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ABSTRACT 

The principle of partitioning tasks among product 
development teams so as to minimize the cost of interactions 
across design teams is an important characteristic of complex 
engineered systems. Although there is growing literature that deals 
with the proper organization of product development tasks, little 
attention is given to rigorous modeling of the phenomena. To fill 
the void, we present a mathematical formulation for the problem. 
Two main issues are addressed by the model: 1) how to specify task 
dependencies, and 2) how to optimally partition the tasks among a 
number of teams. In this paper, we suggest to utilize the 'design 
matrix' representation of Axiomatic Design as a means for 
specifying tasks and their associated attributes. The developed 
model and solution technique can be applied to various scales of 
the product design and development process, and may open a 
variety of interesting questions. 

1 INTRODUCTION 

Product development processes are generally divided up into 
tasks and subtasks. These segments may then be assigned 
("partitioned") to multifunctional design teams [4, 9, 10, 13, 16, 
17]. A multifunctional team consists of a group of individuals 
from different disciplines working closely together toward the 
development of the product. Problem solving tends to be more 
rapid when individuals have face-to-face contact [3]. By working 
together, individuals also learn to be aware of and understand the 
problems of other team members. As a consequence, a sense of 
group cohesion is developed, which helps progress the team's 
objectives.  

Design teams can achieve larger gains from specialization when 
they have fewer tasks to design. Thus, to realize specialization 
economies, the firm divides the work of development by 
partitioning tasks into several teams. For instance, there are 
hundreds of teams in the firms that develop various parts of the 
Saturn1 car and the Toyota Crown [4]. Proper partitioning of 
design development tasks into "independent" teams minimizes the 
need for problem-solving across teams, and builds bridges between 
tasks anticipated to require high problem-solving interaction by 
assigning them to the same team. Minimizing the between-task 
problem solving can have important effects on product 

                                                                 
1 Saturn is a subsidiary company of General Motors established in the 

early 1980's for the purpose of competing with Japanese imported cars into 
the American market.  

development performance, particularly since the core function of 
innovation projects is precisely problem solving and the generation 
of new knowledge [17]. 

To illustrate the partitioning problem consider the 
development of a certain car model, which includes four tasks: 
developing the engine, instrumentation2, dashboard, and power 
train system. There are several ways that these four tasks can be 
assigned to two design teams. Three partitions are considered (see 
Figure 1): 1) assigning the development tasks of the engine and 
instrumentation to one team, and assigning the development tasks 
of the dashboard and power train system to a second team; 2) 
assigning the development tasks of the engine and power train 
system to one team, and assigning the development tasks of the 
instrumentation and dashboard to a second team; or 3) assigning 
the development tasks of the engine and dashboard to one team, 
and assigning the development tasks of the instrumentation and 
power train system to a second team. The second partitioning 
appears more efficient than the other two in terms of the needed 
cross-boundary problem-solving that is required to carry out the 
development project. This is due to the strong problem-solving 
interdependence between 'developing the engine' and 'developing 
the power train system' as well as the between 'developing the 
dashboard' and 'developing the instrumentation.' The first and 
third partition options will likely require more communication and 
coordination between the two teams, which may render the entire 
development process less effective and efficient. Thus, by properly 
managing partitioning an increase in the project's efficiency and 
effectiveness may be achieved.  

There are several advantages that are associated with proper 
partitioning. First, partitioning all the decisions that need to be 
made into nearly independent subsystems is an inevitable 
consequence of the 'bounded rationality' property associated with 
processors (whether human or computer). Simon defines 'bounded 
rationality' as the limitation on the processing capacity of decision 
problems that organizations face in comparison with their 
problem's magnitude [13]. In architectural design, Alexander 
proposes that the overall designs of houses or communities could 
be improved if they were made up of relatively independent 
subsystems that could be adjusted relatively independently [2]. 
Similarly, von Hippel [17] claims that the cost of changes in 
component tasks will be less, if tasks are arranged so as to reduce 
the problem-solving interdependence among them. Clark [8] and 
                                                                 

