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ABSTRACT 

In Object-Oriented Programming (OOP), classes play an 
important role as they model the real world through their 
attributes (features) and methods (behaviours). However, few 
attempts have been made to help manage complexity within a 
class (intra-class complexity). In this paper, the authors define, 
model and manage intra-class complexity using both 
Axiomatic Design (AD) and the Multiple-Domain Matrix 
(MDM). By combining the AD and MDM approaches as 
suggested in this paper, complexity within a class can be 
managed, and class performance can be improved with little 
additional effort for developers. 

Keywords: Intra-class complexity, Axiomatic Design (AD), 
Design Structure Matrix (DSM), Multiple-Domain Matrix 
(MDM), Object-Oriented Programming 

1 INTRODUCTION 

Object-oriented (OO) programming techniques have 
been accepted as as the dominant programming paradigm 
over the past two decades [Misra and Akman, 2008]. 
According to its proponents, the objected-oriented approach 
provides better complexity management, improved project 
quality, and reduced project cycle time compared with the 
procedural programming paradigm [Booch, 1993]. In object-
oriented programming (OOP), classes are used to model a real 
world concept by incorporating its features (reflected as 
attributes) and its behaviours (reflected as methods). The 
concept of  a class enables programmers to model the real 
world and to code more efficiently through OO features such 
as dynamic patching, encapsulation, polymorphism, and 
inheritance [Deitel and Deitel, 2004]. 

However, because the functional requirements of  
modern software ever increase, the size of  software also 
increases dramatically. In 2001, the popular operating system 
Windows XP (2001) had nearly 40 million lines of  code (LOC) 
while Windows Server 2003 (2003) contained 50 million LOC. 
As an indicator of  growth in the size of  software, Windows 
NT 3.1 which was released in 1993 contained only 4-5 million 
LOC, and Windows NT 4.0 released in 1996 contained 11-12 
million LOC [Maraia, 2005]. As lines of  code and complexity 
are often correlated, more defects can be expected when the 
program size increases [Siau and Cao, 2001]. Additionally, 
while becoming more difficult to detect, the removal of  
defects before product delivery remains important due to their 

effect on customer satisfaction [Grady, 1992]. Therefore, 
reducing design complexity has the potential to play a strong 
role in improving the quality of  software systems through 
reducing defects in an object-oriented developing 
environment [Booch, 1993].  

To model system requirements, design details, and 
implementation methods, unified modelling language (UML) 
was proposed in the mid 1990s and completed in 1996. UML 
2.0 revision was released by Object Management Group 
(OMG) in 2005. Unified modelling language combines 
concepts from several different methods into object-oriented 
system development for specifying, visualizing, constructing, 
and documenting software [Siau and Cao, 2001]. Although 
UML has received criticism for being complicated, having 
inconsistent schema, and being ambiguous, it is considered the 
standard in software development modelling practice. 
Visualization of  the collaborative relationship between classes 
offers at least one means of  complexity management.  

At times, supporters of  UML even claim that simplicity is 
the main benefit of  UML [Kobryn, 1999]. However, few 
methods have been proposed to deal with complexity within a 
class even though several complexity metrics have been 
proposed by researchers [Subramanyam and Krishnan, 2003]. 
A lengthy class can not only be hard to understand by simply 
reading its code line by line, but it is also hard to maintain 
without a proper complexity management approach. Although 
much documentation such as class descriptions, usages, and 
even comments in a class are often available for developers, 
commonly these documents do not thoroughly explain how 
the class is organized and what relationships lie between 
different methods and attributes because the encapsulation 
feature of  OOP demands the hiding of  information from 
users.  

Therefore, it's necessary to adopt some techniques from 
an engineering perspective to reduce intra-class complexity in 
order to improve the efficiency of  coding and maintenance. In 
this paper, the authors propose a combined method of  both 
axiomatic design and the design structure matrix approach to 
help manage intra-class complexity. 

