
Proceedings of ICAD2004
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

ICAD-2004-48

Copyright © 2004 by ICAD2004 Page: 1/11

ABSTRACT

This paper presents details of databases and automatic

assembled shape generation. The databases store links of FR-DP-
FGF-INTERFACEs and their hierarchies generated based on the
V-model. Each FGF is composed of links to a set of cells and
relations of interfaces of the cells. The retrieval of proper FGFs
from the database is performed by matching a query FR with
stored FRs linked to the corresponding FGFs by a lexical search
based on the frequency of words and the sequence of the words
in the FR statements using a synonym checking system. The
language-matching rate is calculated as a value of FR_metric
between 0 and 1. A computer algorithm automatically combines
and assembles the retrieved FGFs. Genetic algorithm (GA)
searches for the best matching of interface types between FGFs
and generates the corresponding assembly sequences based on
the codes of the chromosomes. From the highest-valued
chromosome, the computer algorithm operates automatic
assembly of FGFs by coordinating, orienting, and positioning
FGFs with reference to the given mating conditions. Geometric
interface-ability between FGFs is calculated as a value of
INTERFACE_metric between 0 and 1. The higher the values of
FR_metric and INTERFACE_metric, the better the design
solution for the given FRs that must be satisfied in the sense of
language and geometric interface matching. The top-down
decomposition and bottom-up integration in the V-model reduce
the number of possible combinations of interfacing FGFs. The
method presented in this paper has demonstrated that a
"functional CAD" can aid designers in generating conceptual
design solutions from functional descriptions, in reusing existing
CAD models, and in creating new designs.

Keywords: FR-DP-FGF-INTERFACES, database, language
matching, assembled shape generation, interface-ability, axiomatic
design

1 INTRODUCTION

The organization of design information is one of the most
important factors that determine performance and functionality
of the CAD systems. Most CAD systems are primarily concerned
with data structure and information flow for representing and
constructing 3D shapes on computers. Those CAD systems
enable us to generate complex shape and to utilize information
on the shape in designing and manufacturing products. Feature-
based representation or design is one of the well-known results
of such an effort. The concept of design by features was firstly
proposed for the feature-based design. (Pratt & Wilson 1985) It is
generally agreed that one of the key benefits using features is that
designers can put their deign intent into the geometric model.

Many techniques of using geometric features have been
developed for such applications as machining automation,
diagnosis of defects of geometric models, generation of finite
element models, and so on. Nevertheless, there still exist two
main bottlenecks for the feature-based design systems to be
useful for design tasks. One bottleneck is the lack of the means
of defining geometric features based on functions. The other is
the lack of a method to reuse a lot of geometric features for
design tasks. The bottlenecks have not been overcome yet,
because most research on geometric features has been focused on
their physical characteristics. For example, a feature-based design
system, called design with features, has been proposed. (Dixon and
Cunningham 1987) The geometric features used in the system
have been classified by only geometric characteristics into types;
primitives, intersections, add-ons, macros, and whole-forms. A
feature library has been constructed based on the classified
features. Another feature-based system has been proposed based
on frame approach. (Sreevalsan and Shah 1992) Designers used
templates to edit features by formal language. Taxonomy based
on the templates has been useful to handle geometric features in
the physical domain. However, those systems do not deal with
information on functions of the features. Pre-defined features
collected using those approaches may not be useful for
conceptual design tasks.

There exist many CAD approaches to using database. Most
of them classify CAD models by similarity of the shape, stored
them in the database, and searched similar shape to an input
geometric model. In these approaches, it is relatively easy to
collect and classify CAD models and to find out similar shapes,

FUNCTIONAL REQUIREMENTS TO SHAPE GENERATION IN CAD:

DATABASE AND AUTOMATIC SHAPE ASSEMBLY

Jinpyung Chung

jinpyoung.jung@samsung.com
Samsung Corning Precision Glass Co., LTD
544, Myungam-Ri, Tangjung-Myun, Asan-City,

ChungNam, Korea, 336-840

Kang-Soo Lee
kslee@hanbat.ac.kr

Hanbat National University
Dukmyungdong, Yuseonggu,

Daejeon, 305-719, Korea

Nam P. Suh
npsuh@mit.edu

Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge,

MA. 02139, USA

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 2/11

but still this database cannot help designers to generate design
solutions. It is usually used to find out similar parts for
manufacturing purpose and to classify shapes.

In this paper, we have attempted to answer the following
questions related to the feature-based design.

� How can we generate the geometric features starting

from a given set of functional requirements?
� How can a computer reuse the geometric features to

generate candidate shapes in the conceptual design
phase?

To answer these two questions, the following four sub-topics

have been considered and will be explained in this paper as a
method to automatically generate assembled shapes from
functional descriptions.

