
Proceedings of ICAD2011
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

ICAD-2011-20

ABSTRACT

In Object-Oriented Programming (OOP), classes play an
important role as they model the real world through their
attributes (features) and methods (behaviours). However, few
attempts have been made to help manage complexity within a
class (intra-class complexity). In this paper, the authors define,
model and manage intra-class complexity using both
Axiomatic Design (AD) and the Multiple-Domain Matrix
(MDM). By combining the AD and MDM approaches as
suggested in this paper, complexity within a class can be
managed, and class performance can be improved with little
additional effort for developers.

Keywords: Intra-class complexity, Axiomatic Design (AD),
Design Structure Matrix (DSM), Multiple-Domain Matrix
(MDM), Object-Oriented Programming

1 INTRODUCTION

Object-oriented (OO) programming techniques have
been accepted as as the dominant programming paradigm
over the past two decades [Misra and Akman, 2008].
According to its proponents, the objected-oriented approach
provides better complexity management, improved project
quality, and reduced project cycle time compared with the
procedural programming paradigm [Booch, 1993]. In object-
oriented programming (OOP), classes are used to model a real
world concept by incorporating its features (reflected as
attributes) and its behaviours (reflected as methods). The
concept of a class enables programmers to model the real
world and to code more efficiently through OO features such
as dynamic patching, encapsulation, polymorphism, and
inheritance [Deitel and Deitel, 2004].

However, because the functional requirements of
modern software ever increase, the size of software also
increases dramatically. In 2001, the popular operating system
Windows XP (2001) had nearly 40 million lines of code (LOC)
while Windows Server 2003 (2003) contained 50 million LOC.
As an indicator of growth in the size of software, Windows
NT 3.1 which was released in 1993 contained only 4-5 million
LOC, and Windows NT 4.0 released in 1996 contained 11-12
million LOC [Maraia, 2005]. As lines of code and complexity
are often correlated, more defects can be expected when the
program size increases [Siau and Cao, 2001]. Additionally,
while becoming more difficult to detect, the removal of
defects before product delivery remains important due to their

effect on customer satisfaction [Grady, 1992]. Therefore,
reducing design complexity has the potential to play a strong
role in improving the quality of software systems through
reducing defects in an object-oriented developing
environment [Booch, 1993].

To model system requirements, design details, and
implementation methods, unified modelling language (UML)
was proposed in the mid 1990s and completed in 1996. UML
2.0 revision was released by Object Management Group
(OMG) in 2005. Unified modelling language combines
concepts from several different methods into object-oriented
system development for specifying, visualizing, constructing,
and documenting software [Siau and Cao, 2001]. Although
UML has received criticism for being complicated, having
inconsistent schema, and being ambiguous, it is considered the
standard in software development modelling practice.
Visualization of the collaborative relationship between classes
offers at least one means of complexity management.

At times, supporters of UML even claim that simplicity is
the main benefit of UML [Kobryn, 1999]. However, few
methods have been proposed to deal with complexity within a
class even though several complexity metrics have been
proposed by researchers [Subramanyam and Krishnan, 2003].
A lengthy class can not only be hard to understand by simply
reading its code line by line, but it is also hard to maintain
without a proper complexity management approach. Although
much documentation such as class descriptions, usages, and
even comments in a class are often available for developers,
commonly these documents do not thoroughly explain how
the class is organized and what relationships lie between
different methods and attributes because the encapsulation
feature of OOP demands the hiding of information from
users.

Therefore, it's necessary to adopt some techniques from
an engineering perspective to reduce intra-class complexity in
order to improve the efficiency of coding and maintenance. In
this paper, the authors propose a combined method of both
axiomatic design and the design structure matrix approach to
help manage intra-class complexity.

2 LITERATURE REVIEW

The complexity of the OO methodology has been
noticed by researchers and practitioners. Several complexity
measures have been proposed in order to predict software
reliability and maintainability [Bandi et al., 2003].

