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ABSTRACT 

The business solution to the three-sided conflict among 
industry, customers and the environment is based upon 
transitioning from the selling of products to the selling of 
services, while the manufacturer remains the owner of the 
product and is responsible for it throughout its lifecycle. A key 
to the success of such a transition is the concept of extended 
maintenance based upon modular product design. With the aid 
of axiomatic design, the product's concept can already be 
optimized at the preliminary design stage. Furthermore, 
axiomatic design leads to a substantial decrease in the 
product's concept complexity, that is, in the core of modular 
design. A system that automatically modularizes a product 
design can be realized by integrating principles of axiomatic 
design with two new design structure matrices (DSM). The 
goal of  the proposed methodology is to automatically 
determine the number of  modules and to identify product 
modules in a design, which are essential for the 
implementation of  a module-based product-service plan. An 
example of automatic modularization for the design of a water 
dispenser is presented. 

Keywords: Axiomatic Design, DSM, modularization 

1  INTRODUCTION 

In recent years, protecting the environment and its natural 
resources for future generations has become a major concern. 
Growing industrialization, depleted resources, population 
growth and globalization have prompted intensive legislation 
supporting a greener society. One of  the consequences of  
"green" legislation is the need to develop and implement new 
tools, methodologies and approaches for designing, 
manufacturing and maintaining products. The leading trend 
gradually being implemented by manufacturers to meet both 
environmental and economic goals is the Selling-of-Services 
approach [Shpitalni, 2004].  

By transitioning to selling services rather than products, 
the manufacturer remains the owner of  the product 
throughout its lifecycle and is responsible for providing reliable 
services to the customer. As owner of  the product, the 
manufacturer is allowed to augment lifespan-prolonging 
activities such as servicing and upgrades in order to provide 
reliable services. A major consequence of  this approach is the 
change in product design towards efficient maintenance and 

end-of-life activities, such as product reclamation, disassembly 
and recycling [Shpitalni, 2004; Franke and Seliger, 2002].  

The shift to a service-oriented business model has been 
driven by environmental requirements and legislation and can 
be economically justified only when environmental legislation 
is enforced. The exertion of  careful control over lifecycle-
enhancing activities obtained by this strategy offers substantial 
benefits by extending product life span, fostering exploitation 
of  resources and reducing material and energy waste, 
consequently contributing significantly to the sustainability of  
both the product and the environment.  

Implementing the product-service approach dictates new 
design considerations. In particular, product maintenance 
[Takata et al., 2004] becomes more than merely a scheduled 
service. Maintenance — whether time- or condition-based —
becomes a tool to enhance a product's active life span and 
reliability (which is now the interest of  the manufacturer) by 
means of  servicing, part replacement (possibly reuse of  parts) 
and upgrade operations. Nevertheless, growing product 
complexity (mainly due to ongoing technological 
advancements and increases in interdisciplinary component 
integration) has made maintenance planning more difficult. 
Manufacturers' efforts to gain more control over product 
performance together with the need to provide reliable 
operation throughout the entire life span of  the product are 
dictating a change in product design approaches.  

Adopting a modular system architecture design has many 
advantages for service-oriented products, including quick and 
efficient maintenance and upgrades and a reduction in on-site 
service time needed to isolate a malfunctioning element. This 
lowers down-time by replacing entire modules. Although 
premature replacement of  functioning inner-module elements 
does incur cost, it in turn reduces the costs of  unscheduled 
maintenance activities, which in many cases are more 
substantial. Moreover, initiated replacement provides an 
opportunity to salvage parts, which are then refurbished and 
reused or recycled, consequently reducing environmental loads. 

As products become large-scale and more complex, 
abstract models must be developed to deal with complex 
product architectures [Sharman and Yassine, 2004]. The 
abstraction in product architecture gained by modularization 
may aid designers in attaining a more manageable structure of  
the product-to-be.  

The method introduced in this paper aims to support the 
selling-of-services paradigm. More specifically, we present a 
method and tool developed to support modular system 
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architecture design for service-oriented products. The 
proposed design methodology combines Axiomatic Design 
(AD) principles with Design Structure Matrix (DSM) analysis 
tools to facilitate desired product functionality as well as 
modular architecture (Figure 1).  

 
Figure 1. Proposed methodology for product 

modularization. 

2  AIM AND METHOD 

Based on the components comprising a product, the aim 
is to develop a system that automatically determines the 
optimal number of  modules and integrates the components in 
the modules according to specific requirements related to 
functionality, such that the interconnections among modules 
are minimized. Minimizing the interactions among the 
different modules reduces system complexity and produces a 
module-oriented architecture. 