2 Automotive instrumentation performs the crucial role of monitoring 
vehicle operation and supplying information to both the driver and the 
vehicle subsystems.  
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Henderson [12] claim that sub-optimal division of the product 
development tasks (e.g., by reliance on historically derived 
partitions) may result in difficulties in responding to innovation 
problems of a novel type. In the auto industry, Clark [8] observes 
that assigning certain detailed design tasks to external firms, who 
both design and manufacture the components, could save about 8 
months of development time. Baldwin and Clark [4] show how 
modular product development can speed the rate of technological 
change and increase product variety. von Hippel observes that 
problem-solving that extends beyond a single individual involves 
communication and coordination among problem-solvers [17]. He 
identifies a task boundary between problem-solvers to be often 
associated with physical and organizational barriers. Such barriers 
can add to the cost of problem-solvers' efforts to achieve cross-
boundary communication and coordination, and thus reduce 
problem-solving efficiency [17]. It is concluded that assigning tasks 
that have a lot of interconnected problem-solving to the same 
design team can help reduce the cost of communication and 
coordination across design teams. 
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Figure 1  Partitioning the work of development of a car 
model 

Although there is a burgeoning literature that deals with the 
proper organization of product development tasks with respect to 
the requirements of problem solving [4, 8, 9, 10, 13, 16, 17], little 
attention is given to the rigorous formulation of the problem. In 
this paper, several techniques for specifying task dependencies are 
addressed, and a new integer linear programming formulation for 
task partitioning is suggested. Several properties based on the 
mathematical model are derived, and an effective procedure for 
solving the problem is presented. An example is provided to 
illustrate the problem formulation and solution procedure. We 
conclude by presenting several future implications.     

2 THE TASK PARTITIONING PROBLEM 

In this section, we embark on a new formulation for the task 
partitioning problem. The new formulation of task partitioning is 
divided into three steps: defining task dependencies, determining 
partitioning costs, and devising formulation for optimal 
partitioning of tasks among teams. These steps are described in 
more detail below. Step One of the new formulation is related to 
setting up a framework for specifying tasks and their dependencies. 

2.1 A FRAMEWORK FOR SPECIFYING TASK DEPENDENCIES 
A useful tool for representing and analyzing task dependencies 

of a design project is Steward's Design Structure Matrix (DSM). The 
DSM is a binary square matrix, where a project task is assigned to a 
row and a corresponding column. A row, associated with a given 
task, is marked with 1s if the corresponding tasks (in columns) are 
dependent on it (e.g., by a precedence relationship [10]). Otherwise, 
the value of the matrix elements is 0 -- excluding the elements on 
the diagonal. Off-diagonal marks in a single row of the DSM 
represent all of the tasks whose output is required to perform the 
task corresponding to the row; while reading down a column 
shows all of the tasks which receive information from the task 
corresponding to the column. The DSM representation has been 
successfully used in concurrent engineering management and 
implementation by several researchers (e.g., [10, 18, 19]). However, 
this technique has several major drawbacks: 1) tasks are considered 
monolithic elements with no explicit specification or 
characterization. Moreover, the DSM describes the project in the 
physical domain, and thus results in a one dimensional 
representation of task dependencies (expressed by a binary 
task/task matrix); 2) the extraction of task dependencies is based 
on interviews with team's members at the detailed design stage. As 
a result, partitioning the DSM merely reflects the way the tasks are 
actually distributed among the multifunctional design teams [15]; 
3) although the classical DSM representation has been extended by 
including measures of the degree of dependence between tasks 
[10], these numerical coupling values have not been explicitly 
incorporated in an optimization framework that aims at 
minimizing the between-task communication and coordination 
costs.     

