
Proceedings of ICAD2000
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000
ICAD027

Copyright © 2000 by the Institute for Axiomatic Design 278

ABSTRACT
This paper presents a new software design methodology

based on axiomatic design theory that incorporates object-
oriented programming. This methodology overcomes the
shortcomings of various software design strategies – extensive
software development and debugging times and the need for
extensive maintenance – since it is not heuristic and provides
basic principles for good software systems. A simple software
program is presented here as a case study following the
methodology. This case study shows the systematic nature of
axiomatic design that has been generalized and can be applied to
all different designs. The axiomatic design framework for
software overcomes many of the shortcomings of current
software design techniques: high maintenance costs, limited
reusability, the need for extensive debugging and testing, poor
documentation, and limited extensibility of the software, in
addition to high development cost of software. The methodology
presented in this paper has helped software engineers to improve
productivity and reliability.

Keywords: design, axioms, software, object-oriented

1 INTRODUCTION
Both the importance and high cost of software are well

recognized. The high cost is associated with the long software
development and debugging time, the need for maintenance, and
uncertain reliability. It is a labor-intensive business that is in need
of a systematic software engineering approach that ensures high
productivity and reliability of software systems a priori. The goals
of software engineering should be two: first to enhance
algorithmic efficiency so as to reduces execution time and the
other to enhance productivity so as to reduce the coding,
extension, and maintenance effort. As computer hardware rapidly
evolves and the need for large-scale software systems grows,
productivity is increasingly more important in software
engineering. The so-called “software crisis” is closely tied to
productivity of software development [Pressman, 1997].

Several design methodologies for software systems have been
proposed in the past. Two decades ago, structured methods, such
as structured design and structured analysis, were the most
popular idea [DeMarco, 1979]. As the requirement for productive
software systems has increased, the object-oriented method has

become the basic programming tool [Cox, 1986]. It emphasizes
the need to design software right during the early stages of
software development and the importance of modularity.
However, even with object-oriented methods, there are many
problems that intelligent software programmers face in
developing and maintaining software over its life-cycle. Although
there are several reasons for these difficulties, the main reason is
that the current software design methodology has a difficulty to
explain the logical criterions about good software design.
Modularity alone does not ensure good software, since even a set
of independent modules can couple software functions.

The concept of the AD framework has been successfully
applied to software design [Kim, et al, 1991][Do and Park,
1996][Do, 1997]. The basic idea used for the design and
development of software systems is exactly the same as that used
for hardware systems and components, and thus the integration
of software and hardware design becomes a straightforward
exercise.

The methodology presented in this paper for software design
and development uses both the AD framework and the object-
oriented method. It consists of three steps. First, it designs the
software system based on axiomatic design, i.e., decomposition of
FRs and DPs, the design matrix, and the modules as defined by
axiomatic design [Suh, 1990 and 2000]. Second, it represents the
software design using a full design matrix table and a flow
diagram, which provide a well-organized structure for software
development. Third, direct building the software code based on a
flow diagram using the object-oriented concept. This axiomatic
approach enhances software productivity since it provides the
roadmap for designers and developers of the software system and
eliminates functional coupling.

2 OBJECTED-ORIENTED SOFTWARE DESIGN
USING AXIOMATIC DESIGN1

Based on Axiomatic Design and object-oriented method, we
have developed a generic approach to software design. The
software system is called ‘Axiomatic Design of Object-Oriented
Software Systems (ADo-oSS)’ that can be used by any software
designers. ADo-oSS is a major new paradigm shift in the field of
software engineering. It combines the power of axiomatic design

1 This section is also presented in CIRP paper: Suh, N.P. and Do, S.H.,
“Axiomatic Design of Software Systems”, CIRP Annals, Vol. 49, 2000.

OBJECT-ORIENTED SOFTWARE DESIGN WITH AXIOMATIC DESIGN

Sung-Hee Do
Dosh@axiod.com

Vice President, Technology
Axiomatic Design Software, Inc.