The first step consists of  conceptualizing the 
product/system using axiomatic design principles. This 
practice ensures maximal decoupling of  design parameters and 
minimizes overall component interaction. Due to the nature of  
this process, the resulting design at this stage may already 
achieve some degree of  component integration, laying the 
foundation for module identification in the following step. 

The next step involves capturing structural interactions 
among different product components in a design structure 
matrix (DSM) representation based on the axiomatic design. 
The matrices are then used to determine the system's 
modulation through component clustering.  

Since manual module identification by means of  manual 
clustering is only possible for simple products, a supporting 
tool is needed for more intricate systems. Hence, as part of  
this research, two new DSM clustering tools have been 
developed: a new DSM clustering algorithm and a new 
reordering algorithm of  sparse DSMs. 

The resulting methodology is verified and demonstrated 
here on a simple case study – a water dispenser. 

3 CONCEPTUALIZING THE PRODUCT 

THROUGH AXIOMATIC DESIGN 

PRINCIPLES 

In engineering design, conceptual design is the stage in 
which the working principles and structure of  the product are 
conceived. This process results in a primary solution, which 
may be considered the most suitable alternative for a given set 
of  specifications. The process of  generating the optimal 
concept alternative depends greatly on the methodology and 
the evaluation measures adopted by the product designer and 
can dictate product architecture and modularity. 

At this stage of  the proposed methodology, we consider 
conceptualizing the product by applying the axiomatic design 
methodology (ADM) [Suh, 2001]. This methodology yields a 
product design with the following features: (a) either a 
decoupled or an uncoupled design embodiment, resulting in a 
decrease in the number of  inter-component interactions, and 
(b) a certain degree of  component integration, which may ease 
the subsequent process of  product modularization. 

In ADM, according to the independence axiom a good 
design is attained only if  the design is either uncoupled or 
decoupled [Suh, 2001], ensuring that functional requirements 
are independently satisfied by the corresponding design 
parameters. 

The design matrix characterizes the product design 
through the relations between the FR vector (functional 
requirements – or goals) and the DP vector (design parameters 
– or solutions). The axiomatic design methodology includes 
three types of  design matrices: coupled, uncoupled and 
decoupled. In the following equations, the relationships 
between FRs and DPs are represented either by "X" (a 
relationship exists) or by "0" (no relationship exists). The 
relationships represented by "X" are either linear (where "X" 
represents a constant) or nonlinear (where "X" represent 
functions of  DPs). 

Equation 1 illustrates a coupled design. This design is 
considered to be unacceptable, since it is hard to control a 
particular FR through its corresponding DP without affecting 
other FRs. 

 

1 0 1

2 0 0 2

3 0 0 3

4 0 4

FR X X X DP

FR X X DP

FR X X DP

FR X X X DP

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭  

(1)

 

The ideal or uncoupled design, as illustrated in equation 2, 
is represented by a diagonal design matrix. In this case, each of  
the FRs is satisfied independently by one DP. 

 

1 0 0 0 1

2 0 0 0 2

3 0 0 0 3

4 0 0 0 4

FR X DP

FR X DP

FR X DP

FR X DP

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

  (2)

 

In a case where the design can be represented by a 
triangular design matrix (Equation 3), a decoupled (or 
acceptable) design is achieved. In this case, FR independence 
can be guaranteed by determining the proper sequence of  
manipulating DPs. 
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  (3)

 

For a system to achieve modularity, the physical units or 
modules must be distinguishable and separated into units (with 
minimum interaction and/or relations between units- 
interdependencies). Separation into modules is only possible if  
elements in the physical design are unaffiliated to some extent. 
Although only functional independence is practically achieved, 
the second axiom suggests that physical integration is desirable 
between elements, reducing product complexity (information 
content) and resulting, in many cases, in a modular-like form.  

By applying axiomatic design principles at the conceptual 
phase, we can to some degree ensure that physical elements are 
integrated into a single module, thus reducing overall system 
complexity and maximizing potential modularity.  

4  CAPTURING STRUCTURAL INTERACTIONS 

USING DESIGN STRUCTURE MATRICES 

In this stage of  the proposed method, all adjacencies, 
interactions and integrations among the product components 
are modeled based on the conceptual design attained in the 
previous stage. These interactions and integrations include 
architectural/spatial dependencies and process flows, as well as 
material, information and energy flows. These are identified by 
developing graphical representations of  the interdependent 
flows and then by developing the consequent design structure 
matrix (DSM) for each type of  interaction.  

