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ABSTRACT

This paper is an extension to the formulation presented in Part I
and deals with design situations where there is no sufficient
information to warrant the wuse of Part I deterministic
optimization. The formulation assumes the existence of a design
alternatives pool with enough expertise to score ranking against
the selected criteria. Part IT builds upon the rationale adopted in
Part I' for the selection criteria and the integer programming.
Therefore, a function of complexity, value, cost and customer
satisfaction will be used as an objective function criterion.
This rationale is rooted in the concepts of QFD, axiomatic
design and value engineering. The formulation is expanded to
include technical and assembly feasibility as constraints. The
formulation uses some concepts of fuzzy set theory to quantify
complexity, a formulation ingredient.

Keywords: Axiomatic Design, Fuzzy Set Theory, Complexity,
Integer Programming, QFD, Concept Selection

1. INTRODUCTION

The concept selection problem is to select the best design entity
that not only satisfies the customer requirements but also
outperforms the other alternative solutions based on a set of
selection criteria. The selection problem involves the following
three major steps: (1) identification of the selection criteria, (2)
the ranking (scoring) of different design entities against the
selection criteria, and (3) the identification of the 'best
(optimum) entity. The best conceptual entity is the one that
scores favorably in the ranking against a criterion. However, the
problem become more complex when multiple criterion are
involved. The selection problem may become judgmental so it
will be very prone to bias as ranking will be driven to favor some
pre-selected conceptual entity. The bias problem can be
eliminated by the systematic employment of the disciplined
selection process. The process creditability and robustness are

1 . P . .
The rationale is discussed in Part I and not repeated here. The reader is
encouraged to refer to Part I for clarification.
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greatly enhanced when coupled with the state-of-the-art design
theories.

In this paper, a formulation of the selection problem as an
integer programming problem with, mainly, two selection criteria:
customer satisfaction and design complexity is presented. The
choice of design complexity as a selection criterion is stemming
from the information axiom (Suh 1990) of the axiomatic design
(AD) approach. In addition, the proposed formulation is built
around concepts borrowed from Quality Function Deployment

(QED).

The use of probability distributions (Part I) indicate the case of
the incremental design classification, i.e. experienced design
situations with the needed information available to calculate
complexity. Incremental design is a design that is within a skght
variation of the current design. In many design situations,
especially those classified as creative design solutions, we do not
have this luxury of information and complexity can not be
calculated. The type of information in the creative situation is
qualitative and fuzzy in the form of engineering judgment. The
existence of fuzzy information can be utilized to infer
probability distribution from fuzzy distributions using the
concepts of possibility distribution, possibility-probability principle, and
maximum entropy principle. 'The possibility distribution is a key for
our formulation that utilizes the fuzzy modeling in the cases of
inexperienced design situation.

This paper is developed as follows: Section 2 contains the
needed fuzzy set theory background, Section 3 is the core
section of Part II and is devoted for the fuzzy formulation of
the selection problem. Section 4 is the conclusion section.

2. THE FUZZY MODELING

Linguistic inexactness (imprecision) is the most common feature
of many real life situations. Dutta (1985) classifies imprecision
according to its source: measurement, stochastic, ambiguous
definitions, incomplete knowledge, etc. In decision making, for
example, the usefulness of mathematical algorithms is in having
clearly defined objective criteria and constraints. They are only
as good as the information they are given. Information has to be
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crisp (precise) in order to yield precise decisions (Zimmermann
1985).

Certainty formulations require structure with precise parameters.
However, most real life situations are characterized linguistically
with degrees of imprecision. Precision implies no ambiguity by
assuming that variables, parameters, and structure represent
deterministic situations as we did in Part I. The imprecision
issue is further complicated in the classification of creative
design. In the early phases, a design is a collection of scattered
conceptual thoughts and rough drawings. The difficulty in design
problem formulation often lies in establishing precise objectives,
constraints and functional requirements which are uncertain , do
not fall between what we consider as definite and precise. Even
when the design matures to a physical entity via the mapping
process, it may still need further tuning and optimization, partly,
due to the uncertainty in characterizing noise factors effect
during the concept design stage. It is almost the case, that, we
can not make deferministic assertion with respect to certain
phenomena because we can not measure, do not know, can not
calculate all factors involved (Stark and Woods, 1986). We
attribute variance between products passing the same processes
to randomness by discounting the system to its average behavior.
To do that, we use probability theory to handle randomness. As
such, design models can't be desctibed as unequivocal. No
comprehensive design models can be written even for
incremental  designs  situations. Unfortunately, existing
knowledge is normally centered around the crisp incremental
(adaptive) classifications. Under these circumstances, many
suggest that, a design problem complexity can be lessened using
conclusions of empirical knowledge. The result of these
activities are the dominating formal models. In customer-
oriented design, customers have wants and needs that are hard to
interpret. They are expressed, linguistically, using terms which
have no precise definition. A statement is not always right or
wrong, as people are not always classified as smart or stupid, and
a linear programming (LP) problem is not always feasible or
infeasible. Yet, to classify an LP problem as for most classical
decision making, one description or the other must be chosen.
This is in accordance with the Jaw of exciuded middle (Klir 1988).
This dichotomous property is the basis of dassical set theory. By
the same analogy, systems (solution entities) can not always
classified as vulnerable or non-vulnerable, robust or not-robust.
In this context, robustness may be viewed as a continuous
measure of some possibility distribution..