2 LITERATURE REVIEW 

The complexity of  the OO methodology has been 
noticed by researchers and practitioners. Several complexity 
measures have been proposed in order to predict software 
reliability and maintainability [Bandi et al., 2003].  
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Among all the proposed measures, lines of  code (LOC) is 
the simplest because it only counts instruction statements. 
Research done by Withrow suggests that there is a concave 
relationship between the number of  defects and module size 
[Withrow, 1990]. As the size of  a module increases, 
complexity may go beyond a developer’s comprehension and 
control and result in a higher defect rate. However, the LOC 
measure does not take human cognitive capability into 
consideration, and the LOC measure fails to provide the same 
results for software written in different programming 
languages having the exact same functions. 

Fundamental concepts and features of  OOP include class, 
object, instance, method, messaging passing, inheritance, 
abstraction, encapsulation, polymorphism, and decoupling 
[Noble, 1998]. Other research indicates that structural 
properties of  software components can add cognitive 
complexity for developers and testers during software 
development [Briand et al., 1999]. To measure cognitive 
complexity, Misra introduced a set of  complexity metrics 
based on cognitive weights to model complexity of  object-
oriented software [Misra, 2007]. According to Misra, the 
cognitive weights can be calculated as the extent of  difficulty 
or relative time for understanding a given piece of  software 
that was modeled by Basic Control Structures (BCS's). For 
sequence, branch, and iteration in BCS, the weights were 
assigned for one, two, and three respectively. The total 
complexity of  a class can be calculated simply by adding all 
weights together [Misra, 2007].  
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Kim et al. describe complexity of  object-oriented 
software in a graphical way [Kim et al., 1995]. Rather than 
counting the number of  methods in a class, their graphs also 
describe the relationships between attributes and methods. 
First, they measure the reference probability which is defined 
by the following equation. 
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stands for the total weight of  all arcs connected to all nodes in 
the graph. Then, by using the entropy function shown below, 
the complexity of  class can be determined.  
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Fothi et al. argue in their paper that their complexity 
measure works well for procedural programs [Fothi et al., 
2003]. They extend that measurement to OOP and define the 
complexity as the sum of  complexity of  the control structure, 
data types used, and data handling. Also, this method is based 
on graph theory. By counting connections between nodes in a 
graph, the complexity can be determined. Lange et al. suggest 
that the most popular modeling language UML is sometimes 
inconsistent, incomplete, disproportional, and information-
scattered [Lange et al., 2006]. Such features result in an even 
more complicated situation for programmers and developers. 
To solve this problem, they introduce a metric for managing 
defects of  UML. Class complexity is ranked in first place as 
they argue that classes play a critical role in a system. However, 
they do not propose any measurement for counting 
complexity in their paper. In addition to defining complexity 
for software, people also care about how to manage 
complexity in practice.  

Zhao et al. describe a dependence-based representation 
using a graph that is termed a system dependence net (SDN) 
[Zhao et al., 1998]. They argue that this kind of  representation 
not only represents object-oriented features but can also be 
used for concurrent object-oriented projects. Figure 1 below 
shows an example of  SDN. Although the dependency of  
classes is clarified in this graph, it is almost impossible to draw 
such graph when the number of  classes is beyond 100. Also, 
complexity within class is still not solved. 

3 MANAGING INTRA-CLASS COMPLEXITY 
WITH AXIOMATIC DESIGN AND DESIGN 
STRUCTURE MATRIX 

Although classes are used by developers to model the real 
world, they are invoked to carry out certain functions. 
Therefore, managing intra-class complexity must start with 
understanding functional requirements (FRs) and design 
parameters (DPs).  

Axiomatic design of  objected-oriented software systems 
(ADo-oSS) was introduced by Suh and Do [Suh and Do, 
2000]. The ADo-oSS framework starts with defining 
functional requirements (FRs) of  the software system, 
mapping between the domains and the independence of  
software functions, selecting the best design based on 
information content, decomposing functional requirements, 
design parameters and process variables, implementing object-
oriented programming, then finally representing the design 
with a design matrix, flow chart representation, and system 
control command (SCC) [Suh, 2005]. These steps are 
illustrated in Figure 2. Another example of  adopting 
Axiomatic Design approach in software design was made by 
Cengiz Togay et al. Their work combines axiomatic design 
theory and the component-oriented software engineering 
(COSE) process [Togay et al., 2008]. They believe this COSE 
can be matured, supported by the axiomatic design philosophy. 