DSM is a system engineering tool that uses matrices to 
model and analyze complex projects, processes or systems 
[Browning, 2001] DSMs capture the structure of  the 
interactions, interdependencies and interfaces among different 
hierarchical product elements (i.e., components and modules), 
as shown in Figure 2. Typically DSM analysis uses clustering 
algorithms to identify groups of  close-coupled components, as 
shown in Figure 3. The primary objective of  clustering 
elements into modules is to minimize interactions among 
different modules that reduce system complexity and lead to 
module-oriented architecture. 

Analyzing system modularity through DSM involves the 
following three steps: 

1. Identifying the system components based on the 
conceptual design.  

2. Defining all adjacencies, interactions and integrations 
between the components. 

3. Analyzing potential clustering of  system components 
(integration analysis). 

Integration analysis is a tool that offers insights into 
possible system modularization by clustering off-diagonal 
elements and reordering rows and columns of  the DSM 
elements. The foremost objective of  clustering is to minimize 
interactions among different clusters, sub-systems or modules.  

To date, several algorithms and heuristics have been 
proposed for clustering [Sanchez and Mahoney, 1997; 
Fernandez 1998], but no single clustering approach has been 
identified to give an optimal solution. Therefore, as part of  

this research and methodology, we have tailored two 
independent tools for Design Structure Matrix reordering and 
clustering. The first is a DSM clustering algorithm and the 
second is an alternative new clustering approach for sparse 
DSMs, based on sparse reverse Cuthill-McKee ordering 
[George and Liu, 1981]. 

1 2 3 4 5 6 7 8 9 10 11 12

1 * 0 2 0 2 0 0 2 0 0 0 0

2 0 * 0 0 1 2 0 0 0 1 1 0

3 2 0 * 0 1 0 1 1 0 0 0 0

4 0 0 0 * 0 0 0 0 1 1 0 0

5 2 1 1 0 * 0 0 1 0 0 0 0

6 0 2 0 0 0 * 0 0 0 0 0 0

7 0 0 1 0 0 0 * 0 0 0 0 2

8 2 0 1 0 1 0 0 * 0 0 0 0

9 0 0 0 1 0 0 0 0 * 2 0 0

10 0 1 0 1 0 0 0 0 2 * 0 0

11 0 1 0 0 0 0 0 0 0 0 * 0

12 0 0 0 0 0 0 2 0 0 0 0 *

Figure 2. An example of  a synthetic artificial DSM.  

Product elements and their interactions are recorded in a 
square matrix. Diagonal cells represent the elements (in this 
case 12 elements); off-diagonal cells represent interactions 
between elements and their strength (0-no dependency; 1-weak 
dependency; 2-strong dependency). If  the direction of  the 
interactions is meaningful, the directions are recorded in an 
asymmetric matrix, where the location of  an interaction (either 
over or under the diagonal) represents the direction. If  there 
are no directional preferences, DSM(i,j)=DSM(j.i)), and the 
DSM is symmetrical.  

5 8 3 1 11 6 2 12 7 4 10 9

5 * 1 1 2 0 0 1 0 0 0 0 0

8 1 * 1 2 0 0 0 0 0 0 0 0

3 1 1 * 2 0 0 0 0 1 0 0 0

1 2 2 2 * 0 0 0 0 0 0 0 0

11 0 0 0 0 * 0 1 0 0 0 0 0

6 0 0 0 0 0 * 2 0 0 0 0 0

2 1 0 0 0 1 2 * 0 0 0 1 0

12 0 0 0 0 0 0 0 * 2 0 0 0

7 0 0 1 0 0 0 0 2 * 0 0 0

4 0 0 0 0 0 0 0 0 0 * 1 1

10 0 0 0 0 0 0 1 0 0 1 * 2

9 0 0 0 0 0 0 0 0 0 1 2 *

Figure 3. The DSM from Figure 2 after integration 
analysis; four modules were identified for integration.  
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5  A DSM CLUSTERING ALGORITHM FOR 

MODULE IDENTIFICATION 

For small and sparse DSMs, manual clustering by visual 
inspection is often possible. But for more complex products, 
computer-aided clustering is essential.  