� Data structure
� Functional geometric feature
� Language matching
� Automatic assembly of the geometric features

Introductory example
The following is one design scenario that serves as an

introductory example for the proposed method. In this scenario,
a designer starts a design problem by describing FRs and DPs in
the V-model as shown in Figure 1. The designer describes a top-
level FR and then a beverage can as the corresponding top-level
DP. From the top-level DP, the designer can detail the design
further by decomposing it into four lower-level FRs. Then, the
corresponding underlined DPs (DP1 through DP4) and shapes
can be found in the database by language matching between FR
statements. The language-matching rate has been calculated to a
value of FR_metric by a language-matching algorithm. Each FR
has been linked to each ‘Functional Geometric Feature (FGF),’
which has its own interfaces (i.e. mating faces) in a local
coordinate frame. Computer algorithms automatically assemble
the FGFs into the candidate shapes using information on the
interfaces of the FGFs. The algorithms rank each candidate shape
by measuring its geometric interface-ability to a value of
INTERFACE_metric and then discard lower-valued candidate
shapes. From the candidate shapes with higher values of
FR_metric and INTERFACE_metric, the designer can construct
design matrices to finally decide the best shapes that satisfy all the
FRs without any conflict. The shapes in Figure 1 (a) are
determined as the best solutions among a lot of candidate shapes
based on the INTERFACE_metric, and those in Figure 1 (b)
must be discarded, because the corresponding values of
INTERFACE_metric are lower that those in (a). Figure 1 (c)
shows final results generated by scaling the shapes shown in (a)
based on the boundary constraints.

FR0 = contain and carry beverage
 FR1 = enclose the bottom with resistance to an impact

FR2 = provide a volume to contain beverage

FR3 = reduce the material and increase stiffness of the
body

FR4 = cover the body and provide pathway of beverage

DP0 = beverage can
 DP1 = bottom
 DP2 = hollow cylinder
 DP3 = conical section of the body
 DP4 = top

(a) Assembled shapes with INTERFACE_metric

=1.0((2*3/6)*(3/3)*(3/3))

DATABASE

Language- matching
FR_metric: 0 ~ 1

FR

DP

Automatic assembly
INTERFACE_metric: 0 ~ 1

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 3/11

(b) Assembled shapes with INTERFACE_metric =
0.67((2*2/6)*(1/1)*(1+1)/2) or

0.583((2*3/6)*(1/1)*(1+(1+0.5)/2)/3)

(c) Shapes through scaling with INTERFACE_metric =1.0

Figure 1. Introductory example: beverage can

2 DATABASE
Figure 2 shows the system architecture and the flow chart.

The flow chart shows how the proposed method can help
designers in the V-model to generate assembled candidate shapes.
The existing design knowledge should be collected and stored in
the databases before the designers use the databases. The top two
blocks on the flow chart show this knowledge engineering
process. The flow chart has been modified from that of Thinking
Design Machine. (Suh & Sekimoto 1990) The proposed CAD
system must consists of knowledge engineering tool, databases,
and a CAD engine. It is not easy to generalize design knowledge
related to geometry. Thus, we collect design cases instead of
generalizing all the existing design knowledge. (Aamodt & Plaza
1994) The design knowledge is collected as linked lists of FR-
DP-FGF-INTERFACES and the corresponding hierarchies.

Model an existing design
problem and its solution

Format input information as
design knowledge and store it

Definition of FRs

Find a plausible set of DPs and
FGFs by language matching of FRs

Combine FGFs and find sets of FGFs
interfacable as candidate solutions

Evaluate Information Content

[DM]
diagonal or
triangular

Yes

Hierarchical trees of FR-DP-FGF links
Relations of internal interfaces between cells
Information of interfaces of FGFs
Links to geometry of cells

No
Arrange and visualize FGFs

Knowledge Engineering Tool

FR tree
DP tree

Cells from CAD models
Relations between cells

Design Matrix

CAD Engine

Algorithms for language matching
Algorithms for integrating FGFs

Figure 2. System architecture and flow chart

The V-model design process generates two types of

design knowledge; one is knowledge about how FRs, DPs, and
geometric entities (GEs) are related with each other, and the
other is knowledge about how FRs, DPs, and GEs are
decomposed in depth. A shape decomposition technique is used
in the V-model to generate cells from the GEs in the CAD
models, which decomposes the existing CAD models into solid

cells based on FRs. These cells are stored and reused during the
integration process. A set of cells mapped to an FR is called a
functional geometric feature (FGF) to differentiate it from
geometric features defined by only geometric characteristics.
Figure 3 shows the design database, which store both types of
design knowledge.

 fr-decomposition(“A”, [FR0(FR1(FR1_1, FR1_2),

FR2
FR3(FR3_1(FR3_1_1, FR3_1_2), FR3_2)])

dp-decomposition(“A”, [DP0(DP1(DP1_1, DP1_2),

DP2
DP3(DP3_1(DP3_1_1, DP3_1_2), DP3_2)])

 dp-geometry(“DP1_A”, “FGF1_A”)

Figure 3. Fundamental structure of database

The database is used to search proper candidate DPs

and FGFs for a given FR. The fr-decomposition database stores
information of hierarchies of decomposed FRs and the dp-
decomposition database stores information of hierarchies of
decomposed DPs. A character, “A” is an index to the
corresponding design case. The dp-geometry database stores
information of FGFs mapped to the corresponding DPs. The fr-
decomposition database and the dp-decomposition database can
be constructed through the V-model design process.