To address the above concerns, it is suggested to incorporate a 
multidimensional approach where 'design tasks' are defined in 
terms of a set of 'attributes' that need to be 'processed' or 'attained' 
during the development of the related task. Koopman [23] has 
suggested to characterize a design as having attributes that fall into 
the three attribute categories called structures, behaviors (or 
functions), and goals. This classification is supported by several 
structured design methods; e.g., conceptual design with a 'function-
structure' in Pahl and Beitz [24], or systematic concept generation 
for technical products in Hubka and Eder [25]. Structural attributes 
are physical components, geometric information, logical objects, etc. 
that are generally related to the various aspects of the design 
implementation. Examples include springs, cylinders, materials, 
geometric shapes, layout, process and physical parameters, 
databases, or electric fields. Behavioral attributes are control 
processes; actions; forces; storing, delivering or converting energy; 
flows of material, energy or forces; and signals or control between 
subsystems,  etc. They are usually concerned with the design's 
functions and processes, behavior over time, state and modes, as 
well as the conditions and events that cause modes to change [7]. 
The behavioral attributes also deal with concurrency, 
synchronization, and causality [7]. Examples include the ability to 
resist gravity loads, convert electrical energy into translational energy, 
deliver powder, control temperature, run software, etc. Goal 
attributes are aggregate design properties [23] or 'holistic' 
requirements [20] that emerge in a complex way based on the 
components of a product, and satisfy the intended needs of the 
design.  Examples include system level performance objectives, 
costs, aesthetics and ergonomics, size, weight, mass, or external 
constraints. We assume that 'attributes' are characterized acco rding 
to a finite number of types. Given a particular task, its set of 
underlying attributes can be classified as those attributes that are 
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only associated with the task, and those attributes that are shared 
with other tasks in the product development process.   

Tasks and their attributes can be derived using several 
techniques. For example, by utilizing the DSM methodology, one 
can create a 'task network' related to the DSM. The task network is a 
directed graph that represents the input/output relationships 
among the various tasks in the system as shown in Figure 2. Each 
node in the task network represents a task; each arc entering a node 
represents an input parameter needed for carrying out the task; and 
each outgoing arc represents a parameter that is generated by the 
task.  
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Figure 2  A Design Structure Matrix (DSM) and the related 
task network  

Tasks and attributes can also be derived by analyzing the 
underlying schematic of the product. A schematic is a diagram, 
obtained at the end of the concept development phase, 
representing the team's understanding of the elements of the 
product [16]. Some of the elements in the schematic are described 
as physical concepts (e.g., a motor) while others are described by 
their function (e.g., absorb shocks). Elements in a schematic are 
connected by input flow lines and output flow lines, which 
represent the desired interactions that are fundamental to the 
product's operation. These lines indicate the flow of material, 
energy or forces, and signals or control [16]. Each element in a 
schematic is associated with flow lines entering the element and 
flow lines outgoing the element. Thus, the representation of a 
schematic is similar to the task network description (related to the 
DSM) discussed above. Specifically, 'elements' and 'flow lines' 
correspond to 'tasks' and 'attributes', respectively. In addition to 
'flow lines', other attributes can be identified after establishing the 
product architecture3. For instance, undesired interface attributes 

                                                                 
3  The product architecture is the scheme by which the elements of 

the product are arranged into physical chunks, and by which the chunks 
interact and their approximate geometric layout is described [16]. 

that arise because of the particular physical implementation of 
functional elements or because of the geometric arrangement of the 
elements [16]. Examples of undesired interface attributes include 
relative motion between two physical elements, vibration, drifted 
radiation, poor geometric alignment between elements, undesired 
heat transfer, losses in signal, material or force transfer, and thermal 
expansion. Such undesired attributes can have a harmful effect and 
should be reduced. Other attributes that may be identified are 
attributes that are associated with 'global' or 'holistic' requirements 
that a task may fulfill; e.g., total product weight, size, efficiency, or 
reliability [20].  

Specifying task dependencies based on the underlying 
schematic of the product may lead to ineffective partitioning of 
design development tasks. This is related to the fact that, in general, 
the specification of tasks is not necessarily related to the underlying 
product that is being designed [17]. For example, a product may be 
composed of several major physical components, but the project 
tasks leading to the development of this product may be 
partitioned according to non-physical attributes. For instance, when 
physical components have multiple functional attributes, 
partitioning may be performed according to the functional 
attributes.   

In this paper, we suggest to utilize the 'design matrix' 
representation of Axiomatic Design [21] or Quality Function 
Deployment (QFD, [11]) as a means for specifying tasks and their 
associated attributes (we use the term 'design matrix' specification 
technique). The design matrix represents the mapping between 
functional requirements in the functional domain and design 
parameters in the physical domain. Using our previous terms, the 
design parameters correspond to tasks while the functional 
requirements to attributes. The structure of the design matrix can 
be determined early in the process, during the conceptual design 
stage. The detailed design of the various tasks (design parameters) 
is established at the detailed design stage by the product 
development teams. Each task (design parameter) in the design 
matrix affects a set of attributes (functional requirements). The 
interdependence between two tasks is captured by the shared 
attributes (functional requirements) that are affected by both tasks.  