221 N. Beacon St.
Boston, MA 02135-1943, U.S.A.

Nam P. Suh
Npsuh@mit.edu

The Ralph E. & Eloise Cross Professor
Department of Mechanical Engineering
Massachusetts Institute of Technology

77 Massachusetts Ave. Rm 3-173
Cambridge, MA 02139, U.S.A

Object-Oriented Software Design with Axiomatic Design
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 279

with the popular software programming methodology called
object-oriented programming technique (OOT) [Rumbaugh, et al,
1991][Booch, 1994]. The goal of ADo-oSS is to make the
software development a subject of science rather than an art and
thus reduce or eliminate the need for debugging and extensive
changes.

ADo-oSS utilizes the systematic nature of axiomatic design,
which can be generalized and applied to all different design tasks,
and the infrastructure created for object-oriented programming. It
overcomes many of the shortcomings of the current software
design techniques which result in high maintenance cost, limited
reusability, extensive need to debug and test, poor documentation,
and limited extensionality of the software. ADo-oSS overcomes
these shortcomings.

One of the final outputs of ADo-oSS is the system
architecture, which is represented by the Flow Diagram. The flow
diagram can be used in many different applications for a variety
of different purposes such as:

a. Improvement of the proposed design through identification
of coupled designs.

b. Diagnosis of the impending failure of a complex system.
c. Reduction of the service cost of maintaining machines and

systems.
d. Engineering change orders.
e. Job assignment and management of design tasks.
f. Management of distributed and collaborative design tasks.
g. Reusability and extensionality of software.

In axiomatic design a ‘module’ is defined as the row of
design matrix that yields the FR of the row when it is multiplied
by the corresponding DP (i.e., data). The AD framework ensures
that the modules are correctly defined and located in the right
place in the right order. A ‘V model for software’ shown in Figure.
1 [modified from El-Haik, 1999] will be used here to explain the
concept of axiomatic design of object-oriented software systems
(ADo-oSS). The first step is to design the software following the
top-down approach of axiomatic design, build the software
hierarchy, and then generate the full design matrix (i.e., design
matrix that shows the entire design hierarchy) to define modules.
The final step is to build the object-oriented model with a
bottom-up approach, following the AD flow diagram for the
designed system.

Axiomatic design of software can be implemented using any
software language. However, in the 1990’s most software is written
using an object-oriented programming language such as C++ or
Java. Therefore, axiomatic design of software is implemented
using object-oriented methodology.

To understand ADo-oSS, it is necessary to review the
definitions of the words used in OOT and their equivalent words
in axiomatic design. The fundamental construct for the object-
oriented method is the object2, which is equivalent to FRs. Object-
oriented design decomposes a system into objects. Objects
‘encapsulate‘ both data (equivalent to DPs), and method (equivalent
to relationship between FRi and DPi, i.e., module) in a single
entity. Object retains certain information on how to perform
certain operations, using the input provided by the data and the

2 Italicized words in this section have specific definitions.

method imbedded in the object. (In terms of axiomatic design,
this is equivalent to saying that an object is [FRi = Aij DPj].)

Customer
needs

Software
product

Define
modules

Define FRs

Map to DPs

Decompos
Identify
classes

Establish
interfaces

Coding with system
architecture

Build the software hierarchy

(Top-Down Approach)

Bu
ild

 th
e

ob
jec

t o
rie

nt
ed

 m
od

el

(B
ot

to
m

-U
p

Ap
pr

oa
ch

)

Identify leaves
(Full Design Matrix)

Figure 1: Axiomatic Design Process for Object-Oriented

Software System (The V model)

Object-orient design generally uses four definitions to
describe its operations: identity, classification, polymorphism and
relationship. Identity means that data – equivalent to DPs -- are
incorporated into specific objects. Objects are equivalent to a FR -
- with a specified [FRi = Aij DPj] relationship-- of axiomatic
design, where DPs are data or input and Aij is a method or a
relationship. In axiomatic design, the design equation explicitly
identifies the relationship between FRs and DPs. Classification
means that objects with the same data structure (attributes) and
behavior (operations or methods) are grouped into a class. The
object is represented as an instance of specific class in programming
languages. Therefore, all objects are instances of some classes. A
class represents a template for several objects and describes how
these objects are structured internally. Objects of the same class
have the same definition both for their operations and for their
information structure.

