
Proceedings of ICAD2011
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

ICAD-2011-02

ABSTRACT

The business solution to the three-sided conflict among
industry, customers and the environment is based upon
transitioning from the selling of products to the selling of
services, while the manufacturer remains the owner of the
product and is responsible for it throughout its lifecycle. A key
to the success of such a transition is the concept of extended
maintenance based upon modular product design. With the aid
of axiomatic design, the product's concept can already be
optimized at the preliminary design stage. Furthermore,
axiomatic design leads to a substantial decrease in the
product's concept complexity, that is, in the core of modular
design. A system that automatically modularizes a product
design can be realized by integrating principles of axiomatic
design with two new design structure matrices (DSM). The
goal of the proposed methodology is to automatically
determine the number of modules and to identify product
modules in a design, which are essential for the
implementation of a module-based product-service plan. An
example of automatic modularization for the design of a water
dispenser is presented.

Keywords: Axiomatic Design, DSM, modularization

1 INTRODUCTION

In recent years, protecting the environment and its natural
resources for future generations has become a major concern.
Growing industrialization, depleted resources, population
growth and globalization have prompted intensive legislation
supporting a greener society. One of the consequences of
"green" legislation is the need to develop and implement new
tools, methodologies and approaches for designing,
manufacturing and maintaining products. The leading trend
gradually being implemented by manufacturers to meet both
environmental and economic goals is the Selling-of-Services
approach [Shpitalni, 2004].

By transitioning to selling services rather than products,
the manufacturer remains the owner of the product
throughout its lifecycle and is responsible for providing reliable
services to the customer. As owner of the product, the
manufacturer is allowed to augment lifespan-prolonging
activities such as servicing and upgrades in order to provide
reliable services. A major consequence of this approach is the
change in product design towards efficient maintenance and

end-of-life activities, such as product reclamation, disassembly
and recycling [Shpitalni, 2004; Franke and Seliger, 2002].

The shift to a service-oriented business model has been
driven by environmental requirements and legislation and can
be economically justified only when environmental legislation
is enforced. The exertion of careful control over lifecycle-
enhancing activities obtained by this strategy offers substantial
benefits by extending product life span, fostering exploitation
of resources and reducing material and energy waste,
consequently contributing significantly to the sustainability of
both the product and the environment.

Implementing the product-service approach dictates new
design considerations. In particular, product maintenance
[Takata et al., 2004] becomes more than merely a scheduled
service. Maintenance — whether time- or condition-based —
becomes a tool to enhance a product's active life span and
reliability (which is now the interest of the manufacturer) by
means of servicing, part replacement (possibly reuse of parts)
and upgrade operations. Nevertheless, growing product
complexity (mainly due to ongoing technological
advancements and increases in interdisciplinary component
integration) has made maintenance planning more difficult.
Manufacturers' efforts to gain more control over product
performance together with the need to provide reliable
operation throughout the entire life span of the product are
dictating a change in product design approaches.

Adopting a modular system architecture design has many
advantages for service-oriented products, including quick and
efficient maintenance and upgrades and a reduction in on-site
service time needed to isolate a malfunctioning element. This
lowers down-time by replacing entire modules. Although
premature replacement of functioning inner-module elements
does incur cost, it in turn reduces the costs of unscheduled
maintenance activities, which in many cases are more
substantial. Moreover, initiated replacement provides an
opportunity to salvage parts, which are then refurbished and
reused or recycled, consequently reducing environmental loads.

As products become large-scale and more complex,
abstract models must be developed to deal with complex
product architectures [Sharman and Yassine, 2004]. The
abstraction in product architecture gained by modularization
may aid designers in attaining a more manageable structure of
the product-to-be.

The method introduced in this paper aims to support the
selling-of-services paradigm. More specifically, we present a
method and tool developed to support modular system

AXIOMATIC MODULAR SYSTEM DESIGN FOR SERVICE-ORIENTED

PRODUCTS

Eli Stiassnie
elisti@technion.ac.il

Laboratory for CAD and LCE
Faculty of Mechanical Engineering

Technion - Israel Institute of Technology
32000 Haifa, Israel

 Moshe Shpitalni
shefi@tx.technion.ac.il

Laboratory for CAD and LCE
Faculty of Mechanical Engineering

Technion - Israel Institute of Technology
32000 Haifa, Israel

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

architecture design for service-oriented products. The
proposed design methodology combines Axiomatic Design
(AD) principles with Design Structure Matrix (DSM) analysis
tools to facilitate desired product functionality as well as
modular architecture (Figure 1).