MANAGING INTRA-CLASS COMPLEXITY WITH AXIOMATIC DESIGN AND
DESIGN STRUCTURE MATRIX APPROACHES

Zhen Li
zhen.li@ttu.edu

Department of Mechanical Engineering
Texas Tech University

7th and Boston
Lubbock, TX 79409, USA

 Derrick Tate
d.tate@ttu.edu

Department of Mechanical Engineering
Texas Tech University

7th and Boston
Lubbock, TX 79409, USA

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

Among all the proposed measures, lines of code (LOC) is
the simplest because it only counts instruction statements.
Research done by Withrow suggests that there is a concave
relationship between the number of defects and module size
[Withrow, 1990]. As the size of a module increases,
complexity may go beyond a developer’s comprehension and
control and result in a higher defect rate. However, the LOC
measure does not take human cognitive capability into
consideration, and the LOC measure fails to provide the same
results for software written in different programming
languages having the exact same functions.

Fundamental concepts and features of OOP include class,
object, instance, method, messaging passing, inheritance,
abstraction, encapsulation, polymorphism, and decoupling
[Noble, 1998]. Other research indicates that structural
properties of software components can add cognitive
complexity for developers and testers during software
development [Briand et al., 1999]. To measure cognitive
complexity, Misra introduced a set of complexity metrics
based on cognitive weights to model complexity of object-
oriented software [Misra, 2007]. According to Misra, the
cognitive weights can be calculated as the extent of difficulty
or relative time for understanding a given piece of software
that was modeled by Basic Control Structures (BCS's). For
sequence, branch, and iteration in BCS, the weights were
assigned for one, two, and three respectively. The total
complexity of a class can be calculated simply by adding all
weights together [Misra, 2007].

 ∑= c
W(CC) Complexity Class (1)

where Wc is defined as

 ∑
=

∏
=

∑
=

=
q

j

m

k

n

i

ikj
c

W
c

W

1

]

1 1

),,([(2)

Kim et al. describe complexity of object-oriented
software in a graphical way [Kim et al., 1995]. Rather than
counting the number of methods in a class, their graphs also
describe the relationships between attributes and methods.
First, they measure the reference probability which is defined
by the following equation.

∑
=

∑
=

×

∑
=

+∑
==

n

k

n

j
jk

AW

n

j
ij

AW
n

j
ji

AW

i
NP

1 1

)
,

(2

1

)
,

(

1

)
,

(

)((3)

where ∑
=

+∑
=

n

j
ij

AW
n

j
ji

AW

1

)
,

(

1

)
,

(stands for the total

weights connected to node Ni and ∑
=

∑
=

n

k

n

j
jk

AW

1 1

)
,

(

stands for the total weight of all arcs connected to all nodes in
the graph. Then, by using the entropy function shown below,
the complexity of class can be determined.

)(log

1

)()(
i
xp

b

n

i
i
xpXH ∑

=
−= (4)

Fothi et al. argue in their paper that their complexity
measure works well for procedural programs [Fothi et al.,
2003]. They extend that measurement to OOP and define the
complexity as the sum of complexity of the control structure,
data types used, and data handling. Also, this method is based
on graph theory. By counting connections between nodes in a
graph, the complexity can be determined. Lange et al. suggest
that the most popular modeling language UML is sometimes
inconsistent, incomplete, disproportional, and information-
scattered [Lange et al., 2006]. Such features result in an even
more complicated situation for programmers and developers.
To solve this problem, they introduce a metric for managing
defects of UML. Class complexity is ranked in first place as
they argue that classes play a critical role in a system. However,
they do not propose any measurement for counting
complexity in their paper. In addition to defining complexity
for software, people also care about how to manage
complexity in practice.

Zhao et al. describe a dependence-based representation
using a graph that is termed a system dependence net (SDN)
[Zhao et al., 1998]. They argue that this kind of representation
not only represents object-oriented features but can also be
used for concurrent object-oriented projects. Figure 1 below
shows an example of SDN. Although the dependency of
classes is clarified in this graph, it is almost impossible to draw
such graph when the number of classes is beyond 100. Also,
complexity within class is still not solved.

3 MANAGING INTRA-CLASS COMPLEXITY
WITH AXIOMATIC DESIGN AND DESIGN
STRUCTURE MATRIX

Although classes are used by developers to model the real
world, they are invoked to carry out certain functions.
Therefore, managing intra-class complexity must start with
understanding functional requirements (FRs) and design
parameters (DPs).