Defining complexity within a class is important as 
different types of  complexity can be eliminated in different 
ways. According to Suh, there are generally two types of  
complexity, time-dependent complexity and time-independent 
complexity. Time-independent complexity can be divided into 
two parts, real complexity and imaginary complexity. The  
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Figure 1. System Dependence Net (SDN) [Zhao et al., 1998].  

former is defined as measuring uncertainty of  achieving 
functional requirements (FRs) while the latter occurs mainly 
due to lacking knowledge and understanding of  a design. 
Time-dependent complexity can be separated into 
combinatorial complexity and periodic complexity [Suh, 2005]. 
In software design, real complexity is often hard to measure as 
the nature of  software execution is not probabilistic in the 
same way as mechanical systems. Also, future events in 
software at the class level are more predictable the outcomes 
have been determined by programmers in advance. Therefore, 
the major complexity within a class can be classified as 
imaginary (cognitive) complexity. 

3.1 CONSIDERATIONS OF SOFTWARE DESIGN  
VERSUS AXIOMATIC DESIGN APPROACH 

Before starting to model complexity in a class from an 
axiomatic design perspective, several considerations from 
software design practice must be taken into account. These 
considerations include extensibility, modularity, reusability, 
readability, and the famous open/close principle.  
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Figure 2. Axiomatic design process for object-oriented 

software system [Suh and Do, 2000]. 

Bertrand Meyer first proposed the open/close principle 
in his book Object Oriented Software Construction (1998) [Meyer, 
2000]. This principle states that a class should be only changed 
for correcting error (close for modification) but should be 
extended to meet new functional requirements (open for 
extension) [Martin, 1996]. This principle actually is a summary 
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of  extensibility, modularity, and reusability. If  a class is closed 
for modification but open for extension, then this class can 
serve as an interface for other classes because its underlying 
structure will not be changed during extension. This 
characteristic is required by modularity, extensibility, and 
reusability. Although open/close principle mainly focuses on 
designing classes, it's also applicable for designing methods 
within a class. In other words, methods within a class should 
also conform to open/close principle.  

Readability is defined as the ease of  human readers to 
understand purpose, control flow, and operation of  source 
code. It is well known that carefully commented and named 
source code is easier to comprehend. The concept of  
modularity facilitates readability as functions are decomposed. 

The question is whether those considerations of  software 
design are compatible with philosophy of  axiomatic design? 
The answer is affirmative. Within a class, design parameters 
(DPs) are methods and that act on attributes (As) of  a class. 
Because methods are created to carry out a certain task such 
as reading input from a keyboard or outputting a string to a 
monitor, the concept of  method fits the concept of  DPs 
defined in axiomatic design theory [Suh, 2005]. If  methods 
(DPs) are created by obeying the open/close principle, the 
result should be a decoupled or an uncoupled design. Hence 
this fits the concept of  independence axiom as the axiom 
requires maintaining independence between different 
functional requirements.  

3.2 MANAGING AND REDUCING COMPLEXITY WITH 

DESIGN STRUCTURE MATRIX (DSM) AND 

MULTIPLE-DOMAIN MATRIX (MDM) 

Although the axiomatic design approach helps manage 
complexity within a class, there are still some issues unsolved. 
First, users of  the class commonly care about how to use the 
class instead of  how the class is developed. Thus, dependency 
between methods rather than dependency between FRs is 
more important to them. Second, the axiomatic approach 
presented above doesn’t take conflicts between attributes into 
consideration. Even if  two methods are independent, there 
may still be a conflict between them as reading and writing 
attributes can’t be done simultaneously (thread interference) 
without synchronizing or locking mechanism. To check this 
kind of  conflict, mapping between methods (DPs) and 
attributes (As) must be made in advance. 

