
Proceedings of ICAD2000
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000
ICAD062

Copyright © 2000 by the Institute for Axiomatic Design 285

ABSTRACT
Software development projects require the translation of

good abstract ideas into clear design specifications. Subsequent
delivery of the software product in moderate-to-large scale
projects requires effective project planning and assignments for a
team of software engineers to meet deadlines in the presence of
resource constraints. This paper explores the hypothesis that
axiomatic design may be integrated into the process of project
planning and task assignment for software development teams. An
approach to mapping functional requirements and design
parameters into tasks of a project plan Gantt chart is described.
Effects of transferring the relationships of design matrices to task
links are discussed. The result is considered by the authors to be a
productive integration facilitating the rapid delivery of product by
software engineering teams.

Keywords: Axiomatic Design, Project Planning, Software
Development, Gantt Charts, Resource Management.

1 INTRODUCTION
Axiomatic design provides a systematic approach for

generating detailed specifications for software product design.1,2
Using this approach, details are derived from what often is
originally nothing more than abstract ideas in the minds of
creative individuals. As a consequence of applied axiomatic
design, functional requirements (FRs), design parameters (DPs)
and design matrices representing the design interactions between
elements are articulated. Knowing such details is an essential step
in the definition of software products, but it is a prescriptive step.
Software developers interested in delivering the product must still
implement the design successfully.

Simple projects may be implemented without well-defined
organization. However, software development involving
numerous programmers, quality assurance protocols, rigorous
documentation, collaboration with supplemental technologies,
consultants and support personnel, requires organization of
collaborative efforts and resource allocations. Optimizing the
assignments of project sub-components and workflow
management can make significant difference in the delivery time
of software design. In the competition to be first to market, the
design and execution of a development plan can be the difference
between success and failure to deliver in a timely fashion.

Implementation of software design benefits from
decomposition much the same as the design process itself. The
process of breaking up the implementation of a design into
smaller steps (i.e., "tasks" in project planning) is as essential to
executing a design as it is to the design's creation.

Not all software engineers are alike. Programmers differ in
experience, speed, breadth of knowledge and composition of skill
sets. Management of human resources is essential to optimized
product delivery times. Identifying the tasks necessary to fulfill a
design and matching the best available human resources to those
tasks is the responsibility of the software project manager.
Furthermore, time estimates for product delivery and
intermediate milestones can be accomplished using such task lists.
The reality of software engineering includes the requirement to
identify tasks and make appropriate assignments for a team of
diverse software engineers.

Time constraints for software development are growing in
importance. Optimized software development life cycles require
attention to project planning. Interdependencies between tasks of
a project plan often create rate-limiting sequences in the overall
plan. The least possible time to delivery is must be known for
purposes of marketing, financing and barriers to competition in
addition to human resource management.

Currently, project planning in software development involves
the identification of modules in the software architecture that
cluster related elements in the software design. The same
modularity that promises interchangeable parts and component
reuse serves as a natural partitioning for distributing the tasks
essential to the product's development. Tasks are assigned in a
way that makes sense of the fit for at least most of the
engineering team members.

Typically project planning involves some degree of
identification of dependencies between tasks identified in the
project plan. However, without a systematic approach to the
explication of dependencies, omitted links are likely. Most project
planning understates the dependencies inherently present in a
project.

It is the author's suspicion that this could have a lot to do
with why so many project plans fall apart as the project ensues. As
the project approaches its completion, the timing and order of
tasks gets further and further from the plan's representation and
often results in plan abandonment.

INTEGRATION OF AXIOMATIC DESIGN AND PROJECT PLANNING

Duane Steward, DVM, MSIE, PhD
duane@mit.edu

Clinical Decision Making Group, Laboratory for
Computer Science, Massachusetts Institute of

Technology, Cambridge, Massachusetts

Derrick Tate, PhD
dtate@axiod.com

Axiomatic Design Software, Inc.
221 N. Beacon St.