Axiomatic design of objected-oriented software systems
(ADo-oSS) was introduced by Suh and Do [Suh and Do,
2000]. The ADo-oSS framework starts with defining
functional requirements (FRs) of the software system,
mapping between the domains and the independence of
software functions, selecting the best design based on
information content, decomposing functional requirements,
design parameters and process variables, implementing object-
oriented programming, then finally representing the design
with a design matrix, flow chart representation, and system
control command (SCC) [Suh, 2005]. These steps are
illustrated in Figure 2. Another example of adopting
Axiomatic Design approach in software design was made by
Cengiz Togay et al. Their work combines axiomatic design
theory and the component-oriented software engineering
(COSE) process [Togay et al., 2008]. They believe this COSE
can be matured, supported by the axiomatic design philosophy.

Defining complexity within a class is important as
different types of complexity can be eliminated in different
ways. According to Suh, there are generally two types of
complexity, time-dependent complexity and time-independent
complexity. Time-independent complexity can be divided into
two parts, real complexity and imaginary complexity. The

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

Figure 1. System Dependence Net (SDN) [Zhao et al., 1998].

former is defined as measuring uncertainty of achieving
functional requirements (FRs) while the latter occurs mainly
due to lacking knowledge and understanding of a design.
Time-dependent complexity can be separated into
combinatorial complexity and periodic complexity [Suh, 2005].
In software design, real complexity is often hard to measure as
the nature of software execution is not probabilistic in the
same way as mechanical systems. Also, future events in
software at the class level are more predictable the outcomes
have been determined by programmers in advance. Therefore,
the major complexity within a class can be classified as
imaginary (cognitive) complexity.

3.1 CONSIDERATIONS OF SOFTWARE DESIGN
VERSUS AXIOMATIC DESIGN APPROACH

Before starting to model complexity in a class from an
axiomatic design perspective, several considerations from
software design practice must be taken into account. These
considerations include extensibility, modularity, reusability,
readability, and the famous open/close principle.

Customer

Attributes

Software

Product

Definition

Modules

Define FRs

Mapping

Decomposition

Identify classes

Establish Interfaces

Coding with System

Architecture

B
u
ild

 th
e
 so

ftw
a
re

 h
ie

ra
rch

y

(T
o
p
-D

o
w

n
 A

p
p
ro

a
ch

)

B
u
ild

 t
h
e
 o

b
je

ct
 o

ri
e
n
te

d
 m

o
d
e
l

(B
o
tt
o
m

-U
p
 A

p
p
ro

a
ch

)

Identify Leaves
(Full Design Matrix)

Figure 2. Axiomatic design process for object-oriented

software system [Suh and Do, 2000].

Bertrand Meyer first proposed the open/close principle
in his book Object Oriented Software Construction (1998) [Meyer,
2000]. This principle states that a class should be only changed
for correcting error (close for modification) but should be
extended to meet new functional requirements (open for
extension) [Martin, 1996]. This principle actually is a summary

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

of extensibility, modularity, and reusability. If a class is closed
for modification but open for extension, then this class can
serve as an interface for other classes because its underlying
structure will not be changed during extension. This
characteristic is required by modularity, extensibility, and
reusability. Although open/close principle mainly focuses on
designing classes, it's also applicable for designing methods
within a class. In other words, methods within a class should
also conform to open/close principle.

Readability is defined as the ease of human readers to
understand purpose, control flow, and operation of source
code. It is well known that carefully commented and named
source code is easier to comprehend. The concept of
modularity facilitates readability as functions are decomposed.

The question is whether those considerations of software
design are compatible with philosophy of axiomatic design?
The answer is affirmative. Within a class, design parameters
(DPs) are methods and that act on attributes (As) of a class.
Because methods are created to carry out a certain task such
as reading input from a keyboard or outputting a string to a
monitor, the concept of method fits the concept of DPs
defined in axiomatic design theory [Suh, 2005]. If methods
(DPs) are created by obeying the open/close principle, the
result should be a decoupled or an uncoupled design. Hence
this fits the concept of independence axiom as the axiom
requires maintaining independence between different
functional requirements.