Figure 1. Proposed methodology for product

modularization.

2 AIM AND METHOD

Based on the components comprising a product, the aim
is to develop a system that automatically determines the
optimal number of modules and integrates the components in
the modules according to specific requirements related to
functionality, such that the interconnections among modules
are minimized. Minimizing the interactions among the
different modules reduces system complexity and produces a
module-oriented architecture.

The first step consists of conceptualizing the
product/system using axiomatic design principles. This
practice ensures maximal decoupling of design parameters and
minimizes overall component interaction. Due to the nature of
this process, the resulting design at this stage may already
achieve some degree of component integration, laying the
foundation for module identification in the following step.

The next step involves capturing structural interactions
among different product components in a design structure
matrix (DSM) representation based on the axiomatic design.
The matrices are then used to determine the system's
modulation through component clustering.

Since manual module identification by means of manual
clustering is only possible for simple products, a supporting
tool is needed for more intricate systems. Hence, as part of
this research, two new DSM clustering tools have been
developed: a new DSM clustering algorithm and a new
reordering algorithm of sparse DSMs.

The resulting methodology is verified and demonstrated
here on a simple case study – a water dispenser.

3 CONCEPTUALIZING THE PRODUCT

THROUGH AXIOMATIC DESIGN

PRINCIPLES

In engineering design, conceptual design is the stage in
which the working principles and structure of the product are
conceived. This process results in a primary solution, which
may be considered the most suitable alternative for a given set
of specifications. The process of generating the optimal
concept alternative depends greatly on the methodology and
the evaluation measures adopted by the product designer and
can dictate product architecture and modularity.

At this stage of the proposed methodology, we consider
conceptualizing the product by applying the axiomatic design
methodology (ADM) [Suh, 2001]. This methodology yields a
product design with the following features: (a) either a
decoupled or an uncoupled design embodiment, resulting in a
decrease in the number of inter-component interactions, and
(b) a certain degree of component integration, which may ease
the subsequent process of product modularization.

In ADM, according to the independence axiom a good
design is attained only if the design is either uncoupled or
decoupled [Suh, 2001], ensuring that functional requirements
are independently satisfied by the corresponding design
parameters.

The design matrix characterizes the product design
through the relations between the FR vector (functional
requirements – or goals) and the DP vector (design parameters
– or solutions). The axiomatic design methodology includes
three types of design matrices: coupled, uncoupled and
decoupled. In the following equations, the relationships
between FRs and DPs are represented either by "X" (a
relationship exists) or by "0" (no relationship exists). The
relationships represented by "X" are either linear (where "X"
represents a constant) or nonlinear (where "X" represent
functions of DPs).

Equation 1 illustrates a coupled design. This design is
considered to be unacceptable, since it is hard to control a
particular FR through its corresponding DP without affecting
other FRs.

1 0 1

2 0 0 2

3 0 0 3

4 0 4

FR X X X DP

FR X X DP

FR X X DP

FR X X X DP

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

(1)

The ideal or uncoupled design, as illustrated in equation 2,
is represented by a diagonal design matrix. In this case, each of
the FRs is satisfied independently by one DP.

1 0 0 0 1

2 0 0 0 2

3 0 0 0 3

4 0 0 0 4

FR X DP

FR X DP

FR X DP

FR X DP

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (2)

In a case where the design can be represented by a
triangular design matrix (Equation 3), a decoupled (or
acceptable) design is achieved. In this case, FR independence
can be guaranteed by determining the proper sequence of
manipulating DPs.

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

1 0 0 0 1

2 0 0 0 2

3 0 0 3

4 4

FR X DP

FR X DP

FR X X DP

FR X X X X DP

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (3)

For a system to achieve modularity, the physical units or
modules must be distinguishable and separated into units (with
minimum interaction and/or relations between units-
interdependencies). Separation into modules is only possible if
elements in the physical design are unaffiliated to some extent.
Although only functional independence is practically achieved,
the second axiom suggests that physical integration is desirable
between elements, reducing product complexity (information
content) and resulting, in many cases, in a modular-like form.