An example that may be used to facilitate the fuzzy concepts is
as follows. Assume that there are 4 design proposal (solution
entities), say the ctisp set S = {5,, 5,, 55, 5,}. We would like to
select a solution entity at random from S. The probability

distribution in this case is: p({S; }) = p({S2 }) = p(AS5 }) = p(AS.})

= 7 If we were asked to select randomly a sucessful creative

design, we can't use the probability distribution above because of
the fuzziness in the word 'Successful'. The answer is in defining
'design solution' ,;say Y, as a vatiable that takes in values in the set
S, according to a probability distribution constructed around "Y
is successful".
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A fuzzy set accepts objects with certain degree, the so called
membership function (Zadeh 1965). The fuzzy set A is
represented as: A= {(FR uo(FR)/ FR € FRp

with 7,4(FR) understood to represent a mapping of membership
of FR, m,: FRs— [0,71]: FR— m4(FR). It is understood that in

the crisp case, VFRe Aus(FR =1 and zero otherwise.

Every mapping of this nature with some conceptual realization
(in alignment with intuitive semantics of imprecise description of
FR) is a fuzzy set. For example, FRs can be the universe of
fuzzy functional requirements, such as stylish, cheap, convenient,
etc.

2.1 Possibility-Probability Consistency Principle

The fuzzy information about the elements of a finite set can be
represented by a possibility distribution. Possibility theory was
first introduced by Zadeh (1978), as an interpretation of a fuzzy
set. The concept was further developed by both Dubois and
Prade (1988). Possibility is concerned with linguistic uncertainty
that is assumed to be possibilistic rather than probabilistic. For

example, the proposition "X7 is A" is a possibility proposition

where X7 is a vatiable taking the values x7 and A is a fuzzy set
with z,4(x7). Possibility distribution is considered some how a
modeling to fuzzy restriction. Zadeh (1975), (1978) proposed
the following definitions:

Definition 1

Let A be a fuzzy set in the universe X with membership 72,(x)

interpreted as the compatibility of x €X with concept label A .

Let X7 be a variable with values in X and A acting as a fuzzy
restriction, R (X7), associated with X. Then the proposition "X7

is A" which translates into R (X7) = A associates a possibility
distribution , 7., in which X7 is postulated to be equal to R (X7).
The possibility distribution is 1T, = 724(x).

The relation between probability and possibility has been the
focus of Zadeh (1978), Dubois and Prade (1982). The
possibility-probability consistency principle is the foundation of
such a relationship. Based on this principle, Lueng (1980)
suggested deriving the probability (p,) of success based on fuzzy
information (T,) using the consistency principle as an evidence in
the framework of maximum entropy principle.  The important
advantage of this formulation lies in the transforming the fuzzy
information into a deterministic measure for creative design
situations.

2.2 The Maximum Entropy Formulation

There would be much controversy if the designer assigns, rather
than assesses, the probability of success in the concept phase to
quantify complexity. From the perspective of developments
discussed in the previous sections, it would appear that the
problem is simply deciding how to encode available information.
However, the problem is not that simple. It is indeed difficult to
answer fundamental questions about design knowledge. Often
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we can be fairly explicit about what we know in regard to a
specific question. However, this knowledge can be incomplete
and must be encoded in a possibility distribution before we can
make use of inferential methods. In Part I, the author
introduced the concept of entropy, with the average entropy is
given H=->plogp . The concept of entropy, and its

extended notions, is used to handle the issue of uncertainty.
Jaynes (1957) proposed the principle of maximum entropy, and
this principle has been employed in different disciplines, e.g.,
thermodynamics (Tribus 1961) and urban modeling (Wilson
1970). The maximum entropy principle addresses the
assignment of prior probabilities based on prior knowledge.
Jaynes (1957) showed that the least presumptuous way to assign
prior probability is by maximizing the entropy function in Eq.
(17) subject to the normalization constraint, Eq.(18). In this
meaning, Jaynes (1957) added: "The minimally prejudiced
probability distribution is that which maximizes entropy subject
to constraints supplied by the given information."