The 'design matrix' specification technique has several merits. 
First, it provides the means for identifying the interdependence 
among tasks based on the underlying physical principles governing 
the functioning of the product. By deducing task dependencies 
based on physical principles, a more objective (and unbiased) 
specification technique is obtained. This also avoids the need to 
conduct long interviews with product development members in 
order to elicit the task dependencies, which carries the risk of 
obtaining historically derived partitions that may not address 
innovation or novel design problems.  Second, the 'design matrix' 
specification technique can be utilized to specify 'tasks' and 
'attributes' at the early stages of the product development process; 
thus, enabling more effective partition decisions at the detailed 
design phase.                    

The definition of a task in terms of its associated attributes 
enables the dependency between a pair of tasks by the attributes 
that are shared by both tasks. Consider the two tasks sharing a 
common attribute as illustrated in Figure 3.  If the two tasks are 
assigned to two different teams, and they are to effectively carry out 
the tasks, then the two teams will be involved in problem-solving 
communication and coordination with respect to the shared 
attribute(s). Coordinating attributes across teams generally 
demands interaction time and may involve the utilization of 
communication technology (e.g., distributed computer assisted 
design). Thus, the coordination of attributes across teams carries a 
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certain cost, and may have a negative effect on the product 
development time. Intuitively, if tasks that exhibit 'strong' 
dependency are assigned to the same team, then the partitioning 
may be more effective. However, the proper decision about how 
tasks are assigned to design teams is affected by several technical and 
non-technical factors.       

 

Communication & 
Coordination 

Communication Time = tj(|G|-1) 

# Teams  
Figure 3  Assigning two tasks that share a similar 

attribute to different teams requires additional 
communication and coordination activities 

2.2 FORMULATION OF TASK PARTITIONING 
In this following, we discuss some of the 

factors affecting task partitioning with the aim of 
addressing the question of how design 
development tasks can be distributed among a 
number of design teams so as to minimize the 
need for problem-solving across teams. The task 
partitioning problem can be described as follows. 
We are given a set of tasks, each of which is 
associated with a set of attributes. Since the team's 
information processing capacity is limited in terms 
of the total number of attributes that it can process 
(often referred to as 'bounded rationality', [14]), the 
tasks are partitioned into several design teams as 
shown in Figure 4. This assumption is driven by 
the hypothesis that design teams can achieve larger 
gains from specialization when they have fewer 
attributes to attain. By introducing a limit on the 
total number of attributes that can be assigned to a 
team, we capture the idea that assigning a number 
of attributes above the threshold considerably  
reduces the problem solving performance expected 
from the design team. After assigning the tasks to 
several teams it is likely that an attribute (or a task) 
will be assigned to more than a single team as 
shown in Figure 4. 

Step Two of the new task partitioning 
problem formulation determines the various costs 

related to the problem. We consider two costs 

associated with a particular partition. The first cost is incurred when 
the same attribute is included in more than a single team. As 
explained above, the coordination of an attribute across teams 
incurs a cost. For illustration, we use a linear communication cost 
per attribute. That is, if an attribute i  is included in K  teams, 
then the communication cost that is incurred is )1( −× Kti , 

where the communication cost coefficient it  is a constant associated 

with coordinating attribute i . By associating different 
communication cost coefficients with attributes, we capture the idea 
that coordinating some attributes is more difficult than others. For 
example, in designing a certain building, the attribute "resist lateral 
wind loads" may be more critical than the attribute "resist gravity 
loads." In general, critical attributes require more careful 
coordination than less critical attributes. Thus, coordinating (across 
teams) the more critical attribute tends to have a higher cost than 
coordinating the less critical attribute. In another example, the 
attribute "personal safety" may be more critical than "screen parked 
cars." As a result, it is desirable to minimize the assignment of an 
attribute with high communication costs to too many design 
teams.   

The second cost is related to the assignment of a task to 
several teams. In this case, each team that includes the task will have 
to expend an initial preparation cost. This cost may be associated, 
for example, with learning the schematic and engineering drawings, 
scheduling the development activities, or preparing the resources 
needed to carry out the task (e.g., setting up a 3-D computing 
platform). For the sake of exposition, we use a linear preparation 
cost per task. That is, if a task j  is included in K  teams, then the 

communication cost that is incurred is KT j × , where the 
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preparation cost coefficient jT  is a constant associated with 

preparing for task j . Similar to attributes, different tasks may have 
different preparation cost coefficients depending on the complexity 
of the underlying task.  