By applying axiomatic design principles at the conceptual
phase, we can to some degree ensure that physical elements are
integrated into a single module, thus reducing overall system
complexity and maximizing potential modularity.

4 CAPTURING STRUCTURAL INTERACTIONS

USING DESIGN STRUCTURE MATRICES

In this stage of the proposed method, all adjacencies,
interactions and integrations among the product components
are modeled based on the conceptual design attained in the
previous stage. These interactions and integrations include
architectural/spatial dependencies and process flows, as well as
material, information and energy flows. These are identified by
developing graphical representations of the interdependent
flows and then by developing the consequent design structure
matrix (DSM) for each type of interaction.

DSM is a system engineering tool that uses matrices to
model and analyze complex projects, processes or systems
[Browning, 2001] DSMs capture the structure of the
interactions, interdependencies and interfaces among different
hierarchical product elements (i.e., components and modules),
as shown in Figure 2. Typically DSM analysis uses clustering
algorithms to identify groups of close-coupled components, as
shown in Figure 3. The primary objective of clustering
elements into modules is to minimize interactions among
different modules that reduce system complexity and lead to
module-oriented architecture.

Analyzing system modularity through DSM involves the
following three steps:

1. Identifying the system components based on the
conceptual design.

2. Defining all adjacencies, interactions and integrations
between the components.

3. Analyzing potential clustering of system components
(integration analysis).

Integration analysis is a tool that offers insights into
possible system modularization by clustering off-diagonal
elements and reordering rows and columns of the DSM
elements. The foremost objective of clustering is to minimize
interactions among different clusters, sub-systems or modules.

To date, several algorithms and heuristics have been
proposed for clustering [Sanchez and Mahoney, 1997;
Fernandez 1998], but no single clustering approach has been
identified to give an optimal solution. Therefore, as part of

this research and methodology, we have tailored two
independent tools for Design Structure Matrix reordering and
clustering. The first is a DSM clustering algorithm and the
second is an alternative new clustering approach for sparse
DSMs, based on sparse reverse Cuthill-McKee ordering
[George and Liu, 1981].

1 2 3 4 5 6 7 8 9 10 11 12

1 * 0 2 0 2 0 0 2 0 0 0 0

2 0 * 0 0 1 2 0 0 0 1 1 0

3 2 0 * 0 1 0 1 1 0 0 0 0

4 0 0 0 * 0 0 0 0 1 1 0 0

5 2 1 1 0 * 0 0 1 0 0 0 0

6 0 2 0 0 0 * 0 0 0 0 0 0

7 0 0 1 0 0 0 * 0 0 0 0 2

8 2 0 1 0 1 0 0 * 0 0 0 0

9 0 0 0 1 0 0 0 0 * 2 0 0

10 0 1 0 1 0 0 0 0 2 * 0 0

11 0 1 0 0 0 0 0 0 0 0 * 0

12 0 0 0 0 0 0 2 0 0 0 0 *

Figure 2. An example of a synthetic artificial DSM.

Product elements and their interactions are recorded in a
square matrix. Diagonal cells represent the elements (in this
case 12 elements); off-diagonal cells represent interactions
between elements and their strength (0-no dependency; 1-weak
dependency; 2-strong dependency). If the direction of the
interactions is meaningful, the directions are recorded in an
asymmetric matrix, where the location of an interaction (either
over or under the diagonal) represents the direction. If there
are no directional preferences, DSM(i,j)=DSM(j.i)), and the
DSM is symmetrical.

5 8 3 1 11 6 2 12 7 4 10 9

5 * 1 1 2 0 0 1 0 0 0 0 0

8 1 * 1 2 0 0 0 0 0 0 0 0

3 1 1 * 2 0 0 0 0 1 0 0 0

1 2 2 2 * 0 0 0 0 0 0 0 0

11 0 0 0 0 * 0 1 0 0 0 0 0

6 0 0 0 0 0 * 2 0 0 0 0 0

2 1 0 0 0 1 2 * 0 0 0 1 0

12 0 0 0 0 0 0 0 * 2 0 0 0

7 0 0 1 0 0 0 0 2 * 0 0 0

4 0 0 0 0 0 0 0 0 0 * 1 1

10 0 0 0 0 0 0 1 0 0 1 * 2

9 0 0 0 0 0 0 0 0 0 1 2 *

Figure 3. The DSM from Figure 2 after integration
analysis; four modules were identified for integration.