Boston, MA 02135 USA
+1 (617) 746-9267

Integration of Axiomatic Design and Project Planning
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 286

Nonetheless, time estimates for intermediate milestones
provide a mechanism for monitoring progress. Of course,
knowing when to expect completed milestones can enable
adaptive measures midstream in the development process, e.g.,
additional software engineers may be hired if numerous
intermediate deadlines are missed. A good project plan, consisting
of clearly articulated tasks, assigned to specific development team
members with time to completion estimates is thus key to project
planning and adaptive execution of design implementation.

1.1 HYPOTHESIS
The functional requirement hierarchy of the axiomatic design

paradigm may be viewed as a precursor to a functional
specification in software development. The hierarchy is inherently
an outline of functionality consisting of short descriptors. If each
of these descriptors is explained in a short paragraph, a functional
specification results. This result will contain all necessary and
sufficient details of the design to the same degree that the
functional requirements contain the necessary and sufficient list
of requirements.

 Similarly, the design parameters of an axiomatic design
approach map into a design specification document. Each briefly
described parameter of design can be expanded into a description
of the signature of the software module, package, class object,
method or property represented in the design parameter. Coupled
with a description of justification for interactions asserted in the
design matrix, the result should be adequate to hand off to
programming staff or contractors. To the degree that the design
parameters map to the functional requirements, the code delivered
by programmers should fulfill the expectations represented in the
functional specification.

Applied axiomatic design, then, should be able to produce
specification documents that fit the classic paradigm of Quality
Assurance allowing QA staff to evaluate the product against the
functional specifications, or more fundamentally, against the
articulated user needs or functional requirements list.

This hypothesis is being put to the test in a production
environment of an Internet startup company. The company's
goals involved an object-oriented programming approach to the
design and implementation of a novel product. An ambitious goal
for release of a multi-tier software product in six months was
adopted. This was made possible in part by the details rapidly
generated by applying axiomatic design. At this writing, prototype
software has been completed to validate assumptions and expose
deficiencies. Functional and design specification document writing
will ensue. If functional specification and design specification
documents suitable for QA can be constructed from these
elements of axiomatic design, the above hypothesis will be
supported. If an operational project plan can be derived, these
assertions will be further strengthened. Such success will at least
establish the feasibility for this approach to design. Sharing the
early experience in application of this design paradigm in project
planning and thus testing the hypothesis is the intent of this
paper.

At this time, a project plan constructed from the DPs is in
place guiding the work-in-progress. The project plan is expected
to be more viable as a result of the extensive linking between
tasks captured by the inclusion of design matrix relationships. The
level of detail in functional requirements early in product

development and the abundance of links in the decoupled design
have had interesting effects on the overall project. The level of
detail has surprised collaborators and consultants brought into the
project. The abundance of links has made resource allocation
more difficult to level and squeeze into minimal time frames.
However, the plan is expected to persist where other plans
become obsolete before the project is complete.

2 METHODS
The first author derived FRs from the company's business

plan and interviews with domain experts. Matching DPs and
Design Matrices were constructed in adherence with the roadmap
described by Tate3,4. Particular attention was paid to deriving
physical design parameters that, for each FR, answered the
question, "By what means will this Functional Requirement be
fulfilled?" For instance, "a web page with pull down selection list"
was asserted as the design parameter for "provide a means for the
user to select one of multiple [options]." Design matrices were
constructed with particular attention to design interactions, e.g., a
change in the ith DP does or does not have an impact on the kth
FR. The resulting DPs were directly input into the Gantt chart of
a project plan as individual tasks. The interactions present in the
design matrices were then represented as links between tasks in
the Gantt chart.

By adding time estimates to the individual tasks and making
assumptions about the human resources (i.e., size of
programming staff), the Gantt chart takes on a common
appearance of tasks distributed over time with internal
dependencies.

