
Proceedings of ICAD2002
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002
ICAD 029

Copyright © 2002 by Institute for Axiomatic Design Page: 1/11

ABSTRACT

The principle of partitioning tasks among product
development teams so as to minimize the cost of interactions
across design teams is an important characteristic of complex
engineered systems. Although there is growing literature that deals
with the proper organization of product development tasks, little
attention is given to rigorous modeling of the phenomena. To fill
the void, we present a mathematical formulation for the problem.
Two main issues are addressed by the model: 1) how to specify task
dependencies, and 2) how to optimally partition the tasks among a
number of teams. In this paper, we suggest to utilize the 'design
matrix' representation of Axiomatic Design as a means for
specifying tasks and their associated attributes. The developed
model and solution technique can be applied to various scales of
the product design and development process, and may open a
variety of interesting questions.

1 INTRODUCTION

Product development processes are generally divided up into
tasks and subtasks. These segments may then be assigned
("partitioned") to multifunctional design teams [4, 9, 10, 13, 16,
17]. A multifunctional team consists of a group of individuals
from different disciplines working closely together toward the
development of the product. Problem solving tends to be more
rapid when individuals have face-to-face contact [3]. By working
together, individuals also learn to be aware of and understand the
problems of other team members. As a consequence, a sense of
group cohesion is developed, which helps progress the team's
objectives.

Design teams can achieve larger gains from specialization when
they have fewer tasks to design. Thus, to realize specialization
economies, the firm divides the work of development by
partitioning tasks into several teams. For instance, there are
hundreds of teams in the firms that develop various parts of the
Saturn1 car and the Toyota Crown [4]. Proper partitioning of
design development tasks into "independent" teams minimizes the
need for problem-solving across teams, and builds bridges between
tasks anticipated to require high problem-solving interaction by
assigning them to the same team. Minimizing the between-task
problem solving can have important effects on product

1 Saturn is a subsidiary company of General Motors established in the

early 1980's for the purpose of competing with Japanese imported cars into
the American market.

development performance, particularly since the core function of
innovation projects is precisely problem solving and the generation
of new knowledge [17].

To illustrate the partitioning problem consider the
development of a certain car model, which includes four tasks:
developing the engine, instrumentation2, dashboard, and power
train system. There are several ways that these four tasks can be
assigned to two design teams. Three partitions are considered (see
Figure 1): 1) assigning the development tasks of the engine and
instrumentation to one team, and assigning the development tasks
of the dashboard and power train system to a second team; 2)
assigning the development tasks of the engine and power train
system to one team, and assigning the development tasks of the
instrumentation and dashboard to a second team; or 3) assigning
the development tasks of the engine and dashboard to one team,
and assigning the development tasks of the instrumentation and
power train system to a second team. The second partitioning
appears more efficient than the other two in terms of the needed
cross-boundary problem-solving that is required to carry out the
development project. This is due to the strong problem-solving
interdependence between 'developing the engine' and 'developing
the power train system' as well as the between 'developing the
dashboard' and 'developing the instrumentation.' The first and
third partition options will likely require more communication and
coordination between the two teams, which may render the entire
development process less effective and efficient. Thus, by properly
managing partitioning an increase in the project's efficiency and
effectiveness may be achieved.

There are several advantages that are associated with proper
partitioning. First, partitioning all the decisions that need to be
made into nearly independent subsystems is an inevitable
consequence of the 'bounded rationality' property associated with
processors (whether human or computer). Simon defines 'bounded
rationality' as the limitation on the processing capacity of decision
problems that organizations face in comparison with their
problem's magnitude [13]. In architectural design, Alexander
proposes that the overall designs of houses or communities could
be improved if they were made up of relatively independent
subsystems that could be adjusted relatively independently [2].
Similarly, von Hippel [17] claims that the cost of changes in
component tasks will be less, if tasks are arranged so as to reduce
the problem-solving interdependence among them. Clark [8] and

2 Automotive instrumentation performs the crucial role of monitoring
vehicle operation and supplying information to both the driver and the
vehicle subsystems.

PARTITIONING TASKS TO PRODUCT DEVELOPMENT TEAMS

Dan Braha
Center for Innovation in Product Development

Massachusetts Institute of Technology
Building E60-236

30 Memorial Drive
Cambridge, MA 02139

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 2/11

Henderson [12] claim that sub-optimal division of the product
development tasks (e.g., by reliance on historically derived
partitions) may result in difficulties in responding to innovation
problems of a novel type. In the auto industry, Clark [8] observes
that assigning certain detailed design tasks to external firms, who
both design and manufacture the components, could save about 8
months of development time. Baldwin and Clark [4] show how
modular product development can speed the rate of technological
change and increase product variety. von Hippel observes that
problem-solving that extends beyond a single individual involves
communication and coordination among problem-solvers [17]. He
identifies a task boundary between problem-solvers to be often
associated with physical and organizational barriers. Such barriers
can add to the cost of problem-solvers' efforts to achieve cross-
boundary communication and coordination, and thus reduce
problem-solving efficiency [17]. It is concluded that assigning tasks
that have a lot of interconnected problem-solving to the same
design team can help reduce the cost of communication and
coordination across design teams.