The primary objective of  clustering is to minimize 
interactions among different clusters [Browning, 2001]. As part 
of  this research, a new heuristic clustering algorithm was 
developed and implemented on the MATLAB™ platform. 
The algorithm is based upon integrating components into 
modules rather than subdividing the product into modules, as 
proposed by Sanchez and Mahoney [1997] and by Fernandez 
[1998]. The proposed clustering algorithm divides the system 
into several clusters based on the element interactions obtained 
in the previous stage. The proposed clustering algorithm is 
based on the following objectives:  

(a) The number of  outer-cluster interactions needs to be 
minimized to reduce system complexity. 

(b) Inner-cluster connectivity should include all 
components in the module to assure fully integrated 
clusters.  

(c) No overlapping clusters are allowed to attain total 
cluster separation corresponding to disjoint modules.  

Applying these objectives results in an optimal balance 
between inner-cluster connectivity (all element in the cluster 
are related) and the reduction of  outer-cluster interactions. 
Therefore, the algorithm avoids converging to one mega-
cluster by splitting clusters that are not fully connected into 
independent or unrelated clusters. 

The main idea behind our clustering algorithm is that 
modules should be independent and totally separate, contrary 
to other heuristics [Sanchez and Mahoney, 1997; Fernandez, 
1998]. This dictates that interface locations cannot be shared 
between clusters and overlapping between clusters is 
prohibited. Since interface locations are usually the weakest 
links in the design, they should either be defined as interface 
units (links) or integrated into one of  the adjacent modules, if  
possible. Furthermore, if  the design includes a high level 
integrating component or bus (a module or component 
integrating many modules together, as in a PC motherboard), 
this component should be excluded from the clustering 
process to ensure that the modules are separated. 

We define a cluster as a group of  components with 
coupled interactions among them and minimal external 
interactions. Consequently, in the proposed algorithm all inner-
cluster elements must be connected, be part of  a continual 
flow or have the required spatial adjacency. Thus, the objective 
function of  our clustering algorithm is to minimize the 
number of  interactions outside the clusters: 

 
[ ]minf DSM Cost=

 (4) 

where 

 
( )

1 1

( , )

,

n n

i j

DSM Cost DSM i j

i j outside clusters

= =

=

∀

∑∑
 (5)

 

The clustering algorithm initializes a cluster list with n 
clusters, each of  which comprises exactly one component (n 
1x1 matrices), where n is the size of  the DSM. The clustering 
sequence randomly selects a cluster and then for every other 
potential component evaluates a candidate to be integrated 
into the selected cluster. The algorithm then selects the 

element that most improves the objective function f. If  f 
cannot be improved, the algorithm returns to the previous step 
and selects a new candidate cluster.  

To reduce the possibility of  a result converging to a local 
minimum, the algorithm randomly allows a non-improving 
element to be selected. After a change has been accepted, the 
cluster list is updated, and the resulting clusters are checked for 
inner-cluster connectivity. If  inner-connectivity is not found, 
the decomposable clusters are then split to prevent the 
algorithm from converging to one mega-cluster. The algorithm 
continues to improve f iteratively until the maximum number 
of  iterations allowed has been carried out. To improve user 
control, additional constraining parameters were added, among 
them maximum cluster size and/or minimum number of  
clusters.  

Figure 4 depicts some modularization stages and the 
convergence of  the algorithm.  

6  A DSM REORDERING TOOL USING 

SPARSE REVERSE CUTHILL-MCKEE 

ORDERING  

Efficient separations into modules can only be achieved if  
the number of  interactions and their coupling nature are such 
that the clusters are distinguishable. The basic idea behind 
most clustering algorithms (e.g., the algorithm proposed in the 
last section) is that during the reordering of  elements in the 
DSM and the repositioning of  off-diagonal interactions closer 
to the diagonal, clusters can often be identified, as shown in 
Figure 5. Assuming a certain average number of  interactions 
(ANI) per element, we show (Figure 6) that a DSM becomes 
sparser as its dimensions increase. Moreover, in large DSMs 
the density does not change significantly with ANI. Hence, we 
can assume that large systems have sparser DSMs.  