4 CASE STUDY I 

In this section, a class from the authors’ previous work is 
taken as an example to show how to implement axiomatic 
design and the design structure matrix method to manage 
complexity within a class. In data-mining practice, acquiring 
data and indexing data into a database are often done before 
applying analysis to it. Figure 3 shows a class diagram 
(WebPageMiner) from UML diagram which is used to search 
patents from USPTO (United States Patent and Trademark 
Office) website and then save data to database for further use. 
In this class, 11 attributes and 21 methods are included which 
make the class totally more than 600 lines of  code in Java. 
Hence, it is complicated to understand by simply reading its 
program source code or its UML diagram. To manage the 
complexity of  this class, the first two tasks are defining FRs 

and mapping them into DPs. 

4.1 STEP 1: MAPPING FRS AT TOP LEVEL INTO DPS 

The top functional requirements of  this class are listed as 
follows. 

 
FR1: Create database and index table. 
FR2: Acquire a patent from USPTO web page. 
FR3: Save patent content (title, class, citation, referenced by, 
abstract, claims, description) into database. 
FR4: Save index information of  mined patents 
FR5: Release memory 

As stated earlier, DPs should be methods within a class as 
those methods will carry out tasks to satisfy certain 
requirements. Therefore, the following methods serve as DPs 
to satisfy five FRs above.  

 
DP1: Method createDB and createIndexTable 
DP2: Method extractPatentCotent 
DP3: Method savePatentContentToDB 
DP4: Method saveIndexInfo 
DP5: Method reinitiateObjects 
 

The design matrix can be written as equation 5. The 
lower case x in the matrix represents that FR3 can be carried 
out only after DP1 and DP2 have been successfully executed. 
However, FR3 mainly depends on DP3 as each method should 
maintain its independence to satisfy open/close principle. The 
design matrix can be written as an uncoupled one if  DPs are 
invoked in the designated sequence. As those FRs and DPs 
belong to the top level, some of  them are declared as public 
so they can be invoked outside of  the class. Exceptions are 
DP3, DP4 and DP5 which are declared as private methods 
because it's not necessary to invoke those functions manually 
outside of  the class.  
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4.2 STEP 2: ZIGZAGGING AND DECOMPOSITION 

Given top level DPs, FRs can be further decomposed 
into sub-level FRs. It’s true that one can decompose top FRs 
without writing down top level DPs. However, this will result 
in losing valuable structural information that may eventually 
cause a logical error. For example, if  sub-level DPs of  DP3 
were executed before DP1, the program will invoke an 
exception handling mechanism as one can’t save something to 
database before it is created. Therefore, it’s important 
decompose FRs with explicitly expressed DPs so that 
sequence of  logical execution can be preserved. As no more 
sub-function is required for FR1, decomposition starts from 
FR2. 
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Figure 3. Class WebPageMiner UML diagram. 

FR2 can be decomposed into the following lower-level FRs: 
 
FR2-1: Retrieve page content from USPTO website 
FR2-2: Check if  page content is correct. 
FR2-3: Acquire patent number. 
FR2-4: Acquire patent title. 
FR2-5: Acquire patent class. 
FR2-6: Acquire patent citation number. 
FR2-7: Acquire patent referenced by number. 
FR2-8: Acquire patent abstract. 
FR2-9: Acquire patent claims. 
FR2-10: Acquire patent description. 
 
Do the same to FR3, two low-level FRs must be satisfied. 

 
FR3-1: Create table for saving patent title, class, citation, 
reference by, abstract, claims and description. 
FR3-2: Save corresponding data to created table. 

4.3 STEP 3: MAPPING LOWER LEVEL FRS INTO DPS 

For FR2-1 to FR2-10, selected DPs are as follow. 
 