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

5 A DSM CLUSTERING ALGORITHM FOR

MODULE IDENTIFICATION

For small and sparse DSMs, manual clustering by visual
inspection is often possible. But for more complex products,
computer-aided clustering is essential.

The primary objective of clustering is to minimize
interactions among different clusters [Browning, 2001]. As part
of this research, a new heuristic clustering algorithm was
developed and implemented on the MATLAB™ platform.
The algorithm is based upon integrating components into
modules rather than subdividing the product into modules, as
proposed by Sanchez and Mahoney [1997] and by Fernandez
[1998]. The proposed clustering algorithm divides the system
into several clusters based on the element interactions obtained
in the previous stage. The proposed clustering algorithm is
based on the following objectives:

(a) The number of outer-cluster interactions needs to be
minimized to reduce system complexity.

(b) Inner-cluster connectivity should include all
components in the module to assure fully integrated
clusters.

(c) No overlapping clusters are allowed to attain total
cluster separation corresponding to disjoint modules.

Applying these objectives results in an optimal balance
between inner-cluster connectivity (all element in the cluster
are related) and the reduction of outer-cluster interactions.
Therefore, the algorithm avoids converging to one mega-
cluster by splitting clusters that are not fully connected into
independent or unrelated clusters.

The main idea behind our clustering algorithm is that
modules should be independent and totally separate, contrary
to other heuristics [Sanchez and Mahoney, 1997; Fernandez,
1998]. This dictates that interface locations cannot be shared
between clusters and overlapping between clusters is
prohibited. Since interface locations are usually the weakest
links in the design, they should either be defined as interface
units (links) or integrated into one of the adjacent modules, if
possible. Furthermore, if the design includes a high level
integrating component or bus (a module or component
integrating many modules together, as in a PC motherboard),
this component should be excluded from the clustering
process to ensure that the modules are separated.

We define a cluster as a group of components with
coupled interactions among them and minimal external
interactions. Consequently, in the proposed algorithm all inner-
cluster elements must be connected, be part of a continual
flow or have the required spatial adjacency. Thus, the objective
function of our clustering algorithm is to minimize the
number of interactions outside the clusters:

[]minf DSM Cost=

 (4)

where

()

1 1

(,)

,

n n

i j

DSM Cost DSM i j

i j outside clusters

= =

=

∀

∑∑
 (5)

The clustering algorithm initializes a cluster list with n
clusters, each of which comprises exactly one component (n
1x1 matrices), where n is the size of the DSM. The clustering
sequence randomly selects a cluster and then for every other
potential component evaluates a candidate to be integrated
into the selected cluster. The algorithm then selects the

element that most improves the objective function f. If f
cannot be improved, the algorithm returns to the previous step
and selects a new candidate cluster.

To reduce the possibility of a result converging to a local
minimum, the algorithm randomly allows a non-improving
element to be selected. After a change has been accepted, the
cluster list is updated, and the resulting clusters are checked for
inner-cluster connectivity. If inner-connectivity is not found,
the decomposable clusters are then split to prevent the
algorithm from converging to one mega-cluster. The algorithm
continues to improve f iteratively until the maximum number
of iterations allowed has been carried out. To improve user
control, additional constraining parameters were added, among
them maximum cluster size and/or minimum number of
clusters.

Figure 4 depicts some modularization stages and the
convergence of the algorithm.

6 A DSM REORDERING TOOL USING

SPARSE REVERSE CUTHILL-MCKEE

ORDERING

Efficient separations into modules can only be achieved if
the number of interactions and their coupling nature are such
that the clusters are distinguishable. The basic idea behind
most clustering algorithms (e.g., the algorithm proposed in the
last section) is that during the reordering of elements in the
DSM and the repositioning of off-diagonal interactions closer
to the diagonal, clusters can often be identified, as shown in
Figure 5. Assuming a certain average number of interactions
(ANI) per element, we show (Figure 6) that a DSM becomes
sparser as its dimensions increase. Moreover, in large DSMs
the density does not change significantly with ANI. Hence, we
can assume that large systems have sparser DSMs.