The goal of task partitioning is to assign tasks and attributes 
to teams so as to minimize the total task and attribute costs, while 
not exceeding the team's information processing capacity expressed 
in terms of the maximum number of attributes assigned to a 
team. 

 Finally, Step Three of the task partitioning problem is related 
to encompassing the above considerations using mathematical 
formulation, namely integer linear programming. The integer linear 
programming formulation may be found in the [5].  

2.3 ILLUSTRATIVE EXAMPLE 
In this section, the task partitioning problem is illustrated by 

presenting an example of designing a parking garage [1]. In order 
to identify the tasks and their associated attributes, we apply the 
'design matrix' specification technique that was described earlier. At 
the end of the conceptual design process, 12 tasks (design 
parameters) are identified. Each task affects a set of attributes (the 
functional requirements associated with the task). At the detailed 
design stage of the project, the identified tasks are distributed 
among a number of design teams for detailed design. The various 
tasks and attributes are given as follows: 

The set of attributes associated with each task is described in 
the attribute/task binary matrix presented in Table 1.  

For example, the task 'develop high-strength concrete' is 
associated with the following attributes: 'design for long-term 
durability,' 'design for ease of maintenance,' 'resist gravity loads,' and 
'resist lateral wind loads.' We assume that the maximum number 
of attributes that can be assigned to a team is 6. This number may 
be determined based on the previous performance of teams. For 
simplicity, all communication cost coefficients of attributes are 

identical and equal to 1 unit of time (i.e., it =1), and all preparation 
cost coefficients of tasks are identical and equal to 1.5 units of time 
(i.e., jT =1.5). Since the total number of attributes associated with 

the various tasks is greater than the information processing capacity 
of a team, we need to partition the set of tasks and attributes into 
several teams.  

Many partitions are possible. Two feasible solutions are 
presented in Figure 5. Based on the formulation presented in [5], 
the total cost of each solution is obtained as follows. In Solution 
One, tasks are assigned 12 times, thus incurring a total preparation 
cost of 18 units of time )125.1( × . We also observe that each of 
the attributes B, C, G, I, and J is included in two teams, while 
attribute K is included in three teams. Thus, the total 
communication cost that is incurred is 7 units of time 
( 21  15 ×+× ). Therefore, the total cost of Solution One is 25 
units of time. Similar calculations show that the total cost of 
Solution Two is 22 units of time.  

 In the above two solutions, a task is assigned to only a single 
team. However, other partitions may be considered where a task is 
assigned to several teams. For example, in the third partition 
presented in Figure 6, task 8 is assigned to two teams. We observe 
that Solution Three is more effective than Solution One since the 
total cost that is incurred is 24.5 units of time (compared to 25 
units of time). Indeed, by assigning task 8 to teams 1 and 3, the 
communication costs associated with attributes I and K are reduced 
(saving 2 units of time); however, additional preparation costs 
associated with task 8 are added. Since the reduction in 
communication costs (2 units of time) is greater than the added 
preparation cost of task 8 (1.5 units of time), assigning task 8 twice 
is justified. This demonstrates the important tradeoff of reducing 
communication costs versus adding preparation costs.  

Tasks 

Task 1: Red Granite Facade Task 7: Gate Control System 

Task 2: Fire Stops Task 8: High-Strength Concrete 

Task 3: Sprinkler System  Task 9: Drainage System 

Task 4: Artificial Lighting System Task 10: Post-Tensioned Flat Plat 

Task 5: Reinforced Concrete Parapet Wall Task 11: Rigid Frame System 

Task 6: Security Guard Task 12: Column Spacing 

Attributes  

Attribute A: Screen Parked Cars Attribute G: Restrict Vehicle Access 

Attribute B: Confine Fire Attribute H: Design for Long-Term Durability 

Attribute C: Suppress Fire Attribute I: Design for Ease of Maintenance 

Attribute D: Provide Adequate Visibility Attribute J: Resist Gravity Loads 

Attribute E: Provide Perimeter Barrier Attribute K: Resist Lateral Wind Loads 

Attribute F: Personal Safety  

 



