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ABSTRACT 

An algorithm, which is based on an extension of  Nam P. 
Suh’s algorithm, is proposed to reorganize the design matrix. 
The results are 1) the lowest-triangular and most diagonal 
design matrix and 2) a set of  extra columns or rows 
depending on whether the design problem is redundant or not. 
The modification allows the reorganization of  matrices with 
any distribution of  Xs inside and works with rectangular 
matrices of  any size. This paper describes the steps of  the 
procedure and gives several examples of  reorganization. In 
addition, the new algorithm is compared with the T. Lee, 
Acclaro, and N.P Suh algorithms. 

Keywords: design-matrix, algorithm, matrix reformulation, 
off-diagonal term, decoupling strategy. 

1 INTRODUCTION 

Axiomatic Design (AD) developed by N. P. Suh [1990] 
provides a systematic approach to engineering design based 
on two axioms: the independence axiom and the information 
axiom. Axioms act on the mappings between design domains. 
Suh defined four domains in the design/manufacturing world: 
the customer domain, the functional domain, the physical 
domain and the process domain. Design matrices can express 
the relationships between functional requirements (FRs), 
which are defined in the functional domain, and design 
parameters (DPs), which are defined in the physical domain.  

Axioms determine the best structure of  these matrices. 
The larger the number of  couplings between DPs and FRs, 
the worst the design is. As a result, designs can be classified 
according to the structure of  the matrix. There are three main 
possibilities: coupled, decoupled and uncoupled designs. A 
diagonal design matrix characterizes an uncoupled design; a 
triangular design matrix characterizes a decoupled design; and 
a design matrix that cannot be converted to an uncoupled or 
decoupled characterizes a coupled design. Examples of  these 
cases are shown in Fig. 1. 
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Figure 1. Uncoupled, decoupled and coupled matrices. 

In general, functional requirements and design 
parameters can have any order, and hence the position of  the 
non-zero elements in the design matrix is not fixed. For 
example, the decoupled matrix in Fig. 1 can be converted into 
a non-triangular matrix if  the second and third rows and 
columns are permuted. Therefore, an algorithm, that 
transforms a general design matrix into the most diagonal or 
triangular matrix, could classify any design matrix as 
uncoupled, decoupled or coupled. The first axiom forces the 
designer to produce a set of  DPs that maintains the 
independence of  the FRs. This also implies that only two 
configurations of  the design matrix are acceptable: decoupled 
or uncoupled. Additional off-diagonal terms cause coupling 
and should be eliminated. Then, the first step for assessing the 
goodness of  a design is to rearrange the design matrix in 
order to find the off-diagonal terms. The importance of  
rearranging the design matrix lies in the fact that it allows the 
designer to discover the minimum number of  matrix elements 
which have to be removed in order to decouple the matrix. 
Therefore, in an initial stage of  the design process, it is very 
convenient to have an algorithm that gives the minimum set 
of  off-diagonal terms that should be removed in order to 
obtain a decoupled or an uncoupled design.  

Due to the importance of  this step, previous authors 
have studied the problem: Suh [1990], Su [2003], Lee and 
Jeziorek [2006], Lee [2006], Cai [2009], and Acclaro Software 
[2010]. Principal contributions are described in Section 2. 
However, these algorithms have limitations. For example, the 
optimum algorithm proposed by T. Lee [2006] only works 
with square matrices that have non-zero elements in the main 
diagonal. This paper describes an algorithm that solves some 
of  these deficiencies. However, it has other limitations (i.e., it 
is necessary to run the algorithm several times to achieve the 
optimum result). Thus, the purpose of  this paper is to find an 
algorithm that rearranges the columns and rows of  the design 
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matrix in order to obtain a design matrix that is more diagonal 
or triangular than the original matrix. This algorithm must 1) 
be easy to implement, and 2) work with the most general 
design matrix (non-square matrices with zero elements in the 
main diagonal). 

The main objective of  this article is to explore the 
possibilities of  an extended algorithm (EA), which is halfway 
between the N. P. Suh [1990] and T. Lee algorithms [2006]. 
The objectives of  the EA are: 1) to obtain a design matrix that 
is more triangular than the original matrix, 2) to obtain a 
design matrix that is more diagonal than the original matrix, 
and 3) is valid for any matrix dimension, even for a 
rectangular matrix. Section 2 presents an overview of  the 
methods used for matrix rearrangement. Section 3 describes 
the EA and gives some examples. Section 4 discusses and 
explains why EA is halfway between the Suh and Lee 
algorithms. Finally, conclusions are given in Section 5. 