Sometimes an ‘Object’ is also called a tangible entity that
exhibits some well-defined ‘Behavior’. ‘Behavior’ is a special case
of FR. The relationship between ‘Objects’ and ‘Behavior’ may be
compared to the decomposition of FRs in the FR hierarchy of
axiomatic design. ‘Object’ is the ‘parent FR’ relative to ‘Behavior’
which is the ‘child FR’. That is, the highest FR among the two
layers of decomposed FRs is ‘Object’ and the children FRs of the
‘object FR’ are ‘Behavior’.

The distinction between ‘Super Class’, ‘Class’, ‘Object’ and
‘Behavior’ is necessary in OOT to deal with FRs at successive layers
of a system design. In OOT, Class represents an abstraction of
Objects and thus, is at the same level as an Object in the FR
hierarchy. However, Object is one level higher than Behavior in the
FR hierarchy. The use of these key words, while necessary in
OOT, adds unnecessary complexity when the results of axiomatic
design is to be combined with OOT. Therefore, we will modify
the use of these key words in OOT.

In ADo-oSS, the definitions used in OOT are slightly
modified. We will use one key word ‘Object’ to represent all levels
of FRs, i.e., Class, Object, and Behavior. ‘Objects with indices’
will be used in place of these three key words. For example, Class
or Object may be called Object i, which is equivalent to FRi, Behavior

Object-Oriented Software Design with Axiomatic Design
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 280

will be denoted as ‘Object ij’ to represent the next level FRs, FRij.
Conversely, the third level FRs will be denoted as Object ijk. Thus,
Object i, Object ij, and Object ijk are equivalent to FRi, FRij, and
FRijk, which are FRs at three successive levels of the FR
hierarchy.

To summarize, the equivalence between the terminology of
axiomatic design and those of OOT may be stated as:

• A FR can represent an Object.
• DP can be data or input for the Object, i.e., FR.
• The product of a module of the design matrix and DP can be

a method, i.e., FR = A*DP.
• Different levels of FRs are represented as Objects with

indices.

The Axiomatic Design of Object-Oriented Software System
(ADo-oSS) shown in Figure 1 involves the following steps:

a. Define FRs of the Software System
The first step in designing a software system is to determine

the customer attributes, in the customer domain, which the
software system must satisfy. Then, the functional requirements
(FRs) of the software in the functional domain and constraints
(Cs) are established to satisfy the customer needs.
b. Mapping between the Domains and the Independence of Software

Functions
The next step in axiomatic design is to map these FRs of the

functional domain into the physical domain by identifying the
design parameters (DPs). DPs are the ‘how's’ of the design that
satisfy specific FRs. DPs must be chosen to be consistent with the
constraints.
c. Decomposition of {FRs}, {DPs}, and {PVs}

The FRs, DPs, and PVs must be decomposed until the design
can be implemented without further decomposition. These
hierarchies of {FRs}, {DPs}, {PVs} and the corresponding
matrices represent the system architecture. The decomposition of
these vectors cannot be done by remaining in a single domain, but
can only be done through zigzagging between domains.
d. Definition of Modules – Full Design Matrix

One of the most important features for the AD framework is
the design matrix, which provides the relationships between the
FRs and DPs. In the case of software, the design matrix provides
two important bases in creating software. One important basis is
that each element in the design matrix can be a method (or
operation) in terms of the object-oriented method. The other
basis is that each row in the design matrix represents a module to
satisfy a specific FR when a given DP is provided. The off-
diagonal terms in the design matrix are important since the
sources of coupling are these off-diagonal terms.

It is important to construct the full design matrix based on
the leaf-level FR-DP-Aij to check for consistency of decisions
made during decomposition.
e. Identify objects, attributes, and operations

Since all the DPs in the design hierarchy are selected to
satisfy FRs, it is relatively easy to identify the objects. The leaf is
the lowest level Object in a given decomposition branch, but all
leaf-level objects may not be at the same level if they belong to
different decomposition branches. Once the Objects are defined,
the attributes (or data) – DPs -- and operations (or methods) –
products of module times DPs -- for the Object should be

defined to construct the object model. This activity should use the
full design matrix table.

