attachment, fits:assembly, tight-fits:assembly 
� Angles between faces (AF) 
� Positions (Pos)  

3.2.1 COMBINATIONS OF FGFs 

If  three sets of  candidate FGFs to satisfy FR1, FR2, 
and FR3 are supposed as 
 
{ 
 FR1 $ FGF1_A, FGF1_B 
 FR2 $ FGF2_A, FGF2_B, FGF2_C 
 FR3 $ FGF3_A, FGF3_C 
}. 
 
The possible combinations between the FGFs are 2*3*2 = 12. 
For each possible combination, there exist possible combinations 
of  connectivity between FGFs.  
 

Because there are a lot of  possible combinations for 
interfacing FGFs and the combinations are performed by 
matching discrete numbers, we chose GA (Genetic Algorithm) to 
more efficiently check the combinations described above instead 
of  using an algorithm for generating all the combinations. GA 
has been proved to solve combinatorial problems that have 
discrete numbers of  design variables. GA chromosome can also 
present assembly sequences between FGFs including mappings 
each discrete number of  gene to mating faces. GA can evolve 
with an acceptable speed to maximize the fitness. A sample 
chromosome used in GA has been defined as  
 
FGFs :       1_A     2_A    2_A    3_A     3_A    1_A 
 
Chromosome: 
 
 
 
Interface pairs :  Pair1              Pair2              Pair3 
 

Each interface pair consists of  two genes, which are 
mapped to the encoded mating faces of  an FGF. The first FGF 
in a pair is a base component, which is fixed in the physical space 
for assembling operations. The second FGF is an interfacing 
component, which translates or rotates to be assembled to the 
base component. In Figure 6, a directional graph shows 
connectivity and also assembly sequences between three FGFs, 
based on what the chromosome described above.  
 
 
 
 
 
 
 

 
 
 
 
 

Assembly sequence :  
FGF2_A -> FGF3_A / FGF3_A -> FGF1_A 
 

2 0 2 3 4 6 

FGF
1_A 

FGF
2_A

FGF
3_A 
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Figure 6. Connections and assembly sequences between 
FGFs 

 
The number of  pairs in a chromosome is mC2 = n, 

where m is the number of  FGFs. Here, the number of  pairs in 
the sample chromosome is 3C2 = 3. Table 2 shows the codes for 
each gene, which are mapped to a set of  mating faces. If  each 
FGF has m mating faces, the number of  codes for each FGF is 
mC1+ mC2+…+ mCm. If  m is 3, the number of  codes is 6. Thus, 
each gene has a code number between 0 and 7. 0 means no 
connection between two FGFs in a pair.  

 
Table 2. Encoding of interfaces of FGFs into genes 

FGF Code Mating 

faces 

FGF Code Mating 

faces 

FGF Code Mating 

faces 
 0 Null       

1 A 2_A 1 D 3_A 1 G 
2 B  2 E  2 H 
3 C  3 F  3 I 
4 A & B  4 D & E  4 G & H
5 B & C  5 E & F  5 H & I
6 C & A  6 F & G  6 I & G

1_A 

7 A & B 
& C 

 7 D & E 
& F 

 7 G & H 
& I 

 
Table 3 shows the mapping between code numbers and 

the corresponding mating faces and the possible assembly 
sequences for the chromosome (2 0 2 3 4 6). The sequence of  the 
genes represents assembly sequences of  FGFs. There exists only 
possibility of  interfaces between FGF_2 and FGF_3, because the 
code number, 2 or 3, represents one mating face, E or I. However, 
there are two possible combinations between mating faces of  
FGF_3 and FGF_1 as shown in Table 3. The assembly sequences 
of  mating faces in the third pair can be G:C -> H:A or H:A-> 
G:C. 
 

Table 3. Combinations of interfacing faces 
represented by a chromosome (2 0 2 3 4 6) 
FGF

1 
FGF_

2 
FGF_

2 
FGF_

3 
FGF_

3 
FGF_

1 
2 0 2 3 4 6 

G:C & H:A No interface E:I 
H:C & G:A 

 
 

GA ranks matching of interface types (IT) of mating 
faces. High fitness valued chromosome represents high possibility 
of matching of IT’s of the mating faces. 1.0 is assigned for the 
fitness, if interface types of all the mating faces are completely 
matched. 0.0 is assigned, if there is no IT matching. The fitness 
has been represented as 
 

faces mating of #
ITs matched of #  2IT_metric  fitness ×

==  (b) 

 

Figure 7 shows the whole process for generating 
assembled shapes. Information of  the chromosomes evolved in 
GA is passed to the assembling algorithm. The assembling 
algorithm automatically assembles FGFs, and measures 
INTERFACE_metric to satisfy pre-defined mating conditions for 
the automatic assembled shape generation. Gluing may include a 
detailed shape deformation process or a shape optimization 
technique. Thus, it is out of  scope of  this paper. 
 