Taking advantage of  the sparsity property, we can 
implement the Sparse Reverse Cuthill-McKee Ordering1 
[George and Liu, 1981] (SRCMO) algorithm to reduce the 
DSM's bandwidth. The reduction of  the DSM's bandwidth has 
an effect similar to clustering, whereby the non-zero elements 
become closer to the diagonal. The SRCMO algorithm first 
finds a pseudo-peripheral vertex of  the graph representing the 
matrix. It then generates a level structure by breadth-first 
searching and orders the vertices by decreasing the distance 
from the pseudo-peripheral vertex. This property may be used 
for reordering and pre-processing sparse DSMs before 
implementing either manual or automated clustering 
algorithms. Note that the ordering algorithm can be applied 
both to symmetric and to non-symmetric DSMs, consequently 
reducing clustering time. Figure 8 illustrates a permutation of  a 
DSM using SRCMO. 
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(a) 
 

(b) 

 

(c) (d) 

 
(e) 

Figure 4. Clustering algorithm result for example illustrated in Figure 2: (a) clustering after 1 iteration;  
(b) after 5 iterations; (c) after 15 iterations; (d) after 18 iterations;  

(e) algorithm reached a minimum cost of  6 after 18 iterations, resulting in four clusters.  
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Figure 5. Clustering algorithms reposition off-diagonal interactions closer to the diagonal,  

creating identifiable clusters (potential modules). 

 
Figure 6. DSM density vs. DSM size. As the number of  elements in a DSM increases, the DSM becomes sparser.  

For large systems, the average number of  interactions per element (ANI) hardly affects DSM density. 

 

9 4 10 6 11 2 5 1 8 3 7 12

9 x 1 2 0 0 0 0 0 0 0 0 0

4 1 x 1 0 0 0 0 0 0 0 0 0

10 2 1 x 0 0 1 0 0 0 0 0 0

6 0 0 0 x 0 2 0 0 0 0 0 0

11 0 0 0 0 x 1 0 0 0 0 0 0

2 0 0 1 2 1 x 1 0 0 0 0 0

5 0 0 0 0 0 1 x 2 1 1 0 0

1 0 0 0 0 0 0 2 x 2 2 0 0

8 0 0 0 0 0 0 1 2 x 1 0 0

3 0 0 0 0 0 0 1 2 1 x 1 0

7 0 0 0 0 0 0 0 0 0 1 x 2

12 0 0 0 0 0 0 0 0 0 0 2 x

Figure 7. Results of  applying SRCMO to the artificial example in Figure 2.  
In this case, SRCMO reorders the DSM so clusters are immediately recognized  

and no further clustering is needed. 
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Figure 8. Permutation of  a DSM using Sparse Reverse Cuthill-McKee Ordering. The clustered DSM is mixed and then 
processed through SRCMO. Some of  the resulting clusters in the DSM can be identified.  

 
 
 

7 CASE STUDY EXAMPLE 

To demonstrate the modular design process presented in 
this paper, we introduce a case study: a modular design of  a 
water dispenser. The water dispenser is designed to serve 
various functions, primarily to supply hot or cold filtered water 
in a way that is safe and sustainable.   

First step: Design the product based on axiomatic design 
principles. After the functional requirements for the product 
were determined, the corresponding design parameters were 
conceived (Table 1). These corresponding design parameters 
were selected in accordance with the independence axiom to 
ensure at least a decoupled design. Figure 9 illustrates the 
results of  this design process, where a decoupled design was 
obtained as identified by the triangular design matrix. The 
decoupled design ensures that the design is acceptable and 
minimally coupled. Furthermore, the proper sequence was 
determined for manipulating design parameters to gain better 
control of  each FR separately, thus eliminating imaginary 
complexity.  

Second step: Identify and model the product's elements 
and interactions based on the design. For this particular design, 
several interactions were considered and modeled (Figure 10), 
including material, heat, information, electricity and spatial 
(architectural) interactions. From the resulting model, the 
interactions were captured into DSMs. Figure 11 shows an 
example of  a DSM map for spatial or architectural interactions; 
in this case a four-degree scale was adopted, including negative 
relations where applicable.  

 

Third step: Identify modules using DSM clustering tools. 
The spatial DSM was selected for clustering, and our module-
identifying clustering algorithm was applied. The results, as 
illustrated in Figure 12, show that the algorithm converged to a 
minimum after 180 iterations.  

Fourth step: Applying the clustering algorithm for the 
water dispenser yielded five clusters representing the product 
modules (Figure 13). Each module was analyzed to identify its 
functional and architectural significance. For example, one of  
the clusters, "the inlet block", is responsible for water treatment 
and flow. It includes the booster pump, charcoal filter, UV 
filter and water valve. This case study illustrates how our 
methodology can be practically implemented to design a 
modular product. The systematic approach has successfully 
achieved a recognizable modular form that is identifiable and 
intuitive (each module has a recognizable architectural and/or 
functional purpose). 

Table 1. Generic water dispenser axiomatic design. 