The full design matrix with FRs and DPs can be translated
into the OOT structure as shown in Figure 2.

Pa
re

nt
 le

ve
l F

R
 (N

AM
E)

Le
af

 le
ve

l F
R

 (B
eh

av
io

r)

Leaf level DP
(DATA Structure)

Parent level DP

Design Matrix
Elements

(METHOD)

DATA Structure

NAME

METHOD

Mapping

(a) Full Design Matrix Table (b) Class Diagram
Figure 2: The correspondence between the full design

matrix and the OOT diagram

f. Establish interfaces by showing the relationships between objects and
operations
Most efforts are focused on this step in the object-oriented

method since the relationship is the key feature. The axiomatic
design methodology presented in this paper utilizes the off-
diagonal element in the design matrix as well as the diagonal
elements at all levels. A design matrix element represents a link or
association relationship between different FR branches that have
totally different behavior.

The sequence of software development begins at the lowest
level, which is defined as the leaves. To achieve the highest-level
FRs, which are the final outputs of the software, the development
of the system must begin from the inner-most modules shown in
the flow diagram that represent the lowest-level leaves. Then,
move to the next higher level modules (i.e., next innermost box)
following the sequence indicated by the system architecture; that
is, go from the innermost boxes to the outer most boxes. In short,
the software system can be developed in the following sequence:

a. Construct the core functions using all diagonal elements of
the design matrix.

b. Make a module for each leaf FR, following the sequence
given in the flow diagram that represents the system
architecture.

c. Combine the modules to generate the software system,
following the module junction diagram.

When this procedure is followed, the software developer can
reduce the coding time since the logical process reduces the
software construction into a routine operation.

3 EXAMPLE – SIMPLE DRAWING PROGRAM
In the preceding section, the basic concept for designing

software based on Axiomatic Design of Object-Oriented
Software Systems (ADo-oSS) was presented. In this section, a case
study involving simple drawing software designed based on ADo-
oSS will be presented.

a. Define FRs of the Software System

Object-Oriented Software Design with Axiomatic Design
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 281

Let us assume the customer attributes as follows:

Table 1. Customer Needs
CA1 We need software to draw a line or a rectangle or a circle

at a time

CA2 The software should work with mouse using push, drag,
and release action

Then, the desired first level functional requirements of the
software can be described in Table 2.

Table 2. First Level FRs
FR1 Define element
FR2 Specify drawing environment

b. Mapping between the Domains and the Independence of Software

Functions
The mapping for the first level can be derived as shown in

Table 3. The upper character in design matrix area represents
diagonal relationship and the lower character means off-diagonal
relationship.

Table 3. Mapping for the First Level
DP1: Element
characteristics

DP2: GUI with
window

FR1: Define element A 0
FR2: Specify drawing environment a B

c. Decomposition of {FRs}, {DPs}, and {PVs}

The entire decomposition information can be summarized as
follows. Figure 3 illustrates the entire design hierarchy.

Table 4. Second Level Decomposition
DP11: Line
characteristic

DP12:
Rectangle
characteristic

DP13: Circle
characteristic

FR11: Define line element C 0 0
FR12: Define rectangle element 0 D 0
FR13: Define circle element 0 0 E

DP21: Radio
buttons

DP22: Mouse
click
information

DP23: Drawing
area (ie.
Canvas)

FR21: Identify the drawing type F 0 0
FR22: Detect drawing location b G 0
FR23: Draw a element c 0 H

Table 5. Third Level Decomposition

DP111: Start
point

DP112: End
point

FR111: Define start I 0
FR112: Define end 0 J

DP121: Upper
left point

DP122: Lower
right point

FR121: Define upper left corner K 0
FR122: Define lower right corner 0 L

DP131: Center
point DP132: radius

FR131: Define center M 0
FR132: Define radius 0 N

DP211: Line
button

DP212:
Rectangle
button

DP213: Circle
button

FR211: Identify line O 0 0
FR212: Identify rectangle 0 P 0
FR213: Identify circle 0 0 Q