GA evolution

Assembling

Gluing

          Chromosomes(Fitness)

                 INTERFACE_metric

y Assembly sequence generation
y Interface Type (IT) matching

y Assembly of FGFs
y Calculation of degrees of freedom

y Rigid attachment of FGFs
y Calculation of degrees of freedom

Shape
Integration
Process

 
 

Figure 7. Shape integration process of FGFs 

 

3.2.2 AUTOMATIC ASSEMBLY AND INTERFACE-
ABILITY OF FGFS 
 

The goal of  the assembling process is to automatically 
assemble the FGFs based on mating conditions and assembly 
sequences given from the chromosomes and to measure 
geometric interface-ability between the FGFs to a value of  
INTERFACE_metric. This assembling process can be 
implemented as a computer algorithm that emulates human 
assembling operations and solves assembly constraint equations. 
A flow chart in Figure 8 shows information flow based on which 
the computer algorithm performs the assembling operations. The 
algorithm performs coordinating, orienting, and positioning of  
the FGFs and calculates INTERFACE_metric. Here, 
coordinating is locating a local coordinate frame to a proper 
position. Orienting is only rotations of  the FGFs to match 
directions of  mating faces, and positioning is only translations of  
the FGFs to locate the mating faces to the given position. 
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Figure 8. Flow chart for assembling process 

 
The algorithm brings chromosomes from the highest 

value to the lower value. For a chromosome (2 0 4 6 4 6) 
according to the codes in Table 2, there are four possible 
combinations as shown in Table 4. 
 
Table 4. Combinations of interfacing mating faces in a 

chromosome 
Sequence FGF1 FGF_2 FGF_2 FGF_3 FGF_3 FGF_1

 2 0 4 6 4 6 
1 No interface D:I -> E:G G:C -> H:A 
2 No interface D:G -> E:I G:C -> H:A 
3 No interface D:I -> E:G H:C -> G:A 
4 No interface D:G -> E:I H:C -> G:A 

 
The algorithm recursively brings ith sequence (i = 1, 2, 3, 

4) and jth interface pair of  FGFs (j = 1, 2, 3) in Table 4, and kth 
pair of  mating faces (k = 1, 2) in pair 2 and pair 3. In an interface 
pair, the first FGF is a base component and the second FGF is an 
interfacing component. Each FGF has its local coordinate frame. 
Thus, the first step of  assembling operations is to locate the local 
coordinate frame with respect to the absolute coordinate frame. 
This is called ‘coordinating.’ Once the ‘coordinating’ has been 

done, the algorithm rotates the second FGF to match orientation 
of  its mating face with that of  the base FGF. This operation is 
called ‘orienting.’ Then, it translates the second FGF to locate its 
mating face to a proper position to satisfy mating conditions. This 
operation is called ‘positioning.’ 
 

For example in Table 4, the algorithm recursively brings 
assembly sequences, and automatically assembles the three FGFs. 
In sequence 1, it brings 2nd interface pair of  FGFs first, because 
there is no interface between FGF1 and FGF2. Then, it brings 1st 
pair of  mating faces, D:I. It firstly locates the local coordinate 
frames of  the FGF2 and the FGF3 coincidently with the absolute 
coordinate frame. Then, it rotates the FGF3 to a direction to 
match the orientation of  I with that of  D. In the orienting 
operation, unit normal vectors of  two planar mating faces must 
be parallel and opposite for ‘against’ and two centerlines must be 
parallel for ‘fits’. The angle differences between mating faces are 
calculated and updated for AF_metric during the operation. Then, 
it translates the FGF3 for positioning I to D. In the positioning 
operation, a point on the planar mating face must be on the other 
planar mating face for ‘against’ and two centerlines must be 
located on the same line for ‘fits’. If  scaling or stretching is 
needed, it is performed. If  it fails positioning FGF3, it gives a 
defined value (= 0.5 in this paper) less than 1.0 for Pos_metric. 
The algorithm generates output position and orientation in a 
coordinate frame with allowable DOFs. It recursively checks the 
interface-ability of  the second pair of  mating faces, E:G, and then 
do the same steps for 3rd interface pair of  FGFs (FGF3 and 
FGF1). Finally, three values of  IT_metric determined by GA 
evolutions, AF_metric determined during orienting operation, 
and Pos_metric determined by positioning operation are 
multiplied into a value of  INTERFACE_metric, which represents 
the geometric interface-ability for a given chromosome. The value 
of  the INTERFACE_metric has been scaled between 0.0 and 1.0. 
1.0 means complete interface-ability for the given FGFs and 0.0 
means that none of  pairs can be interfaced. Consequently, the 
proposed algorithm produces the assembled shapes with 
allowable DOFs, and ranks the assembled shapes based on the 
values of  INTERFACE_metric. 
 