Taking advantage of the sparsity property, we can
implement the Sparse Reverse Cuthill-McKee Ordering1
[George and Liu, 1981] (SRCMO) algorithm to reduce the
DSM's bandwidth. The reduction of the DSM's bandwidth has
an effect similar to clustering, whereby the non-zero elements
become closer to the diagonal. The SRCMO algorithm first
finds a pseudo-peripheral vertex of the graph representing the
matrix. It then generates a level structure by breadth-first
searching and orders the vertices by decreasing the distance
from the pseudo-peripheral vertex. This property may be used
for reordering and pre-processing sparse DSMs before
implementing either manual or automated clustering
algorithms. Note that the ordering algorithm can be applied
both to symmetric and to non-symmetric DSMs, consequently
reducing clustering time. Figure 8 illustrates a permutation of a
DSM using SRCMO.

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

(a)

(b)

(c) (d)

(e)

Figure 4. Clustering algorithm result for example illustrated in Figure 2: (a) clustering after 1 iteration;
(b) after 5 iterations; (c) after 15 iterations; (d) after 18 iterations;

(e) algorithm reached a minimum cost of 6 after 18 iterations, resulting in four clusters.

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

Figure 5. Clustering algorithms reposition off-diagonal interactions closer to the diagonal,

creating identifiable clusters (potential modules).

Figure 6. DSM density vs. DSM size. As the number of elements in a DSM increases, the DSM becomes sparser.

For large systems, the average number of interactions per element (ANI) hardly affects DSM density.

9 4 10 6 11 2 5 1 8 3 7 12

9 x 1 2 0 0 0 0 0 0 0 0 0

4 1 x 1 0 0 0 0 0 0 0 0 0

10 2 1 x 0 0 1 0 0 0 0 0 0

6 0 0 0 x 0 2 0 0 0 0 0 0

11 0 0 0 0 x 1 0 0 0 0 0 0

2 0 0 1 2 1 x 1 0 0 0 0 0

5 0 0 0 0 0 1 x 2 1 1 0 0

1 0 0 0 0 0 0 2 x 2 2 0 0

8 0 0 0 0 0 0 1 2 x 1 0 0

3 0 0 0 0 0 0 1 2 1 x 1 0

7 0 0 0 0 0 0 0 0 0 1 x 2

12 0 0 0 0 0 0 0 0 0 0 2 x

Figure 7. Results of applying SRCMO to the artificial example in Figure 2.
In this case, SRCMO reorders the DSM so clusters are immediately recognized

and no further clustering is needed.

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

Figure 8. Permutation of a DSM using Sparse Reverse Cuthill-McKee Ordering. The clustered DSM is mixed and then
processed through SRCMO. Some of the resulting clusters in the DSM can be identified.

7 CASE STUDY EXAMPLE

To demonstrate the modular design process presented in
this paper, we introduce a case study: a modular design of a
water dispenser. The water dispenser is designed to serve
various functions, primarily to supply hot or cold filtered water
in a way that is safe and sustainable.

First step: Design the product based on axiomatic design
principles. After the functional requirements for the product
were determined, the corresponding design parameters were
conceived (Table 1). These corresponding design parameters
were selected in accordance with the independence axiom to
ensure at least a decoupled design. Figure 9 illustrates the
results of this design process, where a decoupled design was
obtained as identified by the triangular design matrix. The
decoupled design ensures that the design is acceptable and
minimally coupled. Furthermore, the proper sequence was
determined for manipulating design parameters to gain better
control of each FR separately, thus eliminating imaginary
complexity.

Second step: Identify and model the product's elements
and interactions based on the design. For this particular design,
several interactions were considered and modeled (Figure 10),
including material, heat, information, electricity and spatial
(architectural) interactions. From the resulting model, the
interactions were captured into DSMs. Figure 11 shows an
example of a DSM map for spatial or architectural interactions;
in this case a four-degree scale was adopted, including negative
relations where applicable.