The nature of the hierarchical "zig-zag" derivation of FRs
and DPs is such that multiple DPs may be physically integrated
into a single component. The meaning in this relationship is that
the physical component described in the DP is being used to
fulfill more than one FR. However, it would be erroneous to list a
task creating that component more than once in the project plan.
Therefore, the task list in the project plan must be consolidated to
remove redundant listings.

If the FR/DP decomposition is carried out to a significant
degree, resource assignments may be rather granular in size and
scope. Planning may benefit from clustering tasks so that one
person can work on a number of related tasks to improve
coherence in design and implementation. So, DPs may be
grouped into related families. Members of these groups may have
explicit ties in the design matrix or heuristic ties not explicitly
represented. Relationships that do not involve dependencies (e.g.,
shared technology or resource requirements) may be the basis for
such clustering.

One very relevant example of relatedness useful for
clustering is the case where two or more components involve the
same programming specialty, e.g., XML programming or dynamic
HTML. They are related by common technology, but not
dependent upon one another. In the application layer of a multi-
tier Internet architecture, some components downstream may be
on parallel paths of a dependency tree making it possible to assign
them to different programmers after the common prerequisite is
completed. However, the relatedness of the components may beg
for assignment to the same programmer under a rationale of
continuity.

Integration of Axiomatic Design and Project Planning
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 287

The outcome of consolidation and clustering is a list of tasks
for the project plan with links. The one-to-one mapping of FRs to
DPs, however, is missing.

3 RESULTS
Ninety-seven FR/DP pairs in a tree with 5 primary branches

at the root of each hierarchy were transformed into tasks of a
project plan. All the DPs were first pasted as tasks into a project
planning softwareα without alteration. All interactions captured by
the Design Matrix analysis were represented as links between
tasks. The list of tasks was reviewed for redundancy and
duplicates deleted being careful to preserve all dependency links
in the single remaining task representation. Tasks were thereafter
clustered into groups according to similar topic domains and skills
required for coding.

The result was an inadequate representation of single unit
software development because it lacked a breakdown of each
unit's development into functional/design specification, code
implementation, unit testing and quality assurance (QA)

α Microsoft Project 2000

evaluation. This was easily remedied by decomposing the original
single tasks into sets of subtasks properly representing these
stages of unit development.

An additional expansion of tasks into subtasks occurred
where junior programmers needed the single task broken down
into a migration path from simple to sophisticated fulfillment.
These localized migration paths were not required to fulfill the
FR/DP pair decomposition or Design Matrix analysis. However,
they are a useful strategy for enabling senior programming staff
to clarify expectations and monitor progress of junior staff.

The outcome of consolidation, clustering and expansion was
a list of 275 tasks organized into 40 groups. Time estimates were
established for each task. This enabled the computation of the
estimated total person-hours required for the project. At this
point, the model was used for rough estimates in strategic
planning for selecting a release date and staffing estimates for
gross budget projections.

The granularity of the tasks ranged from simple properties
of software objects to loosely defined modules. Only components
that represented future development pathways were allowed to
remain loosely defined. Most DPs were in terms of specific web

Integration of Axiomatic Design and Project Planning
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 288

pages, specific application layer objects in the development object
model, encapsulated methods within specified objects or database
table schemas and sub-schemas. Properties of objects (e.g., a
Boolean field to serve as a status flag) were rolled into task
clusters with larger related entities. Because they represent such a
fine granularity, they were not given independent development
cycles (i.e., specification documents/code implementation/QA).

A Gantt chart was generated using the project planning
software. Human resources were assigned to the tasks and
resource leveling applied (distributing the tasks of the Gantt chart
over time under a constraint that no resource may be used more
than 100% in any day). Resource leveling distributes assignments
of the same resource over time giving priority in accordance with
dependency links and manually assigned scalar values. Design
Matrix interactions represented as links between tasks nearly
eliminate the need to assign scalar values.