2 BACKGROUND 

Some authors have dealt with the problem of  rearranging 
the design matrix: Suh [1990], Lee and Jeziorek [2006] and Lee 
[2006]. Also, software programs like Acclaro DFSS [Axiomatic 
Design Solutions Inc., 2010] incorporate algorithms that 
rearrange the design matrix.  

N. P. Suh [1990] describes a way to rearrange the design 
matrix. He uses an algorithm that moves rows and columns. 
The process is as follows: 

(i) Find a row which has one non-zero element. 
Rearrange the order of  FRs and DPs by putting the row and 
the column which contain the non-zero element first. 

(ii) Excluding the first row and column, find the row 
which contains one non-zero element. Rearrange the 
components of  FRs and DPs by putting the row and column 
which contains the non-zero element at the row and column 
second. 

(iii) Repeat the procedure until there are no more sub-
matrices to analyze. 

This procedure works well when there are a few non-zero 
elements in each row. If  the number of  non-zero elements 
increases, the procedure has more possibilities of  not finding 
the best rearrangement. To solve this problem Lee and 
Jeziorek [2006] use an optimal strategy based on graph theory. 
They aim to find the set of  minimum elements that decouples 
the design matrix. An extended explanation of  the complete 
process is given by T. Lee [2006]. To summarize, the process is 
as follows: 

(i) Take the original design matrix DM(i,j) and construct 
the adjacency matrix A to determine the 
existence of  coupling. 

(ii) If  coupled, construct incidence matrix B from A. 
(iii) Identify a direct spanning tree. 
(iv) Given B and the spanning tree, construct cycle 

matrix C. 
(v) Search the combinations of  the columns to find the 

first set of  columns with non-zero entries when 
summed up. 

(vi) Combination of  columns found in the previous step 
indicates the minimum set of  off-diagonal 
terms that decouples the design matrix DM.  

This method is very powerful but it is more complex than 
the algorithm used by N. P. Suh, and needs a square design 
matrix with all the elements in the main diagonal different 
from zero (i.e., none of  the elements in the main diagonal can 
be zero). 

3 EXTENDED ALGORITHM 

In this section the objective is to describe an extended 
algorithm (EA) which is easy to implement and useful for a 
large number of  design matrices. In addition, it must 
rearrange the design matrix by finding 1) the most triangular 
matrix, and 2) the most diagonal matrix. In this paper the 
degree of  “triangular” and “diagonal” is based on the number 
of  off-diagonal elements. The larger the number of  non-zero 
diagonal elements, the larger the degree of  “diagonal”. The 
smaller the number of  non-zero elements above the diagonal, 
the larger the degree of  “triangular”. These measures are 
implicitly included in the algorithm. 

To achieve the aforementioned objectives, the EA is 
divided in two phases. First, the EA rearranges the design 
matrix to obtain the most triangular one (Fig. 2). Second, for 
rectangular matrices, it selects the best DPs or FRs to be 
eliminated and obtains the most diagonal matrix (Fig.1). 

The algorithm is as follows: 
- First phase (valid for rectangular and square matrices): 
(i) Find the row with the minimum number of  non-

zero elements and, at least, with one non-zero 
element. We call this row R(i), where i is the 
row index in the original matrix. See Fig. 2 (1). 

(ii) Once the row R(i) is found in step (i), proceed as 
follows.  
a. For each non-zero element present in R(i), 

extract the associated column. We call 
these columns C(i,j), where i is the row 
index of  R(i) and j is the column index. 
For each column C(i,j)  obtain the number 
of  non-zero elements that are in the lower 
part of  this column (i.e., if  C(i,j)k is the 
kth element placed in the column, count 
up the number of  non-zero elements with 

k≥i). We call this number L[C(i,j)]. 
b. Among the columns selected in the 

previous step, take the one with the 
greatest value of  L[C(i,j)]. We call its 
column index C0(i,j). See Fig. 2 (1). 

c. If  there are more than one C0(i,j), because 
there are two or more columns with the 
same value for L[C(i,j)], then it is necessary 
to find the column C0(i,j) with the least 
number of  non-zero elements above the 
diagonal element. Therefore, we use the 
number U[C(i,j)] obtained from counting 
up the number of  non-zero elements 

C(i,j)k with k≤i. 
d.  Among the columns selected in the 

previous step, take the one with the lowest 
value of  U[C(i,j)]. We call this index C0(i,j) 
See Fig. 2 (5). 