Maximum entropy is most beneficial when the knowledge is
characterized in average form. The formulation of maximum
entropy can be characterized as follows: a DP is a variable that
can have different possible nominal values in the concept stage,
but we do not know the value. However, we know the
possibilities, and we wish to find the probabilities. We would like
to generate a probability distribution which agrees with the
averages but are maximally non-committal with respect to
anything else.

In the following formulation we will treat the variable DP, as a
discrete variable that takes its value from the universal set of
DPs. In the continuous DP form, we need to substitute sums by
integrals and take the differences between discrete values.
Sometimes we are only concerned with a discretized version of
the continuous variable, i.e. DP,, DP, .., DP, and a discrete
formulation will fit.

As such, the problem is expressed mathematically by Leung
(1980) as follows:

d

Max. H=-> plog p (17)2
i=1

Subject To:

d

Yp-t (18)

i=1

"'70 is consistent with p" 19)

where p; is the probability that DP will have the value DP, DP,
0 0
€ |:DF{ -5 DR +E} and 4 is the number of discrete

intervals.

2 Note that the equations numbering starts with (17) to stress the logical flow
between Part I & Part II.

Copyright © 2000 by the Institute for Axiomatic Design

Proceedings of ICAD2000
First International Conference on Axiomatic Design
Cambridge, MA — June 21-23, 2000

The distribution which maximizes Eq. (17) is considered a
minimally prejudiced assignment in that it makes the distribution
maximally vague or general. The term 'minimally prejudiced’
implies that the distribution is so general and is maximally
influenced by new data. Eq. (19) indicates that at least one of
the assertions is true. In Eq. (20), 7is the possibility distribution
(the membership function) of the set. Zadeh (1978) suggested
the following definition of the consistency principle

d
z pz =« (20)
i-1

where a E[O,]] and near one.

Dubois and Prade (1982) proposed their own definition of the
consistency principle: a probability distribution (p) and a

possibility distribution (7) are consistent if VDP < DPs

7(DP)> p(DP) VDP e DP @1

Both definitions in Eq.s: (20) or (21) can replace Eq.(19).

Example

The surface finish of a transmission oil pan is a significant design
parameters for sealing. A design organization is considering
using a silicon elastomer as a possible replacement for the
current solid plastic seal. The use of silicon elastomers has very
attractive cost advantages over the current design. The design
organization has no experience with silicon applications, and they
would like to determine the nominal value of the surface finish
of the oil pan that will maximize the probability of success. The
Material Engineering Department was consulted and provided
the following possibility distribution of success at four possible
nominal discretized values, {DP,, DP, , DP; , DP,}, of the
surface finish

DR (050
DR,| |060
DR, [ |080
DP,| (100

The design organization would like to know the probability of
success at the following consistency levels o = 0.8509Q 095

Solution

We can use the GAMS to solve the program: Eq.(17), Eq.(18),
and Eq.(20) to obtain the probability distribution shown in Table
1.

Table 1: The probability distribution obtained from the
fuzzy data p

a Dist. DP1 DP2 DP3 | DP4

T 0.500 0.600 0.800 1.000

0.85 p 0.092 0.130 0.260 0.518
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0.90 p 0.047 0.079 0.226 0.649

0.95 p 0.013 0.030 0.156 0.800

The sum of the probability of success of the combined
4 0 0

discretized ranges Y DR , DP, e{DPi _E’Dpl +E} is
i-3

greater than 80% even at low consistency levels. The combined
range represents the design range, dr. If the system range is the

4

whole range, i.e, > DR, then the area P, is unity. Thus the
i=1

common range area, P, is the same as the design range. By
using the definition of complexity adopted in axiomatic design
(Eq.(3), Part I), the following probability of success (Table 2) and
complexity levels can be determined
The probability of success for a given functional requirement
(e.g. the sealing function) can be calculated when the respective
DP is selected (e.g. a compression-based gasket vs. a chemical
elastomer). Since an FRis a function of random

Table 2: The complexity levels of the probabilities

[ P Py P H(mzts)
0.85 0.778 1.000 0.778 0.251
0.90 0.875 1.000 0.875 0.134
0.95 0.956 1.000 0.956 0.045

variables, the probability of success, as well as complexity levels

can be found. Hence, H; can be calculated and substituted into

the formulation presented in Part I as follows:

1. Determine the discrete set values for all the DPs and P75 at
instance ‘4’ identified by the physical and process mappings.