DP2-1: Method getContentPage 
DP2-2: Method checkBusyPage 
DP2-3: Method getContentPageNo 
DP2-4: Method getContentPageClass 
DP2-5: Method getContentPageTitle 
DP2-6: Method getContentPageLink 
DP2-7: Method getReferenceByNo 
DP2-8: Method getContentPageAbstract 
DP2-9: Method getContentPageClaims 
DP2-10: Method getContentPageDescription 

As those methods belong to DP2, they are all declared as 
private. Hence, invokation of  these methods is forbidden 
outside of  the class. The design matrix can be expressed as 
equation 6. 
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 For FR3-1 and FR3-2, their corresponding DPs are 
 

DP3-1: Method createPatentContentTable 
DP3-2: Method savePatentContentToDB 

 
Again, those two methods are declared as private and 

design matrix is written in equation 7. 

f 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

23

130

23

13
DP

DP

Xx

X

FR

FR
 (7) 

4.4 STEP 4: BUILDING FLOW CHART 

Given equation 5, 6 and 7, a flow chart of  methods can 
be built. As Figure 4 shows, DPs in green box indicates that 
methods are public and can be invoked outside of  class. On 
the contrary, DPs in a red box suggest that methods are 
private to the class for information hiding purpose. Although 
equation 6 states that several DPs (e.g. DP2-3, DP2-4, DP2-5, etc) 
are independent, each of  them must be executed in order to 
retrieve all information. Therefore, those DPs are executed 
sequentially.  
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4.5 STEP 5: MANAGING AND REDUCING COMPLEX-

ITY WITH DESIGN STRUCTURE MATRIX (DSM) 
AND MULTIPLE-DOMAIN MATRIX (MDM) 

The flow chart of  the class not only provides invaluable 
information regarding class structure but also helps reduce 
complexity and improve readability. Users of  the class simply 
need to know how to invoke DP1 and DP2 in this program to 
achieve the goal as these two DPs are public to all users. Also, 
the sequence for invoking two DPs is provided in the flow 
chart. Therefore, the user should first call DP1 and then DP2. 
For the developer of  this class, the flow chart helps reduce 
complexity in several ways. First of  all, since the flow chart is 
built in accordance with the Axiomatic Design philosophy, 
one can expect that the open/close principle automatically fits. 
Second, debugging the class is much easier as the developer 
can perform root cause analysis relatively quickly by following 
the flow chart. Last but not least, the flow chart greatly 
improves readability as it can serve as the visualized form of  
API (application programming interface) documents. 

 
Figure 4. Flow chart of  DPs. 

However, as stated before, there are some unsolved issues 
such as undetermined conflicts and dependencies. Fortunately, 
one can take advantage of  DSM and MDM to circumvent 
those problems. The Design Structure Matrix is a matrix-
based complexity management tool which originates from a 
process focus by Steward [Steward, 1981]. For a system 
consisting of  multiple domains with multiple elements and 
multiple relationships, the Multiple Domain Matrix enables 
researchers to analyze the system's structure. Both DSM and 
MDM are clearly self-explanatory as figure 5 and 6 can 
thoroughly explain how DSM and MDM works. (For a similar 
matrix applied in axiomatic design between DPs and 

components, see [Lee and Jeziorek, 2004]. 
Table 1 illustrates the DSM of  DPs. The red box 

indicates that there is a loop in the DSM. Note that DP2-1 and 
DP2-2 are in a loop to check if  the page content is correct. 
However, FR2-1 and FR2-2 still maintain their independence. 
Attributes of  class can’t be correlated with each other without 
certain kinds of  manipulations. Therefore, constructing the 
DSM for attributes is not meaningful. As UML class diagram 
showed previously, there are eight private attributes The left 
three attributes are private static attributes that are used to 
invoke other classes. Hence, those three attributes will not be 
considered in this case. 

 
Figure 5. DSM versus flowchart [DSMweb.org, 2009]. 

 
Figure 6. MDM versus organization chart  [DSMweb.org, 

2009]. 
 