(iii) Put the row R(i) and the column C0(i,j) first in the 
matrix. 
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(iv)  Excluding the first row and column, repeat the steps 
(i) to (iv) over the resultant sub-matrix.  

(v) Repeat the process until there are no more sub-
matrices to be analyzed. 

-Second phase. (Valid only if  the matrix is rectangular.) 
For rectangular matrices, the number of  DPs is not 
equal to the number of  FRs. The procedure is first 
explained for the case where #DP > #FR. The 
explanation for the case where #DP < #FR can be 
found at the end of  this section. Note that, if  #DP > 
#FR, there are more columns than rows (i.e., there are 
#DP-#FR extra columns). 
(i) Check if  one of  the extra columns can reduce the 
number L[C(i,j)] of  any column that belongs to the 
square part of  the matrix (i.e., the sub-matrix that 
accomplishes #DP = #FR) without increasing the 
number U[C(i,j)].  
(ii) Permute columns that fulfill the anterior condition. 
See Fig. 3. 
 

 1 2 3 4  3 1 2 4 
1 X X   2 X    
2   X  1  X X  
3  X X X 3 X  X X 

 
R(i)=2,C0(i,j)=3 

(1) 
 

Rearrangement 
(2)  

 3 1 2 4  3 2 1 4 
2 X    2 X    
1  X X  1  X X  
3 X  X X 3 X X X X 

 
R(i)=1,C0(i,j)=2 

(3) 
 

Rearrangement 
(4) 

 3 2 1 4  3 2 4 1 
2 X    2 X    
1  X X  1  X  X 
3 X X  X 3 X X X  

 
R(i)=3,C0(i,j)=4 

(5) 
 

Final 
Rearrangement 

(6) 

Figure 2. Phase 1 of  EA. 

 3 2 4 1  3 1 4 2 
2 X    2 X    
1  X  X 1  X  X
3 X X X  3 X  X X

 
Change 

column 2 by 1 
(1) 

 
Final 

Rearrangement 
(2) 

Figure 3. Phase 2 of  EA. 

These two phases allow the EA to rearrange the design 
matrix in two ways. One way finds the most triangular matrix 
and the other way finds the most diagonal matrix. Whether or 
not to use the second phase of  the procedure depends on the 
particular design problem. As an example of  the process, 
consider the matrix present in Fig. 4. 

 
 
 
 

 
 

1 2 3 4 5 
1 X     
2 X X X X 
3 X    
4 X  X X 
5 X   X X 

Figure 4. Example matrix. 

In this matrix, step (i) finds the row with maximum 
number of  zeros, which is the first (i=1). There is only one 
non-zero element in i=1, so the first column (j=1) is the only 
one to be compared in the step (ii). For this column, 
L[C(1,1)]=1 and U[C(1,1)]=0. As a consequence, the first row 
and column do not move in the step (iii). 

Step (iv) states that the previous steps must be repeated 
for the sub-matrix represented in Fig. 5. In this case, the 
selected row is i=3, which only has one non-zero element. 
Again, for the same reasons explained above, the chosen 
column is j=2, which has L[C(3,2)]=1 and U[C(3,2)]=1. Fig. 6 
shows the new rearrangement of  the matrix. 

 
1 2 3 4 5 

1 X     
2 X X X X 
3 X    
4 X  X X 
5 X   X X 

Figure 5. Sub-matrix used in an intermediate step of  EA. 

1 2 3 4 5 
1 X     
3 X    
2 X X X X 
4 X  X X 
5 X   X X 

Figure 6. Result of  an intermediate step of  EA. 

Once Again, step (v) gives the new matrix shown in Fig. 7. 
Finally, we can see that in order to obtain a decoupled design, 
only one element, which corresponds to (i,j)=(5,4) in the 
original matrix, must be eliminated. 

 
1 2 3 4 5  1 2 4 5 3

1 X  1 X   
2 X X X X 3  X  
3 X  4  X X X
4 X X X 5 X  X X
5 X X X 2  X X X X

Original matrix  Rearranged matrix

Figure 7. Original matrix and matrix rearranged by EA. 

If  we want to analyze a rectangular matrix, the algorithm 
is still valid. Suppose a rectangular matrix like the one in Fig. 8. 
After the rearrangement we can obtain the two matrices in 
Figs. 9 (matrix A) and 10 (matrix B). The first one is obtained 
after executing the first phase of  the algorithm, and the 
second one, after executing the second phase. 
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 1 2 3 4 5 6 
1 X  X X  X 
2  X  X X 
3   X X  
4  X  X  X 
5 X   X X X 

Figure 8. Example matrix. 