2. Determine the membership function of the fuzzy set,
"successful", around these set values

3. Solve the discrete mathematical formulation [Eq.s: (17)-(18),
(20) or (21)] to obtain the probabilities of success

4. Substitute the probabilities in Eq. (3) to obtain Hj,

5. Repeat Steps: 1 through 4 for every instance, a DP, of the
functional structure, i.e. all feasible physical solution entities

6. Substitute H, in the integer programming formulation that
was presented in Part I, Eqs.:(6) -(10) or Eqgs: (11) through
16).

7. Solve to select the best solution entity.

In addition to the probability-consistency principle, there have
been many attempts to combine probabilistic and fuzzy measures
in a discrete framework. Zadeh(1968) first introduced the
entropy of a fuzzy set with respect to a discrete probabilistic as
the weighted Shannon entropy. Other frameworks to combine
probabilistic and fuzzy measures was suggested by Xie and
Bedrosian (1984), Pal and Pal (1992). We found that these
measures are hard to justify in our context.

3. THE CONCEPT SELECTION PROBLEM: A
FUZZY FORMULATION
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The above development to obtain an estimate for design
complexity from fuzzy data simplifies the effort to find a
solution to a fuzzy version of the integer programming
formulation of the selection in Part I. In this case information
content is quantified using deterministic quantities rather than
fuzzy quantities. Another approach is to fuzzify the integer
programming itself as a totality. The fuzzification of the integer
program can be carried out by fuzzyfing any combination of the
variables PI, IV, or AW. In the derivation below, the variables W
and AV were used as fuzzy concepts. Extension of the
development to include PI does not contribute to the
formulation clarity and it was dropped. Nevertheless, the reader
can follow the derivation here to include PI as a fuzzy concept
when desired.

The modeling of W and AW as fuzzy numbers allow more
realistic and robust representation of the imprecision and the
linguistic inexactness experienced in the selection process. In
this case, the 'function weight' rating can be viewed as a fuzzy

linguistic variable (denoted as W) for QFD's correlation factor and
the 'attribute weight' rating can be viewed as a fuzzy linguistic
vatiable for QFD's importance factor. Both factors take linguistic
values in a set of rating with elements modeled as fuzzy
numbers. A fuzzy number is a convex normalized piecewise
continuous fuzzy set on the real line. For computational
efficiency, Dubois and Prade (1979) suggested a fuzzy number
representation that depends on the identification of two
reference functions: L for left and R for right and the spreads

aandf, respectively. A fuzzy number A in LR representation

can be written as A = (t,a,ﬂ) LR and is defined by

t—X
" L(T) x=t
Hz(X) =

F{XTjj x>t

X € R, the set of real numbers. For example, the 'attribute
weight' variable (AIF) can be fuzzified when it assumes labels in
the set {low, medium, high}. Each value in this label set can be
modeled as a fuzzy number that is described by the parameteric

form in Eq. (22). Note that AW; = AV, e IR @ SP can only

be fuzzified by fuzzifying at least one of its arguments.

(22)

In the LR representation, if B= (S 7, T) LR then
A+ I§=(t+ sa+7,,[3+r)LR and
A-B= (t— Sa+ T,,B+}/)LR. For extended product, we have

;&.ﬁz(ts K+ ¥, P+ t) when

the following  rules: LR

o

ndB are both positive numbers;

andB
Br(ts-9-t, w- ), when AandBar both

> >
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negative numbers, and A B~ (tS -, - I/) LR when A

is positive and B is negative.