A1: content_of_patent_citation_no 
A2: content_of_patent_reference_by 
A3: content_of_patent_abstract 
A4: content_of_patent_claims 
A5: content_of_patent_description 
A6: content_of_patent_title 
A7: content_of_patent_no 
A8: content_of_patent_class 

Manipulations on attributes can be divided into three 
categories: read, write and initialization. Although initialization 
is a special type of  write, it is different from write since 
initialization commonly happens at the beginning of  the 
program or the end of  program (release resource). Therefore, 
it should be marked differently for clarification purpose. If  
initialization happens in the middle of  a program, developers 
and users should be aware of  it. 

An MDM is shown in Table 2. Unlike some MDM, all of  
the DPs and attributes (As) are bi-directional in the chart as 
they are inseparable. Without methods, attributes consume 
computer storage and memory meaninglessly. On the contrary, 
if  all methods in class don’t manipulate any attribute, then 
MDM is not necessary at all. The most important feature of  
the MDM is to help programmers to decide whether some 
methods can be invoked simultaneously via multithreading.  
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Table 1. DSM of  DPs. 

 

Table 2. MDM of  DPs and As. 

 
 
 
 

Step 1 

Step 3 

Step 2
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For example, DP2-4 doesn’t depend on DP2-3 when 
reading the DSM of  DPs; therefore, it is possible to arrange 
them into two threads for faster processing. When checking 
the MDM, one realizes that DP2-4 and DP2-3 don’t manipulate 
the same A. By performing those two steps, one can ensure 
that the two DPs will not conflict with each other. However, 
DP2-4 and DP5 will generate thread interference or a memory 
consistency error if  the conflict between them is not carefully 
managed. As the long purple dashed box shows in Table 2, 
both DP2-4 and DP5 attempt to write A6 which results in a 
conflict if  one tries to invoke two methods at the same time 
without calling synchronized methods. Generally, one can take 
three steps to decide whether two methods can be arranged 
for multithreading. The first step is to decide whether those 
two methods are dependent. If  not, step 2 is performed to 
locate all attributes in one method which will be read or 
written from MDM table. The third step is to search for 
conflict between manipulations of  attributes. As long as there 
is no conflict between methods and between attributes’ 
operation, the two methods are safe for multithreading even if  
no synchronization process is called. In addition to helping to 
improve class performance via the multithreading technique, 
the MDM also helps eliminate careless logical errors 
committed by developers. Take A6 as the example again, if  the 
green box R appears in front of  the red box W, it means the 
method DP3-2 attempts to read an attribute before another 
method has written it. This creates a logical error. 

MDM can be built only when all functional requirements 
have been decomposed thoroughly. If  there is any un-
decomposed FRs, the MDM will not be able to reflect the 
true structure of  the class. Therefore, it’s necessary to firstly 
implement an Axiomatic Design approach for decomposing, 
zigzagging and mapping followed by constructing a DSM and 
MDM to further reducing complexity. 

5 CASE STUDY II 

In case 2, class citMatrixConstruct is another class 
developed by the author that was used to calculate patent 
citation measures such as patent originality, generality, forward 
citation, etc. The result of  the program is saved to database 
for further analysis. Some of  methods in the UML chart 
below share exactly the same name as they are overloaded 
with different input parameters. 

5.1 STEP 1: MAPPING FRS AT TOP LEVEL INTO DPS 

The top functional requirements of  this class are listed as 
follows: 

 
FR1: Create database and index table. 
FR2: Acquire a patent from USPTO web page. 
FR3: Calculate measures and Save them to the database 
FR4: Release memory 
 

As stated earlier, DPs should be methods within a class 
because these methods will carry out tasks to satisfy certain 
requirements. Therefore, the following methods serve as DPs 
to satisfy the five FRs above: 
 

DP1: Method createDB and createIndexTable 
DP2: Method getPageContent 
DP3: Method StartCitMatrixConstruct 
DP4: Method reinit 

 
The design matrix can be written as equation 8. Again, 

this design is a decoupled one. 
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Figure 7. Class CitMatrixConstruct UML diagram. 