All the operations are performed by transformation 
matrix (Paul 1984) and the corresponding mathematical equations 
represented as follows. 
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where TR denotes only rotation and TT denotes only translation. 
The elements of  TR matrix always have the following relations 
represented as six mathematical equations.  
 

Bring kth pair
of mating faces

Orienting (2)

Positioning (3)

Are the orientation
constraints satisfied?

(2)

Are the positiong
constraints satisfied?

(3)

Scaling/Stretching (4)

Are the positioning
constraints satisfied?

(4)

Increase k by 1If k>limit

Yes

No

Yes
DOFs

No

No

AF_sum =
AF_sum + AF_metrick(2)

(INTERFACE_metric)iDOFs

Yes

Yes

No

Coordinating (1)

DOFs

Gluing

Assembling
If j>limit

Yes

NoBring  jth pair of FGFs
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DOFs are represented by TR(n) or TT(n). Here, n is a number less 
than or equal to three which represent degrees of  freedom for 
rotation or translation. If  an interfacing FGF has [TR(1), TT(2)], it 
has one allowable DOF for rotation and two for translation. 
 

Only scaling or stretching is performed for special cases 
in this paper to show its effects to generating complete assembled 
shapes. An FGF is originally created with its own purpose. Thus, 
the more the shape of  the FGF deforms, the more its purpose is 
lost. In this sense, only the severe shape deformation is not 
allowed, but scaling or stretching is performed. Scaling of  shapes 
means enlarging or reducing the size of  the shapes in all 
directions in the physical space and stretching means doing it in 
one direction. The basic deformation matrix is a special form of  
the transformation matrix, which is 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
000
000
000

z

y

x

S
S

S

D  (e) 

 
where Sx, Sy, and Sz are scaling factors. If  all Sx, Sy, and Sz are 
equal, this matrix can be used for scaling. Otherwise, only one of  
Sx, Sy, and Sz is not zero, it is used for stretching. 
 

4 INTEGRATION OF FGFS FOR BEVERAGE CAN 
DESIGN 

 
This section explains the details on how the results of  the 

introductory example shown in Figure 1 have been generated. 
Figure 9 shows the corresponding GA codes and one of  GA 
chromosomes.  
 
FGF  Gene  Mating 

faces  
FGF  Gene  Mating 

faces  
FGF Gene  Mating 

faces  
FGF  Gene Mating 

faces  

 0           

1  1 A1 2 1 A2 3 1 A3 4 1 A4 

    2 B2  2 B3    

    3 A2&B2  3 A3&B3    

 
(a) GA codes of mating faces 

 
FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1

1 1 2 1 2 1 0 0 0 0 0 0 

 
(b) Example chromosome 

 
Figure 9. GA codes of mating faces and an example 

chromosome 
 

GA evolves to search the best matching of  interface 
types to maximize fitness value defined as IT_metric. Then, the 
proposed assembly methods are applied to integrate the FGFs 
into the assembled shapes. In this example, GA evolves for 20 
generations with 300 populations, and then against:assembly 
(TT(3), TR(3)) and against:assembly (TT(2), TR(1)) are used. Figure 
1 shows the resultant candidate shapes generated by the assembly 
methods. Figure 1 (a) shows the assembled shapes after one more 
constraint, ‘concentric,’ has been applied to all the candidate 
assembled shapes. All the candidate shapes have 
INTERFACE_metric = 1.0. It means that all the candidate 
shapes are completely oriented and positioned satisfying all the 
pre-defined mating conditions between FGFs based on the 
proposed metric. Figure 1 (b) shows some other assembled 
shapes of  INTERFACE_metric = 0.67 or 0.583. All these 
candidate shapes can be generated from three different 
chromosomes as follows. 
 
FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1
0 0 1 1 0 0 0 0 1 1 0 0 

 
FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1
0 0 1 2 0 0 0 0 1 1 0 0 

 
FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1
0 0 3 3 0 0 0 0 1 1 0 0 

 
In the first chromosome, one pair of  mating faces has 

been missed to be interfaced among total three pairs of   mating 
faces. Thus, IT_metric is 0.67 (= 2*2/6). However, all the mating 
faces given by the chromosome can be correctly oriented and 
positioned:  AF_metric = 1.0 and Pos_metric = 1.0. The first 
chromosome represents the first candidate shape in (b) and has 
INTERFACE_metric = 0.67 from 
IT_metric*AF_metric*Pos_metric. The same analysis can be 
applied to the second chromosome that represents the second 
candidate shape in (b). The third chromosome represents 
interfaces of  all the pairs of  mating faces. In this case, IT_metric 
is 1.0 (= 3*3/6), because all the interface types (against:assembly) 
can be matched correctly. Also, all the mating faces can be 
oriented correctly so that AF_metric = 1.0. However, one pair of  
mating faces cannot be positioned geometrically. This fact gives 
Pos_metric = 0.583  ((1+(1+0.5)/2)/3). INTERFACE_metric for 
the third chromosome is 0.583 from 
IT_metric*AF_metric*Pos_metric. There are two combinations 
for interfacing two pairs of  mating faces; A2:A3 -> B2:B3 and 
A2:B3 -> B2:A3. These two combinations show two different 
candidate shapes in (b). The value of  INTERFACE_metric in 
this case highly depends on a value, which is pre-set to 0.5 in 
Pos_metric. The pre-set value is used for degrading 
INTERFACE_metric if  positioning is failed. If  the value has 



Functional requirements to shape generation in CAD: database and automatic shape assembly 
The Third International Conference on Axiomatic Design 

Seoul  – June 21-24, 2004 

Copyright © 2004 by ICAD2004  Page: 10/11 

been set to a larger number, the value of  INTERFACE_metric 
will be increased for the same design problem. 
 

Figure 10 shows the advantage of  the V-model. If  the 
body of  the beverage can is assembled first, and then the bottom 
and the top are assembled to the assembled body, the 
chromosome for integration of  the body has 2 genes, and that for 
the next assembly has 6 genes. Actual GA evolution of  the two-
step assembling is 3 generations with 200 populations plus 10 
generations with 300 populations to get the same results as 
shown in Figure 1. Total calculations are 3600 chromosomes for 
this case. Thus, it is less than 6000 calculations, in which 12-gene 
chromosome has been used. This is rough estimation for GA 
calculations, but explains the advantage of  top-down 
decompositions for bottom-up integrations in the V-model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Advantage of top-down decomposition in the 

V-model 
 
 
 

5 CONCLUSIONS 
 

This paper presented a method that automatically 
generates assembled shapes from input functional descriptions. 
The method is generally applicable to all kinds of  shape design 
problems, not ad-hoc approach for a specific design problem. It 
includes V-model design process, database, and computer 
algorithms for searching candidate FGFs and automatically 
assembling them. It generated interesting and reasonable shapes, 
which are satisfying input FRs, as shown in application examples. 
FR_metric (0.0 ~ 1.0) and INTERFACE_metric (0.0 ~ 1.0) have 
been made to rank the generated shapes and to support decision-
making by computer algorithms and/or by human designers. 
FR_metric is a language-matching rate between an input FR 
statement and a saved FR statement in the database. 
INTERFACE_metric (0.0 ~ 1.0) is an interface-matching rate 
(interface type and geometric assemble-ability) between candidate 

FGFs. The computer algorithms can filter a lot of  the 
unreasonable shapes based on the FR_metric first, and then the 
INTERFACE_metric. The candidate shapes with FR_metric = 
1.0 and INTERFACE_metric = 1.0 can be considered as good 
design solutions among a lot of  generated shapes. Design matrix 
shown in the part 1 must be constructed for each candidate shape 
to check satisfaction of  all the FRs and finally to determine the 
best design solution. 
 

This sort of  shape generation using database is a 
combinatorial problem, which has a lot of  combinations of  
FGFs and needs high computational power. This paper used 
several important techniques to handle the heavy computational 
load in a manageable level. 
 
� All the detailed geometry has been encapsulated. The 

developed computer algorithms use only information on 
interfaces, i.e. mating faces. Thus, the number of  
combinations and computational complexity are relatively 
small comparing to other approaches using complex whole 
geometry. 

 
� Several modules of  the computer algorithms have been used. 

The language-matching module uses FR_metric and reduces 
a solution space into a certain level set by a threshold value 
for the FR_metric. The GA module reduces the solution 
space again by matching pre-defined interface-types between 
FGFs using IT_metric. Then, automatic assembling 
algorithm operates assembling of  FGFs and calculates values 
of  INTERFACE_metric. Because solution spaces are 
reduced consecutively through the steps, computational 
complexity of  automatic assembling algorithm is in a 
manageable level. 

 
Bottom-up integrations of  FGFs in top-down hierarchical 

tree can eliminate many combinations and reduce search space 
for allowable combinations comparing to integrations only by 
bottom-up manner. 
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