Partitioning Tasks to Product Development Teams 
Second International Conference on Axiomatic Design 

Cambridge, MA – June 10&11, 2002 

Copyright © 2002 by Institute for Axiomatic Design  Page: 6/11 

 

5

6
4

1
2 

FED
K G

Team 
2 

1
0 

8 B
C

J H
Team 
3 

Task
s 

Attributes 

K

B C

I
A G

Team 
1 

21 3

7 1
1 98

J

Solution 3: 
Communication Time = 5 units 

= Attributes in more than 1 team 

= Tasks in more than 1 team 
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team  

3 AN EFFECTIVE SOLUTION PROCEDURE  

In this section, we present a fast heuristic procedure4 for 
solving the task partitioning problem, and evaluate its performance 
on various data sets. The solution procedure is divided into two 
phases. Phase One constructs a feasible partitioning of the tasks 
into several teams, while Phase Two uses the feasible solution 
created by Phase One as a starting point, and iteratively improves 
the partition by moving to a better "neighbor" solution. These two 
phases of the task partitioning procedure are described in more 
detail below: 
Task Partitioning Procedure  

Phase One (constructing a feasible partition): 
1. The construction of a new team is initiated by 

identifying the unassigned task which is associated 
with the smallest number of attributes.  

2. Additional tasks are sequentially added to the same 
team. A task can be added to the current team if the 
total number of attributes included in the team after 
adding the task is less than the team's capacity. If 
several unassigned tasks can be added to the team, 
then the task that adds the smallest number of 
additional attributes is added first.  

3. If no task can be added to the same team, and there 
are tasks that have not yet been assigned to a team, 
then a new team is initiated and Step 2 is repeated. 
Otherwise, Phase One stops and Phase Two begins.     

Phase Two (local improvements): 
To improve the feasible solution that has been obtained in 

Phase One, two possible operations are sequentially performed. 
The first operation is related to transferring a single task (along with 
its attributes) from one team to another, where the second  
 

                                                                 
4  This is based on the generic partitioning algorithms in [7, 28].  

Table 1  Attribute/Task Design Matrix for a parking garage design 
Tasks 

Attributes 

1 2 3 4 5 6 7 8 9 10 11 12 

A 1 0 0 0 0 0 0 0 0 0 0 0 

B 0 1 0 0 0 0 0 1 0 1 0 0 

C 0 0 1 0 0 0 0 1 0 1 0 0 

D 0 0 0 1 0 0 0 0 0 0 0 0 

E 0 0 0 0 1 0 0 0 0 0 0 0 

F 0 0 0 1 1 1 0 0 0 0 0 0 

G 0 0 0 0 1 1 1 0 0 0 0 0 

H 0 0 0 0 0 0 0 1 0 0 0 0 

I 0 0 0 0 0 0 0 1 1 0 0 0 

J 0 0 0 0 0 0 0 1 0 1 0 1 

K 0 0 0 0 0 0 0 1 0 0 1 1 
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operation is related to exchanging two tasks (along with their 
attributes) that are included in two different teams. The executed 
operation at each iteration is the one that results in the largest cost 
saving. The local improvement operations are continued until no 
feasible cost saving operation can be identified, in which case Phase 
Two stops and returns the current partition. 
           To illustrate the task partitioning procedure, we consider the 
illustrative example presented in Section 2.3. Solution One in Figure 
5 presents the three teams that have been constructed by Phase One 

of the task partitioning procedure. Phase Two uses the feasible 
partition returned by Phase One as a starting point, and iteratively 
improves Solution One (shown in Figure 5) by either removing a 
single task from its current team and including the task in another 
team, or removing two tasks from different teams and including 
each task in the team in which the other was included. Figure 7 
shows the consecutive steps performed by Phase Two: removing 
task 12 from the second team and assigning it to the third team, 
removing task 9 from the first team and assigning it to the third 
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Figure 8  The optimal solution of the Parking Garage partitioning problem 

 