Let V—\vllk =(t‘ik7aik ’ﬂik)LR and A\Klj =(§7}/J 17'-]' )LR Let the

set of customer attributes, C, be partitioned into four subsets.
Let:(.\,<+’+>,(.‘,<+’+> c C, be the subset, with cardinality J<+’+> ,
where both VT/,k and AVT/J- are positive fuzzy numbers; C<_’_>,
C<_’_> < C, be the subset, with cardinality J<_’_> , where both
VT/,k and AVT/i are negative fuzzy numbers; C<+’_>,(.‘,<+’_> cC,
be the subset, with cardinality J<+'_>, where VT/,k is a positive
fuzzy number and AVT/i is a negative fuzzy number;
C<_’+> , C<_’+> < C be the subset, with cardinality J =) , where
VT/,k is a negative fuzzy number and AW is a positive fuzzy
c c<++>UC“ UC™ U and
J= 3 g gt N e The fuzzy integer

programming formulatlon can be written as

number. Then

_omK J, N Y,
Max O=%% ¥(W), (AW) {700 3
i=1k=1j=1 z HikY|k
=1 LR

Subject To
iYik'li'kzl Vi,i=1,2,..m DReF @4)
k=1
mKJ,
,:zlglgl( k)LR'(AW)LR ( X ’O’O)LR >

25)
m J
B3 (%), xo0 |
mu LR LR datum
m K my
Z 2 Hic Yy < [z Hi) (26)
i=1k=1 i=1 datum
m-1 m

Y Y, Z < iz U i=12..., m L
i:zlu:zmk 1 Zg < M1, iz g i=1 m- 1 )
u=23....m

Y, = 0ori (28)

By applying the LR mathematics, the sum of the LR fuzzy
number representation in each subset can be calculated as
follows

For j eC™) we have
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m K jedt++ m K jedt+*
22 stij,Zz )3 (¥k7j+§04k)i\(a
i=1k=1 j=1 i=1k=1 j=1
" 29)
m K jeatt
ZZ Z (|kfj+sjﬁk)\ﬂ<
i=1k=1 j=1 LR
For j 6C<_’_>we have
m K jedt= m K jet)
Zkzl thksij! ,ZZ,: Z (kfj+§ﬁk)i\(a
- ’<”> e (30)
m K jel\™
22 X (_tik7j +Sj o )ﬁ
i=1k=1 j=1 LR
For | 6C<+’ ) we have
m K jeat) m K jeat+)
DIDIEDR MR AIDIND (kaj - §04k)¥a
i=1k=1 j=1 i=1k=1 j=1
g (31)
m K
ZZ Z (tik7j —Sjﬁk)ﬁ
i=1k=1 j=1 LR
For j eC{*) we have
m K jeJ< +) m K jeJ<"+>
DIDINDN VS DIDINY (— Fij+§04k)¥a
i=1k=1 j=1 i=1k=1 j=1
m K jes) 62
ZZ Z ( |k71+51ﬁk)\ﬂ<
=lk=1 = LR

The overall objective function éin the LR format is given in
Eq.(33).
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m K J J _
2 2 2t Yo [ZWk AV\{) =(we, o) g (34)
1=1k=1j-1 = datum
m K '
Hy Y,
Egl tk ik Then by employing the subtraction rule of fuzzy numbers of LR

tepresentation and by using (O,O,QLR as a neutral element for

the addition operation we get constraint Eq.s: (36)-(38). The

m

<
o
X

overall program can be assembled by appending constraints Eq.s:
] (t” i+ S Gk )" (24),(26),(27), and (28) and is given by Eq.s: (35)-42.
(=)
m K jed Max.
22 Y| 2 (Sjﬂk + 7 )
i=1k=1 j=1 K J m K
[ ZZtiksijJ[ZZ Hy ﬁ)
jeats) (sjaik — Tk Tj)+ i=1k=1j=1 iZ1k=1
jeatn jeatr)
= (tik Tj —Sj di ) & ticyj +Sj i | =
~ j=1 =
6= - , -

I
NN
i
NN
m
(&N
-
L

m

o
o
NS
[

N

Il
=

T
-
=
I
N
3
~
[
- N = - N
—_— —_— —_— —_—

I
=

m

o
-
*

L
wn
=
=
|
=+
=
=
N
+
i
=

T
N
—_—
~—+
s
=
N7
=
_
3
~
N

0
AN
I
NN
i
AN

LR

[
o
-+

(33) je

T
N
N
=<
=
=

Il
=

An optimum and feasible physical configuration is the one that (35)

maximizes the mean of O while minimizing imprecision, that is,
minimizing the left and right spreads in its LR representation.
Using this reasoning, the problem can be formulated as a
deterministic non-linear {0,1} integer programming problem.
That is, the problem is transferred from a fuzzy non-linear {0,1} i i z‘]:t_ s Y,
integer program to a deterministic non-linear {0,1} integer ik =j Tk