5.2 STEP 2: ZIGZAGGING AND DECOMPOSITION 

Given the top-level DPs, FRs can be further decomposed 
into sub-level FRs. FR2 can be decomposed into following 
lower level FRs: 

 
FR2-1: Retrieve page content from USPTO website 
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FR2-2: Check if  page content is correct. 
FR2-3: Acquire patent number. 
FR2-4: Acquire patent class. 
FR2-5: Acquire patent citation number. 
FR2-6: Acquire patent referenced by number. 
FR2-7: Acquire patent year. 
 

Doing the same to FR3, two low-level FRs must be 
satisfied:  

 
FR3-1: Create table for saving patent title, class, citation, 
reference by, abstract, claims and description: 
FR3-2: Calculate all measures 
FR3-3: Save corresponding data to created table. 

5.3 STEP 3: MAPPING LOWER LEVEL FRS INTO DPS 

For FR2-1 to FR2-10, the selected DPs are as follow. 
 
DP2-1: Method getContentPage 
DP2-2: Method checkBusyPage 
DP2-3: Method getContentPageNo 
DP2-4: Method getContentPageClass 
DP2-5: Method getContentPageLink 
DP2-6: Method getReferenceByNo 
DP2-7: Method getContentYear 
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 For FR3-1 and FR3-2, their corresponding DPs are 

 
DP3-1: Method createCitationMatrixTable 
DP3-2: Method getGenerality and getOriginality 
DP3-3: Method savePatentCitationMatrixToDB 
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5.4 STEP 4: MANAGING AND REDUCING COMPLEX-

ITY WITH DESIGN STRUCTURE MATRIX (DSM) 
AND MULTIPLE-DOMAIN MATRIX (MDM) 

Table 4 illustrates the MDM chart combined with DPs 
and attributes (As). As in the UML class diagram shown 
previously, there are private thirteen attributes (As). The left 
three attributes are private static ones that are used to invoke 
other classes. Hence, these three attributes will not be 
considered in this case. 
 

A1: PatentNo 
A2: Year 
A3: Class 
A4: Forward_cit 
A5: Backward_cit 
A6: Originality 
A7: Generality 
A8: Forward_imp 
A9: Forward_dis 
A10: Forward_lag 
A11: content_of_patent_citation_no 
A12: content_of_patent_reference_by 
A13: second_reference_by 
 
To check dependencies between methods, simply follow the 
three steps again. First, check whether the prerequisite 
methods have been implemented in DSM (from left to right). 
If  yes, proceed to step 2; if  no, one needs to be careful 
because  logical errors may happen. Second, check how many 
attributes (As) are related in the MDM with the methods that 
are to be checked (from top to down). The last step is to find 
out whether the writing and reading sequences for As are 
correct in the MDM (from left to right again). A variable 
should be initialized or written with some value first before 
reading; if  the variable is written twice or initialized again 
before reading, one should be aware of  the logical error. 

6 CONCLUSION 

In this paper, complexity within class is modelled and 
managed by means of  an Axiomatic Design approach and 
DSM/MDM. Building a design matrix and an MDM does not 
require laborious work, but the benefits are evident. 
According to the IDC report in 2008, the estimated cost for 
fixing software defects was between 5.2 million dollars to 22 
million dollars depending on the organization size. Another 
earlier released report showed that 72% of  surveyed 
companies realized their debugging processes were 
problematic: 25.5% said they were very often or even all of  
the time finding serious problems. These statistics suggest that 
software companies face challenges in patching up the holes 
they've made. To save costs and build robust software, it is 
necessary to change the ways in which complex software 
components are developed. Instead of  fixing bugs after 
software has been released, software engineers should design 
it in a reliable way and Axiomatic Design can help facilitate 
the design task. Complexity within classes can be managed 
with MDM, and complexity between classes can be modelled 
by UML. Combining those techniques together makes the 
goal of  making software with fewer bugs feasible. 
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