Table 2  Characteristics of tested data 
Data 

set 

Number of 

tasks 

Number of 

attributes 

Average number of 

tasks  

sharing the same 

attribute 

Number of 

problems 

tested  

% of 1s in  

matrix 

1 16 53 7 25 13.3 

2 26 52 4.73 25 14.1 

3 34 162 5.92 25 12.1 
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team, removing task 11 from the first team and assigning it to the 
third team, removing task 3 from the first team and assigning it to 
the third team, and removing task 7 from the first team and 
assigning it to the second team. At this point, since neither a 
feasible cost saving move nor a feasible cost saving swap can be 
identified, the task partitioning procedure stops and the final 
partition solution is obtained as presented in Figure 8. We observe 
that at the first step of Phase Two, a reduction in total cost (of one 
unit of time)  can also be obtained by swapping tasks 7 and 12. 
However, moving task 12 from team 2 to team 3 is executed since a 
larger reduction in total cost can be identified (2 units of time). 
Interestingly, the solution presented in Figure 8 reflects the structure 
of the parking garage system. Specifically, tasks that are assigned to 
team 1 correspond to the 'architectural design', tasks that are 
assigned to team 2 correspond to the 'security system', and tasks 
that are assigned to team 3 correspond to the 'structural system' and 
'fire safety system' of the parking garage. This also suggests the 
possibility of utilizing the proposed model for defining the 
product architecture.  

To evaluate the performance of the task partitioning 
procedure, two data sets are examined. The characteristics of the 
underlying design matrix (e.g., percentage of 1s in the matrix) of 
each data set have been randomly generated based on data in [28] 
and is presented in Table 2. Many different task partitioning 
problems have been generated for each data set by varying the 
maximum number of attributes assigned to a team. To evaluate 
the quality of the solutions found by the task partitioning 
procedure, the relative error between the heuristic solutions and the 
optimal solutions5 has been determined. The results show that the 
average percentage error in the heuristic solutions is 6%, 7.2%, and 
8.5% for data sets 1, 2, and 3, respectively. These results 
demonstrate the effectiveness of the task partitioning procedure, 
both in terms of CPU time (a few seconds) and solution accuracy. 
The results also suggest that the proposed heuristic could be easily 
applicable to large-scale product development processes.  

4 CONCLUSION 

4.1 SUMMARY  
Empirical research in various industries has shown that task 

partitioning affects problem-solving interdependence, and that by 
properly managing task partitioning the efficiency and effectiveness 
of the product development process may be improved [13, 17]. 
Ineffective product development processes may be attributed to the 
failure of some companies to consider task problem-solving 
interdependence as an important aspect of partitioning decisions 
[17]. In such ineffective projects, partitioning is performed 
according to economies of specialization (e.g., all electrical design 
work is done by the same team), or according to traditional and 
rigid problem-solving patterns.    

In this paper, we embark on a new mathematical formulation 
for task partitioning. The formulation is based on several key 
elements. First, it has been suggested to specify a task in terms of 
its associated attributes. Using this approach, task dependency is 
interpreted as the attribute types shared by (affected by) the tasks. 
As a useful specification technique, we have proposed to identify 
attributes as the set of functional requirements that are affected by 
the various tasks. Second, partitioning costs related to the 
coordination of an attribute across teams, and the preparation for a 
                                                                 

5  The optimal solution has been found by employing a branch-and-
bound enumeration algorithm.  

 

task by a team have been incorporated into the model. Third, the 
task partitioning problem has been formulated through integer 
linear programming, which is stated as the distribution of tasks 
and attributes among a number of teams so as to minimize the 
total attribute communication and task preparation costs. Several 
characteristics have been derived based on the mathematical 
formulation. Since the task partitioning problem has been shown 
to be inherently intractable in the general case (Theorem 2), a 
heuristic algorithm that finds "good" solutions fast has been 
developed. The heuristic algorithm is particularly useful for 
partitioning large-scale product development projects.    

4.2 FUTURE IMPLICATIONS 
In the following, we delineate several ways by which the 

proposed formulation can be extended in order to address 
additional characteristics of task partitioning. In this paper, we 
assume that the tasks and their related attributes are completely 
specified prior to distributing the tasks among a number of design 
teams (e.g., by specifying the tasks and attributes at the end of the 
conceptual design stage or after establishing the product 
architecture). However, task specifications and task dependencies 
may change during project development due to new information 
that is generated as product development unfolds. For example, 
assume that a new requirement for an 'economic engine' arises 
during the project development process. This new requirement may 
lead to the generation of new tasks such as the development of 
'electronic ignition' and 'fuel injection' systems. These two tasks, in 
turn, may create new dependencies with existing tasks of the 
project. Thus, new partitioning problems will be introduced with 
the generation of new tasks and attributes. If the specification of 
tasks and attributes is not relatively stable over time, then the 
various tasks and attributes may be re-partitioned as the project 
unfolds. To carry out the re-partitioning activity, we need to develop 
techniques for identifying changes in task specification.  