Third step: Identify modules using DSM clustering tools.
The spatial DSM was selected for clustering, and our module-
identifying clustering algorithm was applied. The results, as
illustrated in Figure 12, show that the algorithm converged to a
minimum after 180 iterations.

Fourth step: Applying the clustering algorithm for the
water dispenser yielded five clusters representing the product
modules (Figure 13). Each module was analyzed to identify its
functional and architectural significance. For example, one of
the clusters, "the inlet block", is responsible for water treatment
and flow. It includes the booster pump, charcoal filter, UV
filter and water valve. This case study illustrates how our
methodology can be practically implemented to design a
modular product. The systematic approach has successfully
achieved a recognizable modular form that is identifiable and
intuitive (each module has a recognizable architectural and/or
functional purpose).

Table 1. Generic water dispenser axiomatic design.

Functional Requirements
FR1=Supply hot boiling water
safely
 FR11=Prevent misuse by
 children
 FR12=Heat water
 FR13=Ensure water boil
 FR14=Control hot water flow

FR2=Supply cold water
 FR21= Cool water
 FR22=Control cold water flow

FR3=Conserve energy
 FR31=Control hot water
 temperature
 FR32=Conserve heat
 FR33=Prevent mix of hot and
 cold water

FR4=Conserve water resource

FR5=Maintain water quality
 FR51=Clean water
 FR52=Destroy bacteria

FR6 = Maintain water pressure

Design Parameters
DP1= Water Heating sub-System
 DP11= Safety Mechanism
 DP12=Boiler
 DP13=Extra hot button
 DP14=Water Tap

DP2= Water Cooling sub-System
 DP21=Heat pump
 DP22=Water Tap

DP3= Energy Conservation sub-
System
 DP31=Thermostat
 DP32=Heat cycle
 DP33=Water Valve

DP4= Water Collection Sink

DP5= Filter system
 DP51=Charcoal filter
 DP52=ultraviolet lamp filter

DP6 = Booster Pump

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

Figure 9. Axiomatic design matrix for generic water dispenser.
The result of the design process is a decoupled design.

Figure 10. Inter-element interactions model of the water dispenser case study

(water, heat, information, electric and spatial).

D
P

4

D
P

6

D
P

11

D
P

12

D
P

13

D
P

14

D
P

21

D
P

22

D
P

31

D
P

32

D
P

33

D
P

51

D
P

52

FR11 X

FR12 X X

FR13 X

FR14 X X X X X

FR21 X X

FR22 X X X X

FR31 X X X

FR32 X

FR33 X

FR4 X

FR51 X

FR52 X

FR6 X

D
P

5

FR1

FR2

FR3

FR5

D
P

1

D
P

2

D
P

3

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

Figure 11. DSM map of inter-element interactions of water dispenser case study.
A four-degree scale was adopted, including negative relations where applicable.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 x 0 -2 0 0 0 0 0 0 0 0.5 0 0 0 0 0 2 0 0

2 0 x 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

3 -2 0 x 0 0.5 0 -2 2 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 x 1 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0

5 0 0 0.5 1 x 0 0 0 0 0 0 0 0.5 0 0 1 0 0 0

6 0 0 0 0 0 x 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0

7 0 0 -2 0 0 0.5 x 0 0.5 0 2 0 0 0 0 0 0 0 0

8 0 0 2 0 0 0.5 0 x 0.5 0 -2 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0.5 0.5 x 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 x 0 0.5 1 0 0 0 0 0 0

11 0.5 0 0 0 0 0 2 -2 0 0 x 0 0 0 0 0 0 0 0

12 0 0 0 0.5 0 0 0 0 0 0.5 0 x 1 0 2 0 0 0 0

13 0 0 0 0 0.5 0 0 0 0 1 0 1 x 0 0.5 1 0 0 0

14 0 1 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 2 0.5 0 x 0 0 0 0

16 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 x 0 0 0

17 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0

18 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0.5

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 x

2

1

0.5

-2

In Contact

Adjoining

In Proximity

Far

N

E

FE E DS

D

S

1 Boiler 11 Hot Cycle Heat Exchanger

2 Charcoal Water Filter 12 Hot Water Button

3 Cold Cycle Heat Exchanger 13 Hot Water Tap

4 Cold Water Button 14 Booster Pump

5 Cold Water Tap 15 Safety Mechanism

6 Compressor 16 Sink

7 Condenser 17 Thermostat

8 Evaporator 18 Ultraviolet Water Filter

9 Expansion Valve 19 Valve

10 Extra Hot Button

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

Figure 12. Clustering results for the spatial DSM of the water dispenser. Top: objective function vs. no. of iterations;

bottom: the resulting clustered DSM (blue, cyan and red are positive dependency, yellow – negative dependency).