DP221: Event
for push

DP222: Event
for release

FR221: Detect mouse push R 0
FR222: Detect mouse release 0 S

Object
1

Object
11

Object
12

Object
13

Object
111

Object
112

Object
121

Object
122

Object
131

Object
132

Object
2

Object
21

Object
22

Object
23

Object2
11

Object
212

Object
221

Object
222

Object
213









J

I
0

0








L

K
0

0








N

M
0

0









S

R
0

0

















Q
P

O

00
00
00

















E
D

C

00
00
00

















Hc
Gb

F

0
0
00









Ba

A 0

Legend :
 Object i
 (=FRi=AijDPj)

Figure 3: The design hierarchy

d. Definition of Modules – Full Design Matrix
When the decomposition process finishes, inconsistency

check should be done to confirm the decomposition. The full
design matrix shown in Figure 4 indicates that the design has no
conflicts between hierarchy levels. By definition, each row in the
full design matrix represents a module to fulfill corresponding
FRs. For example, FR 23 (Draw a element) can only be satisfied if
all the DPs except DP221 and DP 222 are present.

D
P1

11
: S

ta
rt

po
in

t

D
P1

12
: E

nd
 p

oi
nt

D
P1

21
: U

pp
er

 le
ft

po
in

t

D
P1

22
: L

ow
er

 ri
gh

t p
oi

nt

D
P1

31
: C

en
te

r p
oi

nt

dP
13

2:
 R

ad
iu

s

D
P2

11
: L

in
e

bu
tto

n

D
P2

12
: R

ec
ta

ng
le

 b
ut

to
n

D
P2

13
: C

irc
le

 b
ut

to
n

D
P2

21
: E

ve
nt

 fo
r p

us
h

D
P2

22
: E

ve
nt

 fo
r r

el
ea

se

FR111: Define start I
FR112: Define end J
FR121: Define upper left corner K
FR122: Define lower right corner L
FR131: Define center M
FR132: Define radius N
FR211: Identify line O
FR212: Identify rectangle P
FR213: Identify circle Q
FR221: Detect mouse push X X X X X X R
FR222: Detect mouse release X X X X X X S

X X X X X X X X X H

FR22: Detect
drawing location
FR23: Draw the elementFR

2:
 S

pe
ci

fy

dr
aw

in
g

FR
1:

 D
ef

in
e

el
em

en
t

FR11: Define line
element
FR12: Define
rectangle element
FR13: Define
circle element

FR21: Identify the
drawing type

DP22:
Mouse
click

inform
ation

DP1: Element
characteristics DP2: GUI with window

D
P2

3:
 D

ra
w

in
g

ar
ea

DP11:
Line

charact
eristics

DP12:
Rectan

gle
charact
eristic

DP13:
Circle

charact
eristic

DP21:
Radio

buttons

On-diagonal element for the
intermediate or higher level

Off-diagonal element for the
intermediate or higher level

C

D

E

F

G

A

B

a

b

c

On-diagonal element for the
intermediate or higher level

Off-diagonal element for the
intermediate or higher level

Off-diagonal element for the leaf
or lower level

Figure 4: The full design matrix

e. Identify objects, attributes, and operations
Figure 5 shows how each design matrix elements were
transformed into programming terminology. Unlike the other
design cases, the mapping between physical domain and process
domain is pretty straightforward in software design case since the

Object-Oriented Software Design with Axiomatic Design
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 282

process variables for software are the real source codes. These
source codes represent each class in object-oriented programming
package. Whenever the software designer categorizes module
groups as classes using the full design matrix, they define the

process variables for corresponded design hierarchy levels.
Designers can assume that the design matrixes for DP/PV
mapping are identical with those for FR/DP.