Our hypothesis on FGFs is

“Functional geometric features (FGFs) can be geometrically separated from a
whole solid body.”1

This hypothesis must be true, if the V-model is used so that
geometric entities can be mapped to each FR. However, there
may exist more than one way to separate the geometric entities
into solid cells in practice. This is because an FGF is not defined
by geometric characteristics but by FRs, which is different from
other techniques for feature recognition or cell decomposition.
(Sakurai & Gossard 1990; Sakurai 1995; Wang & Kim 1998; Li &
Liu 2002; Woo 2002) In this paper, different decompositions of a
CAD model are considered as different design cases.

The guideline of separating correct FGFs satisfying a
certain FR from the whole solid body for collecting a set of cells
is as follows:

“To determine the correspondence between an FR and an FGF, the cells
corresponding to the FGF can be removed from the whole solid body. If the
resulting solid body can no longer satisfy the FR, the removed cells are the
proper FGF for the FR.”

1 This is consistent with the Independence Axiom and the FR/DP mapping

of axiomatic design.

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 4/11

In this paper, only cut operation has been used. The whole
solid is decomposed into solid cells by the cut operation s shown
in Figure 4.

Figure 4. Cut operations

The cells of a lower level FGF is a subset or elements of its
parent FGF, because FGFs are defined by zigzagging
decomposition between functional domain and physical domain
as explained in the part 1. Information on the geometry of the
cell can be encapsulated, but only information on the interfaces
of the cell is used for the computer algorithms to interface the
cell. All the geometry of the cell is needed only for visualization
of the assembled shape.

The cells of a lower level FGF is a subset or elements of its

parent FGF, because FGFs are defined by zigzagging
decomposition between functional domain and physical domain
as explained in the part 1. Information on the geometry of the
cell can be encapsulated, but only information on the interfaces
of the cell is used for the computer algorithms to interface the
cell. All the geometry of the cell is needed only for visualization
of the assembled shape.

Interface types of mating faces can be classified as follows.

� Rigid attachment: two cells are merged into a solid. A

face should be rigidly attached with another face.
� Assembly: two solid cells contact each other.

o Static: two cells contact without relative motion
between each other.

o Kinematic: two cells contact with relative
motion between each other. This interface can
be classified further into “slide”, “roll”, and
“rotate”.

Two types of mating between components such as ‘against,’ and
‘fits’ have been considered in most mechanical assemblies. (Lee &
Gossard 1985) 2 In this paper, the following types of interfaces
are thought, but all kinds of rigid attachments have been grouped
into only ‘against:rigid_attachment.’ Thus, four types of interfaces,
‘against:rigid_attachment’ ‘against:assembly,’ ‘fits:assembly,’ and
‘tight-fits:assembly,’ are mainly dealt with. A normal vector of the
planar face and one point on the face are needed for ‘against.’

2 ‘Against’ applies between planar faces and ‘fits’ applies between a solid

cylinder and a hole.

Two points on the centerline of each cylindrical face are needed
for ‘fits.’ Below are the all kinds of interfaces must be considered.

� Against:assembly: two planar faces are located on a

plane with opposite normal vectors.
� Against_equal:rigid_attachment: all the boundaries of

two planar faces are exactly matched together.
� Against_inside:rigid_attachment: a planar face is placed

inside of the other planar face.
� Against_intersected:rigid_attachment: two planar faces

are intersected on a plane.
� Fits:assembly: two centerlines of cylinder and hole are

located on a line. This interface type is classified into
‘cylinder,’ or ‘hole’ for each mating face.

� Tight-fits: assembly: two centerlines of cylinder and hole
are located on a line and two points on the cylindrical
faces locates on a cylindrical face. This interface type is
classified into ‘cylinder,’ or ‘hole’ for each mating face.

Table 1 shows a simple practice of how to generate the

FGFs for a beverage can. The generated FGFs are decomposed
by simple disassemblies or cut operations in the V-model. Figure
5 shows the detailed data structure between FGFs and cells for
the beverage can example. Each leaf level FGF has been linked to
each cell. Each cell keeps information on its interfaces, i.e. mating
faces, and encapsulated geometry. A higher level FGF has been
composed of a set of lower level FGFs. For example, FGF_0,
FGF_1, FGF_2, or FGF_3 does not keep all the geometry of the
corresponding shapes, but only a set of lower level FGFs, a list
of internally matched interfaces between the lower level FGFs,
and dangling interfaces that have not been used, but will be used
to be interfaced. The shapes of the FGFs and their dangling
interfaces are shown in the Table 1. As notably shown in the
Table, two A6’s are stored for FGF1_6 in the database, if one
mating face (A6) may be used for mating two other faces (C3 and
A5). This will give complete interface matching based on the
existing knowledge on interface.