3.2 MANAGING AND REDUCING COMPLEXITY WITH

DESIGN STRUCTURE MATRIX (DSM) AND

MULTIPLE-DOMAIN MATRIX (MDM)

Although the axiomatic design approach helps manage
complexity within a class, there are still some issues unsolved.
First, users of the class commonly care about how to use the
class instead of how the class is developed. Thus, dependency
between methods rather than dependency between FRs is
more important to them. Second, the axiomatic approach
presented above doesn’t take conflicts between attributes into
consideration. Even if two methods are independent, there
may still be a conflict between them as reading and writing
attributes can’t be done simultaneously (thread interference)
without synchronizing or locking mechanism. To check this
kind of conflict, mapping between methods (DPs) and
attributes (As) must be made in advance.

4 CASE STUDY I

In this section, a class from the authors’ previous work is
taken as an example to show how to implement axiomatic
design and the design structure matrix method to manage
complexity within a class. In data-mining practice, acquiring
data and indexing data into a database are often done before
applying analysis to it. Figure 3 shows a class diagram
(WebPageMiner) from UML diagram which is used to search
patents from USPTO (United States Patent and Trademark
Office) website and then save data to database for further use.
In this class, 11 attributes and 21 methods are included which
make the class totally more than 600 lines of code in Java.
Hence, it is complicated to understand by simply reading its
program source code or its UML diagram. To manage the
complexity of this class, the first two tasks are defining FRs

and mapping them into DPs.

4.1 STEP 1: MAPPING FRS AT TOP LEVEL INTO DPS

The top functional requirements of this class are listed as
follows.

FR1: Create database and index table.
FR2: Acquire a patent from USPTO web page.
FR3: Save patent content (title, class, citation, referenced by,
abstract, claims, description) into database.
FR4: Save index information of mined patents
FR5: Release memory

As stated earlier, DPs should be methods within a class as
those methods will carry out tasks to satisfy certain
requirements. Therefore, the following methods serve as DPs
to satisfy five FRs above.

DP1: Method createDB and createIndexTable
DP2: Method extractPatentCotent
DP3: Method savePatentContentToDB
DP4: Method saveIndexInfo
DP5: Method reinitiateObjects

The design matrix can be written as equation 5. The
lower case x in the matrix represents that FR3 can be carried
out only after DP1 and DP2 have been successfully executed.
However, FR3 mainly depends on DP3 as each method should
maintain its independence to satisfy open/close principle. The
design matrix can be written as an uncoupled one if DPs are
invoked in the designated sequence. As those FRs and DPs
belong to the top level, some of them are declared as public
so they can be invoked outside of the class. Exceptions are
DP3, DP4 and DP5 which are declared as private methods
because it's not necessary to invoke those functions manually
outside of the class.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5

4

3

2

1

000

00

000

0000

0000

5

4

3

2

1

DP

DP

DP

DP

DP

Xx

Xxx

Xx

X

X

FR

FR

FR

FR

FR

 (5)

4.2 STEP 2: ZIGZAGGING AND DECOMPOSITION

Given top level DPs, FRs can be further decomposed
into sub-level FRs. It’s true that one can decompose top FRs
without writing down top level DPs. However, this will result
in losing valuable structural information that may eventually
cause a logical error. For example, if sub-level DPs of DP3
were executed before DP1, the program will invoke an
exception handling mechanism as one can’t save something to
database before it is created. Therefore, it’s important
decompose FRs with explicitly expressed DPs so that
sequence of logical execution can be preserved. As no more
sub-function is required for FR1, decomposition starts from
FR2.

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

Figure 3. Class WebPageMiner UML diagram.

FR2 can be decomposed into the following lower-level FRs:

FR2-1: Retrieve page content from USPTO website
FR2-2: Check if page content is correct.
FR2-3: Acquire patent number.
FR2-4: Acquire patent title.
FR2-5: Acquire patent class.
FR2-6: Acquire patent citation number.
FR2-7: Acquire patent referenced by number.
FR2-8: Acquire patent abstract.
FR2-9: Acquire patent claims.
FR2-10: Acquire patent description.

Do the same to FR3, two low-level FRs must be satisfied.

FR3-1: Create table for saving patent title, class, citation,
reference by, abstract, claims and description.
FR3-2: Save corresponding data to created table.

4.3 STEP 3: MAPPING LOWER LEVEL FRS INTO DPS

For FR2-1 to FR2-10, selected DPs are as follow.