Specific staff were assigned to tasks in the project plan.
Overall project time estimates were made. Time estimates for
individual tasks on the critical path sum to the shortest possible
time to project completion. If this interval was not acceptable,
additional staff were added (at least on paper for planning
purposes). The assignments made to individual programmers were
compared to evaluate and evenly distribute the workload
according to estimated time assumptions. At this point, software
elements that might otherwise be developed independently
became bound by sharing the same human resource. Revisions
were made to overall project completion estimates based on these
realities of specific staff assignments.

Milestones were sought for the purposes of reporting
progress to other company departments. Categorical analyses of
FRs were the most intuitive way and thus preferred way to choose
a logical sequence of milestones. FRs of highest priority in the
eyes of executive officers and marketing strategists could easily be
identified. However, the project plan no longer was a direct
mapping of the FRs since the project plan was structured by
components. Identification of milestones in the project plan
marked by the completion of tasks were not a clear and direct
representation of priorities in terms of FRs. With some auditing
of the transformation of original DPs into project plan tasks a
coherent sequence of milestones was identified (better done as
part of the process than after the fact).

Identified milestones were grouped according to some
approximation of the priority expressed with FRs. The first of
these were earmarked as a first prototype. This was followed by a
sequence of additional milestones representing groups of
additional features. Dates for expected milestone arrivals were
easily extracted from the plan based upon the completion of the
last task in each group.

It was anticipated that the milestones would naturally fall into
proper order as a result of this methodology. However, it turned
out to be difficult to arrange the project plan in such a way that
these tasks were accomplished in an order consistent with their
priority. The reason for this will be discussed shortly.

4 DISCUSSION
The resulting milestones were grouped into a bundle of

essential features and regarded as a fundamental prototype that
would serve to inform the process of writing functional and

design specifications. Subsequent development was thereby
guided by both prototype experience and documented
expectations. Projections, budgeting, staff recruiting and
assignments were dealt with in terms of these experiences and
expectations. Perhaps the greatest advantage of identified
milestones was the ability to focus and identify events that would
mark satisfactory progress of the project in terms that were
closely related to the FRs identified earlier in the development
process.

The most remarkable features of the application of
axiomatic design to the construction of project plans are the early
delivery of detail in identified tasks and the extent of interactions
captured as links between tasks. As the startup company wrestled
with decisions between outsourcing and in-house development,
sharing design progress to-date with potential collaborators, they
frequently received feedback that consultants were not
accustomed to so much detail at such an early stage of
development. The level of detail in the FR/DP hierarchies made
it easy to lay out an equally detailed project plan. The links
between tasks were numerous.

With so many links between tasks in the project plan,
resource leveling and minimization of overall project completion
time becomes an interesting challenge. This is especially true if
the milestones identified as they were here are to be achieved in
the order of priority. The dependencies between tasks tend to
increase the project completion time. These dependencies are a
result of both design matrix analysis and coherent human
resource assignments where the staff size is small with a few key
people. One general approach to reducing project time is to assign
more personnel. Additional personnel may be assigned tasks that
either have no dependencies or depend only on tasks that can be
completed early in the project plan. These tasks tend to involve
functionality that spin-off the core ambitions of the project.
Although these activities are easy to distribute among new staff
additions, they do not help accomplish the more essential features
before the less essential features. Hence, the additional staff only
enable an earlier completion of the less essential tasks. A higher
degree of relatedness between tasks results in a project plan with
milestones that may not fall into the same order over time as that
derived from perspectives uninformed by the design matrix of
interactions. No amount of additional staff will reconcile the
order of milestone achievement so long as the dependencies exist
(in a decoupled design).

It is the authors' suspicion that this approach to project
planning results in dependency integration earlier than in than less
systematic alternatives for identification of task links. Perhaps this
offers an explanation why so many project plans fail to remain
viable once the project gets well under way. The dependencies are
discovered along the way in those cases and the need to revise the
project plan becomes overwhelming in the face of deadlines for
delivery. Where the dependencies are accurately captured and
factored into project planning this early in the project
development cycle, we expect the plan to be more robust in the
face of realization.