D
P1

11
: S

ta
rt

po
in

t

D
P1

12
: E

nd
 p

oi
nt

D
P1

21
: U

pp
er

 le
ft

po
in

t

D
P1

22
: L

ow
er

 ri
gh

t p
oi

nt

D
P1

31
: C

en
te

r p
oi

nt

dP
13

2:
 R

ad
iu

s

D
P2

11
: L

in
e

bu
tto

n

D
P2

12
: R

ec
ta

ng
le

 b
ut

to
n

D
P2

13
: C

irc
le

 b
ut

to
n

D
P2

21
: E

ve
nt

 fo
r p

us
h

D
P2

22
: E

ve
nt

 fo
r r

el
ea

se

FR111: Define start I:setSt
art()

FR112: Define end
J:setEn

d()

FR121: Define upper left corner
K:set

ULCor
ner()

FR122: Define lower right corner
L:setL
RCorn

er()

FR131: Define center M:setC
enter()

FR132: Define radius
N:setR
adius()

FR211: Identify line O:addL
ine()

FR212: Identify rectangle
P:addR
ectangl

e()

FR213: Identify circle Q:add
Circle()

FR221: Detect mouse push Messa
ge call

I

Messa
ge call

K

Messa
ge call

M

isLineS
elected

()

isRecta
ngleSel
ected()

isCircle
Selecte

d()

R:mou
sePres
sed()

FR222: Detect mouse release
Messa
ge call

J

Messa
ge call

L

Messa
ge call

N

isLineS
elected

()

isRecta
ngleSel
ected()

isCircle
Selecte

d()

S:mou
seRele
ased()

getStar
t()

getEnd
()

getULC
orner()

getLRC
orner()

getCen
ter()

getRad
ius()

isLineS
elected

()

isRecta
ngleSel
ected()

isCircle
Selecte

d()
H:upda

te()

DP22: Mouse
click

information

DP1: Element characteristics DP2: GUI with window

D
P2

3:
 D

ra
w

in
g

ar
ea

DP11: Line
characteristics

DP12:
Rectangle

characteristic
DP13: Circle
characteristic DP21: Radio buttons

FR22: Detect
drawing location

FR23: Draw the element

FR
2:

 S
pe

ci
fy

 d
ra

w
in

g
en

vi
ro

nm
en

t
FR

1:
 D

ef
in

e
el

em
en

t

FR11: Define line
element

FR12: Define
rectangle element

FR13: Define
circle element

FR21: Identify the
drawing type

On-diagonal element for the
intermediate or higher level

Off-diagonal element for the
intermediate or higher level

C:LineConstructor

D:Rectangle Constructor

E:CircleConstructor

F:CreateButtons()

G:MouseListener

A:Element Constructor

B: Window constructor

a: * constructor

b

c

Off-diagonal element for the leaf
or lower level

Figure 5: The method representation

f. Establish interfaces by showing the relationships between objects and

operations
Figure 5 represents the additional information for FR/DP
mapping. The same rule can be introduced to represent the
interface information such as aggregation, generalization and so
forth in the design matrix for DP/PV mapping. The flow
diagram in Figure 6 guides through the developing process
showing how the software can be programmed sequentially.

Table 6 categorizes the classes, attributes, and operations from
the Figure 5 using this mapping process. The first row in table 6
represents the PV. The sequences in Table 6 i.e. left to right, also
show the programming sequences based on the flow diagram.
Figure 7 shows classes diagram for this example based on the
matrix for DP/PV mapping.

Proceedings of ICAD2000
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000
ICAD027

Copyright © 2000 by the Institute for Axiomatic Design 283

M2: Specify drawing environmentM1: Define element

M13: Define circle

M12: Define rectangle

M11: Define line

M111:Define start

M112: Define end
S

M121:Define ul corner

M122: Define lr corner
S

M131:Define center

M132: Define radius
S

S

M21: Identify the drawing type

M211: Identify line

M212: Idenfity rectangle S

M213: Identify circle

M22: Detect drawing location

M221:Detect mouse push

M222: Detect mouse release
S

C

M23: Draw the element

S

C

Figure 6: Flow diagram for the simple drawing example

Table 6. Class Identification
PVs

Name
DP111 Point start DP121 Point upper_left DP131 Point center DP11 Line l DP211 Radiobutton line
DP112 Point end DP122 Point lower_right DP132 Double radius DP12 Rectangle r DP212 Radiobutton rectangle