DP2-1: Method getContentPage
DP2-2: Method checkBusyPage
DP2-3: Method getContentPageNo
DP2-4: Method getContentPageClass
DP2-5: Method getContentPageTitle
DP2-6: Method getContentPageLink
DP2-7: Method getReferenceByNo
DP2-8: Method getContentPageAbstract
DP2-9: Method getContentPageClaims
DP2-10: Method getContentPageDescription

As those methods belong to DP2, they are all declared as
private. Hence, invokation of these methods is forbidden
outside of the class. The design matrix can be expressed as
equation 6.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

102

92

82

72

62

52

42

32

22

12

102

92

82

72

62

52

42

32

22

12

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

00000000

000000000

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Xxx

Xxx

Xxx

Xxx

Xxx

Xxx

Xxx

Xxx

Xx

X

FR

FR

FR

FR

FR

FR

FR

FR

FR

FR

 (6)

 For FR3-1 and FR3-2, their corresponding DPs are

DP3-1: Method createPatentContentTable
DP3-2: Method savePatentContentToDB

Again, those two methods are declared as private and

design matrix is written in equation 7.

f
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

23

130

23

13
DP

DP

Xx

X

FR

FR
 (7)

4.4 STEP 4: BUILDING FLOW CHART

Given equation 5, 6 and 7, a flow chart of methods can
be built. As Figure 4 shows, DPs in green box indicates that
methods are public and can be invoked outside of class. On
the contrary, DPs in a red box suggest that methods are
private to the class for information hiding purpose. Although
equation 6 states that several DPs (e.g. DP2-3, DP2-4, DP2-5, etc)
are independent, each of them must be executed in order to
retrieve all information. Therefore, those DPs are executed
sequentially.

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

4.5 STEP 5: MANAGING AND REDUCING COMPLEX-

ITY WITH DESIGN STRUCTURE MATRIX (DSM)
AND MULTIPLE-DOMAIN MATRIX (MDM)

The flow chart of the class not only provides invaluable
information regarding class structure but also helps reduce
complexity and improve readability. Users of the class simply
need to know how to invoke DP1 and DP2 in this program to
achieve the goal as these two DPs are public to all users. Also,
the sequence for invoking two DPs is provided in the flow
chart. Therefore, the user should first call DP1 and then DP2.
For the developer of this class, the flow chart helps reduce
complexity in several ways. First of all, since the flow chart is
built in accordance with the Axiomatic Design philosophy,
one can expect that the open/close principle automatically fits.
Second, debugging the class is much easier as the developer
can perform root cause analysis relatively quickly by following
the flow chart. Last but not least, the flow chart greatly
improves readability as it can serve as the visualized form of
API (application programming interface) documents.

Figure 4. Flow chart of DPs.

However, as stated before, there are some unsolved issues
such as undetermined conflicts and dependencies. Fortunately,
one can take advantage of DSM and MDM to circumvent
those problems. The Design Structure Matrix is a matrix-
based complexity management tool which originates from a
process focus by Steward [Steward, 1981]. For a system
consisting of multiple domains with multiple elements and
multiple relationships, the Multiple Domain Matrix enables
researchers to analyze the system's structure. Both DSM and
MDM are clearly self-explanatory as figure 5 and 6 can
thoroughly explain how DSM and MDM works. (For a similar
matrix applied in axiomatic design between DPs and

components, see [Lee and Jeziorek, 2004].
Table 1 illustrates the DSM of DPs. The red box

indicates that there is a loop in the DSM. Note that DP2-1 and
DP2-2 are in a loop to check if the page content is correct.
However, FR2-1 and FR2-2 still maintain their independence.
Attributes of class can’t be correlated with each other without
certain kinds of manipulations. Therefore, constructing the
DSM for attributes is not meaningful. As UML class diagram
showed previously, there are eight private attributes The left
three attributes are private static attributes that are used to
invoke other classes. Hence, those three attributes will not be
considered in this case.

Figure 5. DSM versus flowchart [DSMweb.org, 2009].

Figure 6. MDM versus organization chart [DSMweb.org,

2009].

A1: content_of_patent_citation_no
A2: content_of_patent_reference_by
A3: content_of_patent_abstract
A4: content_of_patent_claims
A5: content_of_patent_description
A6: content_of_patent_title
A7: content_of_patent_no
A8: content_of_patent_class

Manipulations on attributes can be divided into three
categories: read, write and initialization. Although initialization
is a special type of write, it is different from write since
initialization commonly happens at the beginning of the
program or the end of program (release resource). Therefore,
it should be marked differently for clarification purpose. If
initialization happens in the middle of a program, developers
and users should be aware of it.