Functional Requirements
FR1=Supply hot boiling water 
safely 
  FR11=Prevent misuse by  
  children 
  FR12=Heat water 
  FR13=Ensure water boil 
  FR14=Control hot water flow

FR2=Supply cold water 
  FR21= Cool water 
  FR22=Control cold water flow 

FR3=Conserve energy 
  FR31=Control hot water  
  temperature 
  FR32=Conserve heat 
  FR33=Prevent mix of  hot and
  cold water  

FR4=Conserve water resource 

FR5=Maintain water quality 
  FR51=Clean water 
  FR52=Destroy bacteria 

FR6 = Maintain water pressure 

Design Parameters
DP1= Water Heating sub-System
  DP11= Safety Mechanism 
  DP12=Boiler 
  DP13=Extra hot button 
  DP14=Water Tap 

DP2= Water Cooling sub-System
  DP21=Heat pump 
  DP22=Water Tap 

DP3= Energy Conservation sub-
System 
  DP31=Thermostat 
  DP32=Heat cycle 
  DP33=Water Valve 

DP4= Water Collection Sink 

DP5= Filter system 
  DP51=Charcoal filter 
  DP52=ultraviolet lamp filter 

DP6 = Booster Pump 
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Figure 9. Axiomatic design matrix for generic water dispenser.  
The result of  the design process is a decoupled design. 

 

 
Figure 10. Inter-element interactions model of  the water dispenser case study  

(water, heat, information, electric and spatial). 
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Figure 11. DSM map of  inter-element interactions of  water dispenser case study.  
A four-degree scale was adopted, including negative relations where applicable. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 x 0 -2 0 0 0 0 0 0 0 0.5 0 0 0 0 0 2 0 0

2 0 x 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

3 -2 0 x 0 0.5 0 -2 2 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 x 1 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0

5 0 0 0.5 1 x 0 0 0 0 0 0 0 0.5 0 0 1 0 0 0

6 0 0 0 0 0 x 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0

7 0 0 -2 0 0 0.5 x 0 0.5 0 2 0 0 0 0 0 0 0 0

8 0 0 2 0 0 0.5 0 x 0.5 0 -2 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0.5 0.5 x 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 x 0 0.5 1 0 0 0 0 0 0

11 0.5 0 0 0 0 0 2 -2 0 0 x 0 0 0 0 0 0 0 0

12 0 0 0 0.5 0 0 0 0 0 0.5 0 x 1 0 2 0 0 0 0

13 0 0 0 0 0.5 0 0 0 0 1 0 1 x 0 0.5 1 0 0 0

14 0 1 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 2 0.5 0 x 0 0 0 0

16 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 x 0 0 0

17 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0

18 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0.5

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 x
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1 Boiler 11 Hot Cycle Heat Exchanger

2 Charcoal Water Filter 12 Hot Water Button 
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Figure 12. Clustering results for the spatial DSM of  the water dispenser. Top: objective function vs. no. of  iterations; 

bottom: the resulting clustered DSM (blue, cyan and red are positive dependency, yellow – negative dependency). 

 
Figure 13. The five modules identified by the clustering algorithm.  

The remaining outer-cluster connections represent water flow and heat exchange between modules. 
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8  DISCUSSION AND SUMMARY 

The methodology and the complementary tools 
introduced in this paper support modular product design for 
service-oriented products. The methodology combines 
axiomatic design principles with design structure matrix 
analysis tools, thus enhancing both product functionality and 
modularity and yielding a structured systematic approach for 
identifying product modules.  

The methodology comprises the following stages: 

• Stage 1: Design the product based on Axiomatic Design 
principles to ensure (a) minimal coupling between 
functional embodiments, (b) improved integration between 
physical elements, (c) reduced system complexity and (d) 
maximized potential modularity. 

• Stage 2: Model interdependencies and interactions among 
system components based on Axiomatic Design.  

• Stage 3: Capture structural interactions using Design 
Structure Matrices based on interdependency model.  

• Stage 4: Apply the clustering and/or reordering tools 
developed as part of  this research to identify component 
clusters (modules/subsystems), consequently minimizing 
interactions among clusters and achieving a modular 
architecture. 
A prime advantage of  this approach is that both the 

number and the size of  the modules are determined 
automatically and need not be decided prior to clustering. 
Modularization is clearly achieved by minimizing outer-cluster 
interactions and at the same time maintaining inter-cluster 
connectivity. To validate the method's ability to facilitate 
product modularization, we have introduced a case study. The 
resulting design shows that module integration is achievable 
and that the resulting division and distribution of  the 
components into modules are intuitive.  
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