Matrix A is the most triangular matrix and matrix B is the 
most diagonal one. Matrix B indicates that, in the design 
problem, the designer should try to eliminate DP number 6, 
because it has the largest number of  non-zero terms. However, 
for matrix A, it is more interesting to eliminate column 2 
because this has fewer non-zero elements than column 6. Of  
course, in a real design process, the final decision will depend 
on the particular problem, but the proposed process will give 
information about the best design parameter to be eliminated. 
The same procedure can be executed for a matrix with more 
FRs than DPs. In this case, the algorithm will give us 
information about which one is the most coupled FR. 
 

 5 2 4 1 3 6  5 6 4 1 3 2
3 X  X X  X 3 X    X
2  X   X X 2 X X   X
4   X  X  4  X X  X
5  X  X  X 5 X X X X 
1 X   X X X 1  X X X X

 Original matrix 
 (A) Triangular 

rearrangement  

Figure 9. Rearrangement obtained in the first phase of  
EA: most triangular matrix. 

 5 2 4 1 3 6  5 2 4 1 3 6
3 X  X X  X 3 X    X
2  X   X X 2 X X   X
4   X  X  4  X X  X
5  X  X  X 5 X  X X X
1 X   X X X 1   X X X X

 Original matrix 
 (B) Diagonal 

rearrangement  

Figure 10 Rearrangement obtained in the second phase 
of  EA: most diagonal matrix. 

The EA works especially well for those matrices that are 
large and strongly coupled, like the design matrix shown in Fig. 
11. The result of  the algorithm for this matrix appears in Fig. 
12 where it is possible to see that the design problem is 
coupled only due to two non-zero elements over the main 
diagonal.  

 
 
 
 
 
 
 
 
 

 
 

1 2 3 4 5 6 7 8 9 10
1 X X   X  
2 X X X   
3 X X X   X X
4 X X   X  
5 X X    X
6 X X  X  X 
7 X    X
8 X  X   X
9 X X X   X X 
10 X    

Figure 11. Example matrix. 

5 9 3 2 6 1 7 4 8 10
10 X     
7 X X     
5 X X X     
2 X X X    
8 X X X    
6 X X X   X
1 X  X X  
4 X   X X 
9 X  X X X X
3 X X X     X X

Figure 12. Rearranged matrix obtained by EA from 
design matrix in Fig. 11. 

Note that phase two for the case where #FR > #DP is 
similar to the one previously described. However, the L and U 
numbers must be redefined as follows. 

-For each row R(i,j) obtain the number of  non-zero 
elements that are in the left side of  this row (i.e., if  R(i,j)k is 
the kth element placed in the row, count up the number of  

non-zero elements with k≤i). We call this number L[R(i,j)]. 
- The number U[R(i,j)] is obtained from counting up the 

number of  non-zero elements R(i,j)k with k≥i. 
The above procedure must be changed as follows: 

(i) Check if  one of  the extra rows can reduce the 
number L[R(i,j)] of  any row that belongs to the square 
part of  the matrix (i.e., the sub-matrix that accomplishes 
#DP = #FR) without increasing the number U[R(i,j)].  
(ii) Permute rows that fulfill the anterior condition.  

4 DISCUSSION 

Various authors have already studied matrix 
rearrangement as we mentioned above. The present 
discussion is useful to find the advantages and disadvantages 
of  the proposed algorithm. For this purpose, the N. P. Suh 
[1990], T. Lee [2006], and Acclaro [2010] algorithms are used 
in the following subsections.  

4.1 T. LEE ALGORITHM 

We discuss the T. Lee [2006] algorithm first. For this 
purpose we use the design matrix in Fig. 13, which is an 
example obtained from Lee and Jeziorek [2006]. 
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 1 2 3 4 5 
1 X   X  
2 X X   X 
3  X X X  
4  X  X X 
5 X  X  X 

Figure 13. Original matrix. 

Applying the optimal strategy for eliminating coupling 
terms, T. Lee obtains a triangular matrix and only two non-
zero off-diagonal elements (1,4) and (5,3). Fig. 14 shows the 
resulting matrix. 

 
 1 2 3 4 5  1 5 2 4 3
1 X   X  1 X   X 
2 X X   X 5 X X   X
3  X X X  2 X X X  
4  X  X X 4  X X X 
5 X  X  X 3   X X X
 Original matrix 

 
Rearranged matrix
by T. Lee algorithm

Figure 14. Rearrangement obtained with the optimum 
algorithm developed by T. Lee [2006]. 