: ; : N i=1k=1j=1 0
program with constraints detived from fuzzy quantities. In the m K —w> (36)
deterministic domain, the objective function can take a quotient >3 Hy Y
i=1k=1

form where the numerator is the mean of O while the
denominator is the sum (or the product) of the left and right
spreads of Eq.(33). The spread sum form of the objective was
adopted and is given in Eq.(35). In addition, the fuzzy constraint
in [Eq.(25)] should be converted to its deterministic form. Let
the datum design performance (the right hand side of Eq.(25)) be
given in Eq.(34).
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jeales) jea-o)
m K & (tik7j +5104k)— J;l (Sjﬂk + 'Ekfj)
v - -
L&Y ot fegte
S a; —-r-)+ (-r-— )
) (J - her )t 2 (e g a 37)
m K
> Hi Vi
i—1k=1
+w>0
je\]<""’> jeJ<"‘>
m K & (tikfj +Sjﬁk)+ 121 (5]04k - Tk?’j)
Y,
|:21k§1 K jeal jealr)
(Sjﬂk “ik71)+ _ (ﬁm —%ﬁ()
j=1 j=1
m K +&>0
2 2 Hi Y
i—1k=1
(38)
>Y =1 Vi,i=1,2,..m DReF (39)

_rznliHikYik <[% HiJ (40)

z zYikYL” st m—l, i?& U |=1,2,,m'1,

i=lu=L+i (41)
u=23...,m

Y, = 0orl (42)

The decision variables are the binary variables Y, which

indicates the physical component (DP,) that delivers the
functional requirement FR; while maximizing the customer
satisfaction, and minimizing uncertainty in the linguistic
formulation process as well as to design complexity. Minimizing
uncertainty increases the designer overall confidence in the
selected DPs and guards the selection process from being biased
toward solutions of questionable confidence. This transferred
deterministic formulation of the fuzzy selection problem allows
analysis to be conducted at the micro level, ie. the attributes
(parameters) of the fuzzy number. A macro level formulation
can be obtained when a fuzzy number is replaced by a crisp
score, e.g. its centroid or weighted average (Chen and Hwang
1992). The crisp score is a function of the left and right parts of
the membership function.

Solution to the program in Eq.s: (35)-(42) can be obtained by
branch-and-bound enumeration method. In our case, there are »

binary  vatiable, the Yj's which result in exactly

m
[12' = 2" different integer vector solution. However, as » gets
i=1

larger, it may be extremely difficult, computationally, to explicitly
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enumerate all integer solutions. However, with suitable selected
constraint criteria the exhaustive enumeration can be reduced by
eliminating sets of the vector solutions that does not fit the
criteria or result in improved solutions. These sets are implicitly
enumerated. The branch-and-bound method requires a solution
as a starting requirement which can be obtained by relaxing the
integrality constraints in Eq.(42) to
0<Yy <1Vii=1...mxk=1,... K. In this case, the integer
program is converted to a non-linear continuous problem since
the decision variables can assume any value in [0,1], inclusive.
The objective function becomes a quotient of two linear
functions and is subject to linear constraints. A program of this
type is called a 'fractional program' or a 'programming problem
with linear fractional functionals'. ‘The different cases of
solution treatment can be found in (Murty 1983). Solutions are
obtained after converting the fractional program to a linear
program with suitable transformation of variables. Once the
continuous solution is obtained, the branch-and-bound
enumeration method can be employed.

4. CONCLUSIONS

The concept selection problem can be solved using the integer
programming formulation proposed here. The selection criteria
include the complexity, customer satisfaction, and design value.
Design complexity is measured by information content using
Shannon entropy which in turn takes the probability of success
as arguments. In many situations, these probabilities can not be
quantified directly. The combined use of fuzzy concepts and
maximum entropy principle enable the inference of the
probability distribution from the fuzzy information. Once these
probabilities are found, they can be substituted in the entropy to
quantify complexity. The complexity is then is used in either: a
deterministic integer programming [Eq.s: (11)-(16) of Part I] or a
fuzzy formulation that can be transferred to the deterministic
domain after some manipulation [Eq.s: (35)-(42) of Part II]. The
result in either formulation is a selected system that has the
components to maximize customer satisfaction, value, and
simplicity in an assembly feasible configuration.
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