An MDM is shown in Table 2. Unlike some MDM, all of
the DPs and attributes (As) are bi-directional in the chart as
they are inseparable. Without methods, attributes consume
computer storage and memory meaninglessly. On the contrary,
if all methods in class don’t manipulate any attribute, then
MDM is not necessary at all. The most important feature of
the MDM is to help programmers to decide whether some
methods can be invoked simultaneously via multithreading.

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

Table 1. DSM of DPs.

Table 2. MDM of DPs and As.

Step 1

Step 3

Step 2

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

For example, DP2-4 doesn’t depend on DP2-3 when
reading the DSM of DPs; therefore, it is possible to arrange
them into two threads for faster processing. When checking
the MDM, one realizes that DP2-4 and DP2-3 don’t manipulate
the same A. By performing those two steps, one can ensure
that the two DPs will not conflict with each other. However,
DP2-4 and DP5 will generate thread interference or a memory
consistency error if the conflict between them is not carefully
managed. As the long purple dashed box shows in Table 2,
both DP2-4 and DP5 attempt to write A6 which results in a
conflict if one tries to invoke two methods at the same time
without calling synchronized methods. Generally, one can take
three steps to decide whether two methods can be arranged
for multithreading. The first step is to decide whether those
two methods are dependent. If not, step 2 is performed to
locate all attributes in one method which will be read or
written from MDM table. The third step is to search for
conflict between manipulations of attributes. As long as there
is no conflict between methods and between attributes’
operation, the two methods are safe for multithreading even if
no synchronization process is called. In addition to helping to
improve class performance via the multithreading technique,
the MDM also helps eliminate careless logical errors
committed by developers. Take A6 as the example again, if the
green box R appears in front of the red box W, it means the
method DP3-2 attempts to read an attribute before another
method has written it. This creates a logical error.

MDM can be built only when all functional requirements
have been decomposed thoroughly. If there is any un-
decomposed FRs, the MDM will not be able to reflect the
true structure of the class. Therefore, it’s necessary to firstly
implement an Axiomatic Design approach for decomposing,
zigzagging and mapping followed by constructing a DSM and
MDM to further reducing complexity.

5 CASE STUDY II

In case 2, class citMatrixConstruct is another class
developed by the author that was used to calculate patent
citation measures such as patent originality, generality, forward
citation, etc. The result of the program is saved to database
for further analysis. Some of methods in the UML chart
below share exactly the same name as they are overloaded
with different input parameters.

5.1 STEP 1: MAPPING FRS AT TOP LEVEL INTO DPS

The top functional requirements of this class are listed as
follows:

FR1: Create database and index table.
FR2: Acquire a patent from USPTO web page.
FR3: Calculate measures and Save them to the database
FR4: Release memory

As stated earlier, DPs should be methods within a class
because these methods will carry out tasks to satisfy certain
requirements. Therefore, the following methods serve as DPs
to satisfy the five FRs above:

DP1: Method createDB and createIndexTable
DP2: Method getPageContent
DP3: Method StartCitMatrixConstruct
DP4: Method reinit

The design matrix can be written as equation 8. Again,

this design is a decoupled one.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

4

3

2

1

00

00

000

000

DP

DP

DP

DP

Xx

Xx

X

X

FR

FR

FR

FR

 (8)

Figure 7. Class CitMatrixConstruct UML diagram.

5.2 STEP 2: ZIGZAGGING AND DECOMPOSITION

Given the top-level DPs, FRs can be further decomposed
into sub-level FRs. FR2 can be decomposed into following
lower level FRs:

FR2-1: Retrieve page content from USPTO website

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design

Daejeon – March 30-31, 2011

FR2-2: Check if page content is correct.
FR2-3: Acquire patent number.
FR2-4: Acquire patent class.
FR2-5: Acquire patent citation number.
FR2-6: Acquire patent referenced by number.
FR2-7: Acquire patent year.