FGF1

FGF2

FGF1_A

FGF2_A

Interface+

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 5/11

Table 1. FRs, DPs and the corresponding FGFs of
beverage can

Figure 5. Data structure between FGFs and cells for

beverage can

3 GENERATION OF DESIGN SOLUTIONS
The first step of generation of design solutions is language

matching between a query FR and saved FRs in the databases.
Through this step, any candidate FGFs are found. In the second
step, the candidate FGFs should be combined and assembled as
candidate shapes. During the step, geometric interface-ability
between the FGFs must be checked to rank the candidate shapes
based on the geometric interface-ability.

3.1 LANGUAGE MATCHING OF FRs

In language matching of FRs, computer algorithm firstly
searches all the saved FRs similar to a query FR in the fr-database.
If the algorithm found an FR1 in a hierarchy “A” and an FR2 in a
hierarchy “B” from a query FR (FR0) in the case base, the
corresponding “DP1_A” and “DP2_B” can be thought of as
different design solutions to satisfy the query FR. Many DPs can
be found for a query FR as candidate solutions through this
process. The matching a query FR (FR0) to DP1_A and DP2_B
can be expressed as

FR0 $ DP1_A, DP2_B.

Each DP has been also linked to each FGF in the database. Thus,
the language matching finally gives

FR0 $ FGF1_A, FGF2_B.

 One difference in the structure of the database
proposed in this paper from that of Thinking Design Machine
(Suh and Sekimoto 1990) is a stored tree structure of FRs, DPs
and FGFs. Hierarchical information flow using the tree structure
is more compact and effective, because all the lower branches
from a certain node in a tree can be extracted.

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 6/11

The language matching between a query FR and the

saved FRs is performed by counting the frequency of appearing
common words and the sequence of words. Both the query FR
and a selected saved FR are decomposed into a set of words and
pairs of words. For example, “engage the pawl to the engaged
position,” is decomposed into two sets as

Word set = {engage, pawl, to, engaged, position}
Word pair set = {(engage, pawl), (pawl, to), (to, engaged),

(engaged, position)}.

Here, ‘the,’ ‘a,’ ‘and,’ ‘or,’ and pronouns are trimmed, because the
word is not closely related to the meaning of the sentence. The
word set is used to check the number of words common in the
query FR and the saved FR. The word pair set is used to check
the sequence of the matched words. When the words are
compared, synonyms of each word are brought and matched by
WordNet. (Miller et al. 1993) The metric is mathematically
represented as

FR input of pairs wordhed # of matc words # of total
FR savedof pairs wordhed # of matced words # of match FR_metric

+
+×

=
2

 (a)

If a query FR is exactly the same as a saved FR, this
metric gives a value, 1.0, for the language matching between the
FR statements. If not, it calculates the difference between the FR
statements by the equation (a) defined as FR_metric. Synonym
checking reduces errors of describing a word. A threshold value
between 0 and 1 can be set to control the search space using the
FR_metric. Higher threshold value means smaller search space of
language matching.

3.2 ASSEMBLED SHAPE GENERATION

Integration of various FGFs to a complete shape is one
of the key factors for geometry design with FRs. In the
integration process, candidate FGFs are assembled, and
geometric interface-ability between them are measured. The
combination of FGFs is performed by genetic algorithm (GA)
and geometric interface-ability is measured by an algorithm that
automatically simulates human assembling operations to integrate
them in the physical space. The following attributes are checked
to quantify the geometric interface-ability. Firstly, interface types
(IT) are checked by graph matching of mating faces of FGFs.
Graph matching is known as NP-complete problem. (Gold and
Rangarajan 1996) Secondly, relative angles between faces are
measured. Thirdly, the success of positioning mating faces is
checked.

� Interface type (IT): against:assembly,

against:rigid_attachment, fits:assembly, tight-fits:assembly
� Angles between faces (AF)
� Positions (Pos)

3.2.1 COMBINATIONS OF FGFs

If three sets of candidate FGFs to satisfy FR1, FR2,
and FR3 are supposed as

{
 FR1 $ FGF1_A, FGF1_B
 FR2 $ FGF2_A, FGF2_B, FGF2_C
 FR3 $ FGF3_A, FGF3_C
}.

The possible combinations between the FGFs are 2*3*2 = 12.
For each possible combination, there exist possible combinations
of connectivity between FGFs.