Tasks and attributes can be specified at a number of levels of 
abstraction depending on the company's objectives. For example, 
consider the task of designing a model of a family car, which is 
associated with a set of aggregate attributes. This task can be further 
broken down into an entire task network; e.g., to a level including 
'develop the chassis,' 'develop the power plant,' 'develop the power 
train,' and 'develop the body.' This level may be further broken 
down; for instance, the 'develop the power plant' task, in turn, may 
be broken down to a level of detail such as 'develop the engine,' 
'develop the fuel system,' and 'develop the cooling system.' The 
problem of task partitioning, thus, becomes hierarchical and 
recursive. That is, a partition on one level of aggregation may affect 
the partition on the next level. Consequently, an effective 
partitioning on one level of aggregation ('local' partition) may not 
necessarily render the entire partitioning ('global' partition) of the 
system effective. We also observe that if tasks and attributes are 
specified at a level of aggregation related to the schematic of the 
underlying product ([15, 16]), then the formulation developed in 
this paper can be utilized to form and define the product architecture.  

The structure of the attribute/task design matrix affects the 
efficiency and effectiveness of the underlying task partitioning 
problem. Given two design matrices defined by the same set of task 
and attribute types and same cost coefficients for the two problems, 
we can determine their comparative merit by examining their 
optimal task partitioning solutions. This approach of comparing 
design matrices is different from the dichotomy considered by 
Axiomatic Design, where design matrices are classified as 
uncoupled, decoupled (or quasicoupled), and coupled [21] in 
descending order of preference. Indeed, this difference is 
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exemplified in [5] where coupled design matrices may be more 
efficient than decoupled design matrices when comparing their 
corresponding optimal task partitioning solutions. The 
mathematical criteria for comparing design matrices have yet to be 
determined. 

In this paper, task partitioning has been treated as a 
manageable variable. Problem-solving interdependence can also be 
managed by assuming a given partitioning, and by trying to reduce 
the cost of communication and coordination across task 
boundaries with the proper information technology tools. For 
instance, Since the procurement of information technology tools 
carries a certain cost, it would be desirable to extend the model 
proposed in this paper so as to incorporate this cost.      

To solve the task partitioning problem, tasks and attributes 
need to be completely specified. In this paper, it is suggested to 
apply the mapping between functional requirements in the 
functional domain and design parameters in the physical domain as 
a means for specifying tasks and their associated attributes. The use 
of data mining and knowledge discovery in databases may also be 
used for identifying dependencies between design tasks [6]. Having 
specified tasks and attributes, the next step is to derive the task 
preparation and attribute communication costs. In this paper, we 
utilize 'units of time' as an objective measure of project 
performance. In addition, for exposition purposes, a linear 
communication cost modeling has been introduced. Other aspects 
may be considered instead. First, a subjective project performance 
measure can be developed; e.g., by ranking the attributes according 
to their extent of criticality, and assigning values to the various 
attribute communication costs by utilizing the Analytic Hierarchy 
Process [22]. Second, a non-linear attribute communication cost 
modeling may be incorporated; e.g., by employing a concave  rather 
than a linear function. 

Another consideration is related to pre-imposed constraints. 
Such constraints may require that specific tasks (or attributes) be 
included in the same team, or that specific tasks (or attributes) be 
included in particular teams.         

The model developed in this paper can be incorporated within 
a decision support system. In order to find out whether a potential 
improvement in product development process efficiency and 
effectiveness is expected, one may compare the optimal partitioning 
as obtained by the model with respect to the partitioning that is 
adopted in practice. A major discrepancy in the way tasks are 
assigned to various teams may be an indicator for potential 
improvement or the need to incorporate additional considerations. 

Finally, we hope that the model developed in this paper will 
lead to a better understanding of other partitioning related 
problems, including decomposition, specialization, multifunctional 
integration, team formation, the role of suppliers in the product 
development process, and the effect of partitioning decisions on 
the overall product design.  
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