Our EA leads to the matrix shown in Fig. 15. According 
to the EA, it is necessary to eliminate three terms to achieve a 
triangular matrix instead of  two as T. Lee algorithm indicates. 
This shows that our EA is not an optimum algorithm. 
 

 1 2 3 4 5  1 5 2 4 3
1 X   X  1 X    X
2 X X   X 5 X X  X 
3  X X X  2  X X  X
4  X  X X 4 X  X X 
5 X  X  X 3  X  X X
 Original matrix 

 
Rearrange matrix by 

EA 

Figure 15. Rearrangement obtained with the EA. 

The difference between the T. Lee and EA algorithms 
comes from an arbitrary decision adopted by the EA: when 
there are two or more rows with the same number of  non-
zero elements, the selected row is always the first one. Perhaps, 
the second one might be a better option, but the algorithm 
does not have any criteria to fix it. This means that the EA is 
not an optimum algorithm. To solve this problem, it is 
necessary to run the algorithm for all of  the indecisions 
presented in the design matrix, by selecting a different row in 
each case. For example, the EA obtains the optimal result 
reported by T. Lee if  the rows are shifted down one step (i.e., 
if  the original matrix had the rows in the order 5,1,2,3,4). For 
this matrix, the EA gives the optimal result provided by the T. 
Lee method.   

The T. Lee method can rearrange square matrices that 
have the main diagonal completely filled with non-zero 
elements. In this procedure, the Xs in the design matrix (DM) 
are replaced with ones. Matrix A is equal to the transposed 
design matrix minus the identity matrix of  a size m x m 

(A=DMT-I). If  the DM is rectangular, the numbers of  FRs 
and DPs are not equal. Consequently, matrix B cannot be 
constructed because the value of  m is not well defined (m = 
vertices of  graph = FR-DP pairs). This problem exists 
because there is at least one FR that does not have a free DP 
to form a pair (or vice versa). If  the diagonal is not completely 
filled with non-zero elements, matrix A will have some 
negative element in the diagonal (i.e., if  DM(i,i)=0 then 
DMT(i,i)-I(i,i)=-1). In this case, the digraph will not have the 
corresponding vertex. Although EA is not an optimum 
algorithm, it can deal with rectangular matrices with blanks in 
the diagonal. In some cases, this can be an advantage that 
compensates for the fact that it is not an optimal algorithm. 

4.2 ACCLARO ALGORITHM 

Acclaro Software [2010] also solves square matrices that 
have non-zero elements in the main diagonal. In other cases, 
Acclaro considers these cases doubtful. As a consequence, it is 
not possible to use Acclaro for rearranging rectangular 
matrices or square matrices with zeros in the main diagonal. 

If  we compare the EA with Acclaro we obtain different 
results depending on the matrix considered. Due to the 
reasons given above, differences are obtained in matrices with 
one or more diagonal elements equal to zero and in 
rectangular matrices. Some different results are obtained for 
strongly coupled matrices like the one in Fig. 16. Acclaro gives 
a rearranged matrix exposed in Fig. 17 where five elements are 
over the main diagonal. For this case, the EA provides the 
matrix in Fig. 18 that has four non-zero elements above the 
main diagonal.  
 

1 2 3 4 5 6 
1 X X X  X 
2 X X   X  
3 X  X X 
4 X  X   
5 X X X X  
6 X  X  X 

Figure 16. Original matrix. 

1 2 3 4 5 6  1 4 6 2 3 5
1 X X X X 1 X X X X
2 X X X  4 X X  
3 X X X 6 X X X
4 X X  2 X   X X
5 X X X X  3   X X X
6 X X X 5  X  X X X

Original matrix  
Matrix rearranged by 

Acclaro 

Figure 17. Rearrangement obtained with Acclaro 
Software [2010]. 
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 1 2 3 4 5 6  1 5 3 4 2 6
1 X  X X  X 4 X   X 
2 X X   X  2 X X   X
3   X  X X 3  X X  X
4 X   X   1 X  X X X
5  X X X X  5  X X X X
6 X   X  X 6  X  X X

 Original matrix  
Matrix rearranged by 

EA 

Figure 18. Rearrangement obtained with the EA. 