Because there are a lot of possible combinations for
interfacing FGFs and the combinations are performed by
matching discrete numbers, we chose GA (Genetic Algorithm) to
more efficiently check the combinations described above instead
of using an algorithm for generating all the combinations. GA
has been proved to solve combinatorial problems that have
discrete numbers of design variables. GA chromosome can also
present assembly sequences between FGFs including mappings
each discrete number of gene to mating faces. GA can evolve
with an acceptable speed to maximize the fitness. A sample
chromosome used in GA has been defined as

FGFs : 1_A 2_A 2_A 3_A 3_A 1_A

Chromosome:

Interface pairs : Pair1 Pair2 Pair3

Each interface pair consists of two genes, which are
mapped to the encoded mating faces of an FGF. The first FGF
in a pair is a base component, which is fixed in the physical space
for assembling operations. The second FGF is an interfacing
component, which translates or rotates to be assembled to the
base component. In Figure 6, a directional graph shows
connectivity and also assembly sequences between three FGFs,
based on what the chromosome described above.

Assembly sequence :
FGF2_A -> FGF3_A / FGF3_A -> FGF1_A

2 0 2 3 4 6

FGF
1_A

FGF
2_A

FGF
3_A

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 7/11

Figure 6. Connections and assembly sequences between
FGFs

The number of pairs in a chromosome is mC2 = n,

where m is the number of FGFs. Here, the number of pairs in
the sample chromosome is 3C2 = 3. Table 2 shows the codes for
each gene, which are mapped to a set of mating faces. If each
FGF has m mating faces, the number of codes for each FGF is
mC1+ mC2+…+ mCm. If m is 3, the number of codes is 6. Thus,
each gene has a code number between 0 and 7. 0 means no
connection between two FGFs in a pair.

Table 2. Encoding of interfaces of FGFs into genes

FGF Code Mating

faces

FGF Code Mating

faces

FGF Code Mating

faces
 0 Null

1 A 2_A 1 D 3_A 1 G
2 B 2 E 2 H
3 C 3 F 3 I
4 A & B 4 D & E 4 G & H
5 B & C 5 E & F 5 H & I
6 C & A 6 F & G 6 I & G

1_A

7 A & B
& C

 7 D & E
& F

 7 G & H
& I

Table 3 shows the mapping between code numbers and

the corresponding mating faces and the possible assembly
sequences for the chromosome (2 0 2 3 4 6). The sequence of the
genes represents assembly sequences of FGFs. There exists only
possibility of interfaces between FGF_2 and FGF_3, because the
code number, 2 or 3, represents one mating face, E or I. However,
there are two possible combinations between mating faces of
FGF_3 and FGF_1 as shown in Table 3. The assembly sequences
of mating faces in the third pair can be G:C -> H:A or H:A->
G:C.

Table 3. Combinations of interfacing faces
represented by a chromosome (2 0 2 3 4 6)
FGF

1
FGF_

2
FGF_

2
FGF_

3
FGF_

3
FGF_

1
2 0 2 3 4 6

G:C & H:A No interface E:I
H:C & G:A

GA ranks matching of interface types (IT) of mating
faces. High fitness valued chromosome represents high possibility
of matching of IT’s of the mating faces. 1.0 is assigned for the
fitness, if interface types of all the mating faces are completely
matched. 0.0 is assigned, if there is no IT matching. The fitness
has been represented as

faces mating of #
ITs matched of # 2IT_metric fitness ×

== (b)

Figure 7 shows the whole process for generating
assembled shapes. Information of the chromosomes evolved in
GA is passed to the assembling algorithm. The assembling
algorithm automatically assembles FGFs, and measures
INTERFACE_metric to satisfy pre-defined mating conditions for
the automatic assembled shape generation. Gluing may include a
detailed shape deformation process or a shape optimization
technique. Thus, it is out of scope of this paper.

GA evolution

Assembling

Gluing

 Chromosomes(Fitness)

 INTERFACE_metric

y Assembly sequence generation
y Interface Type (IT) matching

y Assembly of FGFs
y Calculation of degrees of freedom

y Rigid attachment of FGFs
y Calculation of degrees of freedom

Shape
Integration
Process

Figure 7. Shape integration process of FGFs

3.2.2 AUTOMATIC ASSEMBLY AND INTERFACE-
ABILITY OF FGFS

The goal of the assembling process is to automatically
assemble the FGFs based on mating conditions and assembly
sequences given from the chromosomes and to measure
geometric interface-ability between the FGFs to a value of
INTERFACE_metric. This assembling process can be
implemented as a computer algorithm that emulates human
assembling operations and solves assembly constraint equations.
A flow chart in Figure 8 shows information flow based on which
the computer algorithm performs the assembling operations. The
algorithm performs coordinating, orienting, and positioning of
the FGFs and calculates INTERFACE_metric. Here,
coordinating is locating a local coordinate frame to a proper
position. Orienting is only rotations of the FGFs to match
directions of mating faces, and positioning is only translations of
the FGFs to locate the mating faces to the given position.