It should be noted that the tasks of a project plan are derived
from the DPs and not the FRs of the axiomatic design paradigm.
In this approach, design parameters map to the tasks of the
project plan. While FRs are not very definitive for a project plan,
DPs are. Engineers look to the project plan for what they need to

Integration of Axiomatic Design and Project Planning
First International Conference on Axiomatic Design

Cambridge, MA – June 21-23, 2000

Copyright © 2000 by the Institute for Axiomatic Design 289

accomplish next, to monitor the expected progress over time or
ascertain dependencies. Descriptions of functionality do not serve
this purpose, but the assertions regarding how those
functionalities will be fulfilled do. That is precisely what a design
parameter is in axiomatic design. In this perspective a hierarchy of
design parameters might be loaded into a project plan as tasks
along with the dependencies as an early model for project
completion, resource requirements enumeration and analysis. Two
grids are suggested. One grid would be the FR/DP pairs mapped
to skill sets required. Another grid possible is one mapping the
FR/DP pairs to personnel already in the company to reveal how
much of the project could be accomplished with in-house skill
sets or otherwise require outside contractors.

When developing a novel product with no precursor to
inform the design process, it is difficult to develop without
prototyping. Prototyping helps to define issues and expose
oversight as well as prove the concept. DP's, and to some degree,
FR's may be altered by the prototype results. It is not likely that
the intuition prior to prototype will describe accurately the final
details of the product. Following the prototype construction, FRs
and DPs may need to be reviewed and altered in light of the
things learned.

A final limitation in this approach to project planning is that
the plan is only as good as the assumptions made in the axiomatic
design process. Omissions and erroneous assumptions made in
regard to functional requirements and interactions are not
exposed or compensated for by project planning derived
therefrom.

Before leaving the discussion it is worth pointing out that
DPs could arguably be implemented in an order that differed
from the partial order dictated by the dependencies embodied in
design matrices. To the degree that the design principles are
adhered to, the design matrix will represent a partial order for
design of components. Thereafter, any order of implementation
that conforms to the design should work without many
interactions between design steps, but which have no interaction
outside of design, i.e., during implementation. While this is true,
managing an engineering staff with two or more project plans
(one for design including functional or design specification
writing) was not done. It was decided that for this project, it
would be an overwhelming amount of detail to maintain and its
significance minimal.

It is also acknowledged that this approach to project planning
has shown merit in a specific case of rapid software development.
Other domains may produce alternate results.

5 CONCLUSION
In this project it has been shown that design parameters of

Axiomatic Design may in fact be used to originate a project plan.
This plan is being used actively in software development. The
effects of doing so include an early identification of dependencies
that result in a plan that does not respond to the addition of staff
as expected. Further evaluation is in order to substantiate the
merits in extended domains.

6 ACKNOWLEDGMENTS
This project has been supported by AssetStream Corporation

in the course of their initial software product development as an
Internet provider of charitable giving services.

7 REFERENCES

1 S.-J. Kim, N.P. Suh, and S.-G. Kim, "Design of Software Systems
Based on Axiomatic Design," Robotics & Computer-Integrated
Manufacturing, Vol. 8, No. 4, 1991, pp. 243-255.

2 Suh, N.P. (1990) "The Principles of Design." Oxford University
Press, New York.

3 Tate D., Nordlund M., "A Design Process Roadmap as a
General Tool for Structuring and Supporting Design Activities",
Proceedings of the Second World Conference on Integrated
Design and Process Technology (IDPT-Vol. 3), Society for Design
and Process Science, Austin, TX, pp. 97-104, Dec. 1-4, 1996.

4 Tate, D. (1999) "A Roadmap for Decomposition: Activities,
Theories, and Tools for System Design." Ph.D. Thesis, Dept. of
Engineering, Massachusetts Institute of Technology, Cambridge,
MA USA. February 1999.