4.3 N. P. SUH ALGORITHM 

The N. P. Suh algorithm [1990] accepts rectangular 
matrices and non-zero elements in the main diagonal. 
However, it presents some decision problems when all of  the 
rows in the matrix have the same number of  non-zero 
elements. To discuss the N. P. Suh algorithm we use the 
example given in [Suh, 1990, p. 116]. The design given is 
redundant (see Fig. 19), because there are more DPs than FRs.  

 
 1 2 3 4 5 6 7 
1 X  X   X X 
2 X X  X   X 
3 X X   X X  

Figure 19. Original matrix. 

This matrix is very particular because it has the same 
number of  non-zero elements in each row. This fact makes 
Suh’s algorithm leaves the matrix unaltered. However, as Suh 
[1990] discussed, it is possible to select three DPs and 
“freeze” the unnecessary ones. Depending on which three 
parameters are chosen, there are different square matrices that 
solve the problem. They are collected in Fig. 18. One of  them 
is uncoupled and the others are decoupled.  

 
 3 4 5   7 2 5   1 2 5
1 X    1 X    1 X 
2  X   2 X X   2 X X
3   X  3  X X  3 X X X

Figure 20. Three possible rearrangements given by N. P. 
Suh [1990]. 

When the matrix in Fig. 19 is introduced in the EA, the result 
depends on whether we have decided to use the second part 
of  the EA or not. When the objective is to find the most 
triangular matrix, the second phase of  the EA is not executed 
and the result is the matrix in Fig. 21. When the second phase 
of  the algorithm is executed the resulting matrix is the one in 
Fig. 22, which is the most diagonal one that the EA can 
achieve. Both matrices are the first and the third ones in Fig. 
18. In the first case (the most diagonal matrix) it would be 
convenient to eliminate DPs 1, 6 and 7 for obtaining a total 
diagonal matrix. In the second case (the most triangular 
matrix), it would be convenient to eliminate DPs 3, 6 and 7 
for obtaining a total triangular matrix.  
 
 

 
 
 

1 2 3 4 5 6 7  1 2 5 4 3 6 7
1 X  X   X X 1 X    X X X

2 X X  X   X 2 X X  X   X

3 X X   X X  3 X X X   X  

Original matrix  Triangular rearrangement

Figure 21. Rearrangement with EA: most triangular 
(phase 1). 

1 2 3 4 5 6 7  3 4 5 2 1 6 7
1 X  X   X X 1 X    X X X

2 X X  X   X 2  X  X X  X

3 X X   X X  3   X X X X  

Original matrix  Diagonal rearrangement

Figure 22. Rearrangement with EA: most diagonal 
(phase 2). 

5 CONCLUSION 

This article proposes an algorithm, based on an extension 
of  N.P. Suh’s algorithm, which allows the design matrix to be 
rearranged in two different ways: the most triangular matrix 
and the most diagonal matrix. When the design matrix is 
rectangular, it also indicates the best DPs or FRs to be 
removed. The procedure is based on a comparison of  three 
numbers: the number of  non-zero elements in each row, the 
number of  non-zero elements in each column below the 
diagonal element, and the number of  non-zero elements in 
each column above the diagonal element. Due to the 
simplicity of  the procedure, the extended algorithm is valid 
for a large number of  design matrices, and it is especially 
useful for strongly coupled matrices, i.e., for matrices with a 
large number of  DPs and FRs, and a large number of  non-
zero elements.  

More complex algorithms, like the optimum procedure 
described by T. Lee, solve the problem more accurately; 
however, they can only deal with square matrices whose 
elements in the main diagonal are all non-zero. Simpler 
algorithms, like the one described by N. P. Suh, are easier to 
implement and hence they can deal with more general 
matrices, such as rectangular matrices with empty elements in 
the main diagonal. However, it cannot achieve a final result if  
the number of  elements in each row is the same. This paper 
shows that it is possible to find a trade-off  between both 
characteristics. 

Simplicity is maintained because the procedure is based 
on changing the relative position of  rows and columns with a 
decision criterion based on the number of  non-zero elements 
in different positions of  the rows and columns. Thus, this 
decision criterion is direct, and hence the new decision 
structure allows matrix elements to be moved directly by 
reordering rows and columns. This can be an advantage if  the 
design matrix is large or if  it is very populated. 

Therefore, this paper shows that the proposed algorithm 
is halfway between the optimal and simplest algorithms. We 
conclude that it can be used to recognize when a matrix is 
coupled, decoupled or uncoupled. It can deal with large and 
very populated rectangular matrices without elements in the 
main diagonal. However, this paper shows that the proposed 
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algorithm is not optimal, and hence optimal algorithms, like 
the one described by T. Lee, are needed. 
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