DP13 Circle c DP213 Radiobutton circle
DP22 Mouse m
DP23 Canvas c

C Line() D Rectangle() E Center() A Element() B Window() a Element*()
I setStart() K setULCorner() M setCenter() F CreateButtons() getStart()
J setEnd() L setLRCorner() N setRadius() O addLine() getEnd()

P addRectangle getULCorner()
Q addCircle() getLRCorner()
G implement MouseLisner getCenter()
R mousePresed() getRadius()
S mouseReleased() assignLine()
H draw() assignRectangle()
b/c isLineSelected() assignCircle()
b/c isRectangleSelected()
b/c isCircleSelected()

Element_*

Class for Object 1*

Element_d

Class for Object 1

Window_d

Class for Object 2

Rectangle_d

Class for Object 12

Circle_d

Class for Object 13

Attribute

Method

Line_d

Class for Object 11

Point Double

RadioButton

Mouse

Canvas
Line_d
start
end

setStart()
setEnd()

Rectangle_d
upper_left
lower_right

setULCorner()
setLRcorner()

Circle_d
center
radius

setCenter()
setRadius()

Element_d
line

rectangle
circle

Window_d
line

rectangle
circle

canvas
CreateButtons()

addLine()
addRectangle()

addCircle()
mousePresed()

mouseReleased()
Draw()

isLineSelected()
isRectangleSelected()

isCircleSelected()

Element_*

getStart()
getEnd()

getULCorner()
getLRCorner()

getCenter()
assignLine()

assignRectangle()
assignCircle()

Main

implementation

Legend:
Classes provided

by specific
languages
(i.e JAVA)

Figure 7: Object-Oriented model generation

4 CONCLUSION
The AD framework has been applied to the design and

development of an object-oriented software system. The current
software development methodologies demand that each individual
module be independent. However, modularity does not mean
functional independence, and therefore the existing
methodologies do not provide a means to achieve the
independence of functional requirements. To have good
software, the relationship between the independent modules must
be designed to make them work effectively and explicitly. The
AD framework supplies a method to overcome these difficulties
systematically and ensures that the modules are in the right place
in the right order, when the modules are established as the row of
design matrix. The axiomatic design methodology for software
development can help software engineers and programmers to
develop effective and reliable software systems quickly.

5 REFERENCES

[1] Booch G., Object-Oriented Analysis and Design with Applications,
2th ed., California: The Benjamin/Cummings Publishing
Company, Inc., 1994.

[2] Cox B.J., Object-Oriented Programming, Reading, Massachusetts,
Addison-Wesley, 1986

Object-Oriented Software Design with Axiomatic Design
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 284

[3] DeMarco T., Structural Analysis and System Specification, New
Jersey: Prentice Hall, 1979.

[4] Do S.H. and Park G.J., “Application of Design Axioms for
Glass-Bulb Design and Software Development for Design
Automation,” 3rd CIRP Workshop on Design and Implementation
of Intelligent Manufacturing, pp. 119-126, June 19-22, Tokyo,
Japan, 1996. {also published in Transactions of the Korean Society
of Mechanical Engineers, Vol. 20, No. 4 , 1996 (in Korean)}

[5] Do S.H., “Application of Design Axioms to the Design for
Manufacturability for the Television Glass Bulb,” Ph. D.
Thesis, Hanyang University, Seoul, Korea, 1997.

[6] El-Haik B., “The Integration of Axiomatic Design in the
Engineering Design Process”, 11th Annual RMSL Workshop,
May 12, Detroit, U.S.A, 1999.

[7] Kim S.J., Suh N.P., and Kim S.K., “Design of software
systems based on axiomatic design,” Annals of the CIRP, Vol.
40, No. 1, pp. 165-170, 1991 {also Robotics & Computer-
Integrated Manufacturing, 3:149-162, 1992}.

[8] Pressman R.S., Software Engineering, A Practitioner’s Approach,
4th ed., New York: McGraw Hill, 1997.

[9] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and
Lorensen W., Object-Oriented Modeling and Design, New Jersey:
Prentice Hall, 1991.

[10] Suh N.P., The Principles of Design, New York: Oxford
University Press, 1990.

[11] Suh N.P., Axiomatic Design: Advances and Applications, New
York: Oxford University Press, 2000 (In preparation).