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 8/11

Figure 8. Flow chart for assembling process

The algorithm brings chromosomes from the highest

value to the lower value. For a chromosome (2 0 4 6 4 6)
according to the codes in Table 2, there are four possible
combinations as shown in Table 4.

Table 4. Combinations of interfacing mating faces in a

chromosome
Sequence FGF1 FGF_2 FGF_2 FGF_3 FGF_3 FGF_1

 2 0 4 6 4 6
1 No interface D:I -> E:G G:C -> H:A
2 No interface D:G -> E:I G:C -> H:A
3 No interface D:I -> E:G H:C -> G:A
4 No interface D:G -> E:I H:C -> G:A

The algorithm recursively brings ith sequence (i = 1, 2, 3,

4) and jth interface pair of FGFs (j = 1, 2, 3) in Table 4, and kth
pair of mating faces (k = 1, 2) in pair 2 and pair 3. In an interface
pair, the first FGF is a base component and the second FGF is an
interfacing component. Each FGF has its local coordinate frame.
Thus, the first step of assembling operations is to locate the local
coordinate frame with respect to the absolute coordinate frame.
This is called ‘coordinating.’ Once the ‘coordinating’ has been

done, the algorithm rotates the second FGF to match orientation
of its mating face with that of the base FGF. This operation is
called ‘orienting.’ Then, it translates the second FGF to locate its
mating face to a proper position to satisfy mating conditions. This
operation is called ‘positioning.’

For example in Table 4, the algorithm recursively brings
assembly sequences, and automatically assembles the three FGFs.
In sequence 1, it brings 2nd interface pair of FGFs first, because
there is no interface between FGF1 and FGF2. Then, it brings 1st
pair of mating faces, D:I. It firstly locates the local coordinate
frames of the FGF2 and the FGF3 coincidently with the absolute
coordinate frame. Then, it rotates the FGF3 to a direction to
match the orientation of I with that of D. In the orienting
operation, unit normal vectors of two planar mating faces must
be parallel and opposite for ‘against’ and two centerlines must be
parallel for ‘fits’. The angle differences between mating faces are
calculated and updated for AF_metric during the operation. Then,
it translates the FGF3 for positioning I to D. In the positioning
operation, a point on the planar mating face must be on the other
planar mating face for ‘against’ and two centerlines must be
located on the same line for ‘fits’. If scaling or stretching is
needed, it is performed. If it fails positioning FGF3, it gives a
defined value (= 0.5 in this paper) less than 1.0 for Pos_metric.
The algorithm generates output position and orientation in a
coordinate frame with allowable DOFs. It recursively checks the
interface-ability of the second pair of mating faces, E:G, and then
do the same steps for 3rd interface pair of FGFs (FGF3 and
FGF1). Finally, three values of IT_metric determined by GA
evolutions, AF_metric determined during orienting operation,
and Pos_metric determined by positioning operation are
multiplied into a value of INTERFACE_metric, which represents
the geometric interface-ability for a given chromosome. The value
of the INTERFACE_metric has been scaled between 0.0 and 1.0.
1.0 means complete interface-ability for the given FGFs and 0.0
means that none of pairs can be interfaced. Consequently, the
proposed algorithm produces the assembled shapes with
allowable DOFs, and ranks the assembled shapes based on the
values of INTERFACE_metric.

All the operations are performed by transformation
matrix (Paul 1984) and the corresponding mathematical equations
represented as follows.

p
p
p

T
aon
aon
aon

T
paon
paon
paon

T
z

y

x

T
zzz

yyy

xxx

R
zzzz

yyyy

xxxx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
100
010
001

1000
0
0
0

1000

 (c)

where TR denotes only rotation and TT denotes only translation.
The elements of TR matrix always have the following relations
represented as six mathematical equations.

Bring kth pair
of mating faces

Orienting (2)

Positioning (3)

Are the orientation
constraints satisfied?

(2)

Are the positiong
constraints satisfied?

(3)

Scaling/Stretching (4)

Are the positioning
constraints satisfied?

(4)

Increase k by 1If k>limit

Yes

No

Yes
DOFs

No

No

AF_sum =
AF_sum + AF_metrick(2)

(INTERFACE_metric)iDOFs

Yes

Yes

No

Coordinating (1)

DOFs

Gluing

Assembling
If j>limit

Yes

NoBring jth pair of FGFs

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 9/11

xyyxz

zxzxy

yzzyx

zzyyxx

zyx

zyx

onona

onnoa

onona

ononon

ooo

nnn

−=

−=

−=

=++

=++

=++

0

1

1
222

222

 (d)

DOFs are represented by TR(n) or TT(n). Here, n is a number less
than or equal to three which represent degrees of freedom for
rotation or translation. If an interfacing FGF has [TR(1), TT(2)], it
has one allowable DOF for rotation and two for translation.