Doing the same to FR3, two low-level FRs must be
satisfied:

FR3-1: Create table for saving patent title, class, citation,
reference by, abstract, claims and description:
FR3-2: Calculate all measures
FR3-3: Save corresponding data to created table.

5.3 STEP 3: MAPPING LOWER LEVEL FRS INTO DPS

For FR2-1 to FR2-10, the selected DPs are as follow.

DP2-1: Method getContentPage
DP2-2: Method checkBusyPage
DP2-3: Method getContentPageNo
DP2-4: Method getContentPageClass
DP2-5: Method getContentPageLink
DP2-6: Method getReferenceByNo
DP2-7: Method getContentYear

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

−

−

−

−

−

−

−

−

72

62

52

42

32

22

12

72

62

52

42

32

22

12

0000

0000

0000

0000

0000

00000

000000

DP

DP

DP

DP

DP

DP

DP

Xxx

Xxx

Xxx

Xxx

Xxx

Xx

X

FR

FR

FR

FR

FR

FR

FR

 (9)

 For FR3-1 and FR3-2, their corresponding DPs are

DP3-1: Method createCitationMatrixTable
DP3-2: Method getGenerality and getOriginality
DP3-3: Method savePatentCitationMatrixToDB

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

33

23

13

33

23

13

0

00

00

DP

DP

DP

Xx

X

X

FR

FR

FR

 (10)

5.4 STEP 4: MANAGING AND REDUCING COMPLEX-

ITY WITH DESIGN STRUCTURE MATRIX (DSM)
AND MULTIPLE-DOMAIN MATRIX (MDM)

Table 4 illustrates the MDM chart combined with DPs
and attributes (As). As in the UML class diagram shown
previously, there are private thirteen attributes (As). The left
three attributes are private static ones that are used to invoke
other classes. Hence, these three attributes will not be
considered in this case.

A1: PatentNo
A2: Year
A3: Class
A4: Forward_cit
A5: Backward_cit
A6: Originality
A7: Generality
A8: Forward_imp
A9: Forward_dis
A10: Forward_lag
A11: content_of_patent_citation_no
A12: content_of_patent_reference_by
A13: second_reference_by

To check dependencies between methods, simply follow the
three steps again. First, check whether the prerequisite
methods have been implemented in DSM (from left to right).
If yes, proceed to step 2; if no, one needs to be careful
because logical errors may happen. Second, check how many
attributes (As) are related in the MDM with the methods that
are to be checked (from top to down). The last step is to find
out whether the writing and reading sequences for As are
correct in the MDM (from left to right again). A variable
should be initialized or written with some value first before
reading; if the variable is written twice or initialized again
before reading, one should be aware of the logical error.

6 CONCLUSION

In this paper, complexity within class is modelled and
managed by means of an Axiomatic Design approach and
DSM/MDM. Building a design matrix and an MDM does not
require laborious work, but the benefits are evident.
According to the IDC report in 2008, the estimated cost for
fixing software defects was between 5.2 million dollars to 22
million dollars depending on the organization size. Another
earlier released report showed that 72% of surveyed
companies realized their debugging processes were
problematic: 25.5% said they were very often or even all of
the time finding serious problems. These statistics suggest that
software companies face challenges in patching up the holes
they've made. To save costs and build robust software, it is
necessary to change the ways in which complex software
components are developed. Instead of fixing bugs after
software has been released, software engineers should design
it in a reliable way and Axiomatic Design can help facilitate
the design task. Complexity within classes can be managed
with MDM, and complexity between classes can be modelled
by UML. Combining those techniques together makes the
goal of making software with fewer bugs feasible.

7 REFERENCES

[1] Bandi R. K., V. K. Vaishnavi and D. E. Turk, "Predicting
Maintenance Performance Using Object-Oriented Design
Complexity Metrics," IEEE Transactions On Software Engi-
neering, Vol. 29, No. 1, pp. 77-87, 2003.

[2] Booch G., Object-Oriented Analysis and Design with Applica-
tions (2nd Edition), Redwood City, Calif: Addison-Wesley
Professional, 1993.

Managing Intra-Class Complexity with Axiomatic Design and Design Structure Matrix Approaches
The Sixth International Conference on Axiomatic Design
Daejeon – March 30-31, 2011

[3] Briand L. C., J. Wüst, S. V. Ikonomovski and H. Lounis,
"Investigating quality factors in object-oriented designs:
an industrial case study," in ICSE '99 Proceedings of the
21st international conference on Software engineering,
1999.