Figure 13. The five modules identified by the clustering algorithm.

The remaining outer-cluster connections represent water flow and heat exchange between modules.

Axiomatic Modular System Design for Service-Oriented Products
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

8 DISCUSSION AND SUMMARY

The methodology and the complementary tools
introduced in this paper support modular product design for
service-oriented products. The methodology combines
axiomatic design principles with design structure matrix
analysis tools, thus enhancing both product functionality and
modularity and yielding a structured systematic approach for
identifying product modules.

The methodology comprises the following stages:

• Stage 1: Design the product based on Axiomatic Design
principles to ensure (a) minimal coupling between
functional embodiments, (b) improved integration between
physical elements, (c) reduced system complexity and (d)
maximized potential modularity.

• Stage 2: Model interdependencies and interactions among
system components based on Axiomatic Design.

• Stage 3: Capture structural interactions using Design
Structure Matrices based on interdependency model.

• Stage 4: Apply the clustering and/or reordering tools
developed as part of this research to identify component
clusters (modules/subsystems), consequently minimizing
interactions among clusters and achieving a modular
architecture.
A prime advantage of this approach is that both the

number and the size of the modules are determined
automatically and need not be decided prior to clustering.
Modularization is clearly achieved by minimizing outer-cluster
interactions and at the same time maintaining inter-cluster
connectivity. To validate the method's ability to facilitate
product modularization, we have introduced a case study. The
resulting design shows that module integration is achievable
and that the resulting division and distribution of the
components into modules are intuitive.

9 ACKNOWLEDGMENTS

This research was funded by the Bernard M. Gordon Center
for Systems Engineering at the Technion (Research Number
2009543) and supported in part by the Schlesinger Minerva
Laboratory for Lifecycle Engineering and the VRL-KCiP
Network of Excellence as part of the EU Sixth Framework
Programme.

10 REFERENCES

[1] Browning T. R., "Applying the Design Structure Matrix to
System Decomposition and Integration Problems: A
Review and New Directions." IEEE Transactions on
Engineering Management, 48(3), 2001. pp 292-306.

[2] Fernandez C.I.G., “Integration analysis of product
architecture to support effective team co-location”,
Master Thesis, Massachusetts Institute of Technology,
1998.

[3] Franke C., Seliger G., "A new paradigm of manufacturing:
Selling services instead of products", Proceedings of 2002
Japan Symposium on Flexible Automation, Hiroshima, Japan.

[4] George A., Liu J., Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, 1981.

[5] Sanchez R., Mahoney J.T., “Modularity, flexibility, and
knowledge management in product and organization
design,” IEEE Eng. Manage. Rev., pp. 50–61, 1997.

[6] Sharman D.M., Yassine A.A., "Characterizing complex
product architectures", Journal of Systems Engineering, vol. 7,
pp. 35-60, 2004.

[7] Shpitalni M., "Impact of Life Cycle Approach and Selling
of Services on Product Design", Proceedings of the
Manufacturing '04 Conference, Poznan, Poland, 2004, pp. 4-5.

[8] Suh N.P., Axiomatic design: Advances and applications, Oxford
University Press, NY, 2001.

[9] Takata S., Kimura F., van Houten F.J.A.M., Westkämper
E., Shpitalni M., Ceglarek D., Lee J., "Maintenance:
Changing Role in Life Cycle Management", Annals of the
CIRP, Vol. 53, No. 2, p. 643, 2004.

[10] Umeda Y., Fukushige S., Tonoike K., "Evaluation of
scenario-based modularization for lifecycle design",
Annals of the CIRP, Vol. 58/1 p. 1-4, 2009.