Only scaling or stretching is performed for special cases
in this paper to show its effects to generating complete assembled
shapes. An FGF is originally created with its own purpose. Thus,
the more the shape of the FGF deforms, the more its purpose is
lost. In this sense, only the severe shape deformation is not
allowed, but scaling or stretching is performed. Scaling of shapes
means enlarging or reducing the size of the shapes in all
directions in the physical space and stretching means doing it in
one direction. The basic deformation matrix is a special form of
the transformation matrix, which is

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
000
000
000

z

y

x

S
S

S

D (e)

where Sx, Sy, and Sz are scaling factors. If all Sx, Sy, and Sz are
equal, this matrix can be used for scaling. Otherwise, only one of
Sx, Sy, and Sz is not zero, it is used for stretching.

4 INTEGRATION OF FGFS FOR BEVERAGE CAN
DESIGN

This section explains the details on how the results of the

introductory example shown in Figure 1 have been generated.
Figure 9 shows the corresponding GA codes and one of GA
chromosomes.

FGF Gene Mating

faces
FGF Gene Mating

faces
FGF Gene Mating

faces
FGF Gene Mating

faces

 0

1 1 A1 2 1 A2 3 1 A3 4 1 A4

 2 B2 2 B3

 3 A2&B2 3 A3&B3

(a) GA codes of mating faces

FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1

1 1 2 1 2 1 0 0 0 0 0 0

(b) Example chromosome

Figure 9. GA codes of mating faces and an example

chromosome

GA evolves to search the best matching of interface
types to maximize fitness value defined as IT_metric. Then, the
proposed assembly methods are applied to integrate the FGFs
into the assembled shapes. In this example, GA evolves for 20
generations with 300 populations, and then against:assembly
(TT(3), TR(3)) and against:assembly (TT(2), TR(1)) are used. Figure
1 shows the resultant candidate shapes generated by the assembly
methods. Figure 1 (a) shows the assembled shapes after one more
constraint, ‘concentric,’ has been applied to all the candidate
assembled shapes. All the candidate shapes have
INTERFACE_metric = 1.0. It means that all the candidate
shapes are completely oriented and positioned satisfying all the
pre-defined mating conditions between FGFs based on the
proposed metric. Figure 1 (b) shows some other assembled
shapes of INTERFACE_metric = 0.67 or 0.583. All these
candidate shapes can be generated from three different
chromosomes as follows.

FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1
0 0 1 1 0 0 0 0 1 1 0 0

FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1
0 0 1 2 0 0 0 0 1 1 0 0

FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1
0 0 3 3 0 0 0 0 1 1 0 0

In the first chromosome, one pair of mating faces has

been missed to be interfaced among total three pairs of mating
faces. Thus, IT_metric is 0.67 (= 2*2/6). However, all the mating
faces given by the chromosome can be correctly oriented and
positioned: AF_metric = 1.0 and Pos_metric = 1.0. The first
chromosome represents the first candidate shape in (b) and has
INTERFACE_metric = 0.67 from
IT_metric*AF_metric*Pos_metric. The same analysis can be
applied to the second chromosome that represents the second
candidate shape in (b). The third chromosome represents
interfaces of all the pairs of mating faces. In this case, IT_metric
is 1.0 (= 3*3/6), because all the interface types (against:assembly)
can be matched correctly. Also, all the mating faces can be
oriented correctly so that AF_metric = 1.0. However, one pair of
mating faces cannot be positioned geometrically. This fact gives
Pos_metric = 0.583 ((1+(1+0.5)/2)/3). INTERFACE_metric for
the third chromosome is 0.583 from
IT_metric*AF_metric*Pos_metric. There are two combinations
for interfacing two pairs of mating faces; A2:A3 -> B2:B3 and
A2:B3 -> B2:A3. These two combinations show two different
candidate shapes in (b). The value of INTERFACE_metric in
this case highly depends on a value, which is pre-set to 0.5 in
Pos_metric. The pre-set value is used for degrading
INTERFACE_metric if positioning is failed. If the value has

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 10/11

been set to a larger number, the value of INTERFACE_metric
will be increased for the same design problem.

Figure 10 shows the advantage of the V-model. If the
body of the beverage can is assembled first, and then the bottom
and the top are assembled to the assembled body, the
chromosome for integration of the body has 2 genes, and that for
the next assembly has 6 genes. Actual GA evolution of the two-
step assembling is 3 generations with 200 populations plus 10
generations with 300 populations to get the same results as
shown in Figure 1. Total calculations are 3600 chromosomes for
this case. Thus, it is less than 6000 calculations, in which 12-gene
chromosome has been used. This is rough estimation for GA
calculations, but explains the advantage of top-down
decompositions for bottom-up integrations in the V-model.