[4] Deitel H. M. and P. J. Deitel, Java How to Program (6th
Edition), Upper Saddle River, New Jersey: Prentice Hall,
2004.

[5] DSMweb.org, Understand DSM,
http://129.187.108.94/dsmweb/en/understand-
dsm/tutorials-overview/descripton-design-structre.html,
2009.

[6] Fothi A., J. Nyeky-Gaizler and Z. Porkolab, "The Struc-
tured Complexity of Object-Oriented Programs," Mathe-
matical and Computer Modeling, Vol. 38, No. 7, pp. 815-827,
2003.

[7] Grady R. B., Practical Software Metrics for Project Managment
and Process Improvement, Upper Saddle River, New Jersey:
Prentice Hall, 1992.

[8] Kim K., Y. Shin and C. Wu, "Complexity measures for
object-oriented program based on the entropy," in Soft-
ware Engineering Conference, Asia Pacific, 1995.

[9] Kobryn C., UML 2001: A Standardization Odyssey,
Communications of the ACM, Vol 42, pp. 29-37, 1999.

[10] Lange C., M. Chaudron and J. Muskens, "In Practice:
UML Software Architecture and Design Description,"
IEEE Software, Vol. 23, No. 2, pp. 40-46, 2006.

[11] Lee T. and P. Jeziorek, "An Exploratory Study of Cost
Engineering in Axiomatic Design: Creation of the Cost
Model based on an FR-DP Map," in Third International
Conference on Axiomatic Design (ICAD2004), Seoul,
Korea, 2004.

[12] Maraia V., The Build Master: Microsoft's Software Configuration
Management Best Practices, Redwood City, Calif: Addison-
Wesley Professional, 2005.

[13] Martin R. C., "The Open-Closed Principle," C++ Report,
Vol. 8, 1996.

[14] Meyer B., Object-Oriented Software Construction (2nd edition),
Upper Saddle River, New Jersey: Prentice Hall, 2000.

[15] Misra S., "An Object Oriented Complexity Metric Based
on Cognitive Weights," in 6th IEEE International Con-
ference on Cognitive Informatics, 2007.

[16] Misra S. and K. I. Akman, "Weighted Class Complexity:
A Measure of Complexity for Object Oriented System,"
Journal Of Information Science And Engineering, Vol. 24, pp.
1689-1708, 2008.

[17] Noble J., "Objects and constraints," in Technology of
Object-Oriented Languages, 1998. TOOLS 28. Proceed-
ings, Melbourne, Vic., Australia, 1998.

[18] Siau K. and Q. Cao, "Unified Modeling Language (UML)
- A Complexity Analysis," Journal of Database Management,
Vol. 12, No. 1, pp. 26-34, 2001.

[19] Steward D. V., "The design structure system: a method
for managing the design of complex systems," IEEE
Trans. Engineering Management, Vol. 28, No. 3, pp. 71-74,
1981.

[20] Subramanyam R. and M. S. Krishnan, "Empirical Analy-
sis of CK Metrics for Object-Oriented Design Complex-
ity: Implications for Software Defects," IEEE Transactions
On Software Engineering, Vol. 29, No. 4, pp. 297-310, 2003.

[21] Suh N. P., Complexity: Theory and Applications, New York:
Oxford University Press, 2005.

[22] Suh N. P. and S.-H. Do, "Axiomatic Design of Software
Systems," CIRP Annals - Manufacturing Technology, Vol. 49,
No. 1, pp. 95-100, 2000.

[23] Togay C., A. H. Dogru and J. U. Tanik, "Systematic
Component-Oriented development with Axiomatic De-
sign," The Journal of Systems and Software, Vol. 81, No. 11,
pp. 1803-1815, 2008.

[24] Withrow C., "Error Density and Size in Ada Software,"
IEEE Software, Vol. 7, No. 1, pp. 26-30, 1990.

[25] Zhao J., J. Cheng and K. Ushijima, "A dependence-based
representation for concurrent object-oriented software
maintenance," in CSMR '98 Proceedings of the 2nd Eu-
romicro Conference on Software Maintenance and Reen-
gineering (CSMR'98), 1998.