Figure 10. Advantage of top-down decomposition in the

V-model

5 CONCLUSIONS

This paper presented a method that automatically
generates assembled shapes from input functional descriptions.
The method is generally applicable to all kinds of shape design
problems, not ad-hoc approach for a specific design problem. It
includes V-model design process, database, and computer
algorithms for searching candidate FGFs and automatically
assembling them. It generated interesting and reasonable shapes,
which are satisfying input FRs, as shown in application examples.
FR_metric (0.0 ~ 1.0) and INTERFACE_metric (0.0 ~ 1.0) have
been made to rank the generated shapes and to support decision-
making by computer algorithms and/or by human designers.
FR_metric is a language-matching rate between an input FR
statement and a saved FR statement in the database.
INTERFACE_metric (0.0 ~ 1.0) is an interface-matching rate
(interface type and geometric assemble-ability) between candidate

FGFs. The computer algorithms can filter a lot of the
unreasonable shapes based on the FR_metric first, and then the
INTERFACE_metric. The candidate shapes with FR_metric =
1.0 and INTERFACE_metric = 1.0 can be considered as good
design solutions among a lot of generated shapes. Design matrix
shown in the part 1 must be constructed for each candidate shape
to check satisfaction of all the FRs and finally to determine the
best design solution.

This sort of shape generation using database is a
combinatorial problem, which has a lot of combinations of
FGFs and needs high computational power. This paper used
several important techniques to handle the heavy computational
load in a manageable level.

� All the detailed geometry has been encapsulated. The

developed computer algorithms use only information on
interfaces, i.e. mating faces. Thus, the number of
combinations and computational complexity are relatively
small comparing to other approaches using complex whole
geometry.

� Several modules of the computer algorithms have been used.

The language-matching module uses FR_metric and reduces
a solution space into a certain level set by a threshold value
for the FR_metric. The GA module reduces the solution
space again by matching pre-defined interface-types between
FGFs using IT_metric. Then, automatic assembling
algorithm operates assembling of FGFs and calculates values
of INTERFACE_metric. Because solution spaces are
reduced consecutively through the steps, computational
complexity of automatic assembling algorithm is in a
manageable level.

Bottom-up integrations of FGFs in top-down hierarchical

tree can eliminate many combinations and reduce search space
for allowable combinations comparing to integrations only by
bottom-up manner.

6 REFERENCES

Pratt MJ, Wilson PH (1985) Requirements of support of form
features in a solid modeling system. CAM-I Report, R-85-ASPP-
01, Arlington, Texas, USA

Dixon JR, Cunningham JJ (1987) Research in designing with
features. Proceedings of the IFIP TC 5/WG 5.2 Workshop on
Intelligent CAD, 137 – 148, Boston, MA. USA

Sreevalsan PC, Shah JJ (1992) Unification of form feature
definition method. Proceedings of the IFIP WG 5.2 Working
Conference on Intelligent Computer Aided Design, 83 – 99,
Columbus, OH, USA

Suh NP, Sekimoto S (1990) Design of thinking design machine.
CIRP Annals

1

FGF23

1

FGF1

1

FGF4

2

FGF23

1

FGF1

2

FGF4

1

FGF3

1

FGF2

Functional requirements to shape generation in CAD: database and automatic shape assembly
The Third International Conference on Axiomatic Design

Seoul – June 21-24, 2004

Copyright © 2004 by ICAD2004 Page: 11/11

Aamodt A, Plaza E (1994) Case-based reasoning: fundamental
issues, methodological variations, and system approaches. AI
Communications 7(1): 39 – 59

Sakurai H, Gossard DC (1990) Recognizing shape features in
solid models. IEEE Computer Graphics and Applications 10(5):
22 – 32

Sakurai H (1995) Volume decomposition and feature recognition:
part I – polyhedral objects. Computer Aided Design 27(11): 833 –
843

Wang E, Kim YS (1998) Form feature recognition using convex
decomposition: results presented at the 1997 ASME CIE feature
panel session. Computer Aided Design 30(13): 983 – 989

Li B, Liu J (2002) Detail feature recognition and decomposition
in solid model. Computer Aided Design 34: 405 – 414

Woo Y (2002) Fast cell-based decomposition and applications to
solid modeling. Computer Aided Design accepted

Lee K, Gossard DC (1985) A hierarchical data structure for
representing assemblies: part 1. Computer Aided Design 17(1): 15
– 19

Miller GA, Beckwith R, Fellbaum C, Gross D, Miller K (1993)
Introduction to WordNet : an on-line lexical database.
http://www.cogsci.princeton.edu/~wn

Gold R, Rangarajan A (1996) A graduated assignment algorithm
for graph matching. IEEE Trans Pattern Anal Mach Intell 18(4):
377 – 388

Paul RP (1984) Robot manipulators: mathematics, programming
and control. The MIT Press

R. D. Coyne and J. S. Gero, “Knowledge-Based Design Systems,”
Addison-Wesley, 1990