Develop
Engine

Develop
Dashboard

Develop
Power
Train

Develop
Instrumen-

tation

Partition 1

Develop
Engine

Develop
Dashboard

Develop
Power
Train

Develop
Instrumen-

tation

Partition 2

Develop
Engine

Develop
Dashboard

Develop
Power
Train

Develop
Instrumen-

tation

Partition 3

Figure 1 Partitioning the work of development of a car
model

Although there is a burgeoning literature that deals with the
proper organization of product development tasks with respect to
the requirements of problem solving [4, 8, 9, 10, 13, 16, 17], little
attention is given to the rigorous formulation of the problem. In
this paper, several techniques for specifying task dependencies are
addressed, and a new integer linear programming formulation for
task partitioning is suggested. Several properties based on the
mathematical model are derived, and an effective procedure for
solving the problem is presented. An example is provided to
illustrate the problem formulation and solution procedure. We
conclude by presenting several future implications.

2 THE TASK PARTITIONING PROBLEM

In this section, we embark on a new formulation for the task
partitioning problem. The new formulation of task partitioning is
divided into three steps: defining task dependencies, determining
partitioning costs, and devising formulation for optimal
partitioning of tasks among teams. These steps are described in
more detail below. Step One of the new formulation is related to
setting up a framework for specifying tasks and their dependencies.

2.1 A FRAMEWORK FOR SPECIFYING TASK DEPENDENCIES
A useful tool for representing and analyzing task dependencies

of a design project is Steward's Design Structure Matrix (DSM). The
DSM is a binary square matrix, where a project task is assigned to a
row and a corresponding column. A row, associated with a given
task, is marked with 1s if the corresponding tasks (in columns) are
dependent on it (e.g., by a precedence relationship [10]). Otherwise,
the value of the matrix elements is 0 -- excluding the elements on
the diagonal. Off-diagonal marks in a single row of the DSM
represent all of the tasks whose output is required to perform the
task corresponding to the row; while reading down a column
shows all of the tasks which receive information from the task
corresponding to the column. The DSM representation has been
successfully used in concurrent engineering management and
implementation by several researchers (e.g., [10, 18, 19]). However,
this technique has several major drawbacks: 1) tasks are considered
monolithic elements with no explicit specification or
characterization. Moreover, the DSM describes the project in the
physical domain, and thus results in a one dimensional
representation of task dependencies (expressed by a binary
task/task matrix); 2) the extraction of task dependencies is based
on interviews with team's members at the detailed design stage. As
a result, partitioning the DSM merely reflects the way the tasks are
actually distributed among the multifunctional design teams [15];
3) although the classical DSM representation has been extended by
including measures of the degree of dependence between tasks
[10], these numerical coupling values have not been explicitly
incorporated in an optimization framework that aims at
minimizing the between-task communication and coordination
costs.

To address the above concerns, it is suggested to incorporate a
multidimensional approach where 'design tasks' are defined in
terms of a set of 'attributes' that need to be 'processed' or 'attained'
during the development of the related task. Koopman [23] has
suggested to characterize a design as having attributes that fall into
the three attribute categories called structures, behaviors (or
functions), and goals. This classification is supported by several
structured design methods; e.g., conceptual design with a 'function-
structure' in Pahl and Beitz [24], or systematic concept generation
for technical products in Hubka and Eder [25]. Structural attributes
are physical components, geometric information, logical objects, etc.
that are generally related to the various aspects of the design
implementation. Examples include springs, cylinders, materials,
geometric shapes, layout, process and physical parameters,
databases, or electric fields. Behavioral attributes are control
processes; actions; forces; storing, delivering or converting energy;
flows of material, energy or forces; and signals or control between
subsystems, etc. They are usually concerned with the design's
functions and processes, behavior over time, state and modes, as
well as the conditions and events that cause modes to change [7].
The behavioral attributes also deal with concurrency,
synchronization, and causality [7]. Examples include the ability to
resist gravity loads, convert electrical energy into translational energy,
deliver powder, control temperature, run software, etc. Goal
attributes are aggregate design properties [23] or 'holistic'
requirements [20] that emerge in a complex way based on the
components of a product, and satisfy the intended needs of the
design. Examples include system level performance objectives,
costs, aesthetics and ergonomics, size, weight, mass, or external
constraints. We assume that 'attributes' are characterized acco rding
to a finite number of types. Given a particular task, its set of
underlying attributes can be classified as those attributes that are

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 3/11

only associated with the task, and those attributes that are shared
with other tasks in the product development process.

Tasks and their attributes can be derived using several
techniques. For example, by utilizing the DSM methodology, one
can create a 'task network' related to the DSM. The task network is a
directed graph that represents the input/output relationships
among the various tasks in the system as shown in Figure 2. Each
node in the task network represents a task; each arc entering a node
represents an input parameter needed for carrying out the task; and
each outgoing arc represents a parameter that is generated by the
task.

 1 2 3 4 5

1 • 0 0 0 0
2 X • 0 0 0
3 X 0 • 0 X
4 0 0 X • 0
5 0 X 0 0 •

Task

Tasks

Design Structure Matrix:

a
b

c

e

f

g

1

2

3
4

5

Task Network:

Figure 2 A Design Structure Matrix (DSM) and the related
task network

Tasks and attributes can also be derived by analyzing the
underlying schematic of the product. A schematic is a diagram,
obtained at the end of the concept development phase,
representing the team's understanding of the elements of the
product [16]. Some of the elements in the schematic are described
as physical concepts (e.g., a motor) while others are described by
their function (e.g., absorb shocks). Elements in a schematic are
connected by input flow lines and output flow lines, which
represent the desired interactions that are fundamental to the
product's operation. These lines indicate the flow of material,
energy or forces, and signals or control [16]. Each element in a
schematic is associated with flow lines entering the element and
flow lines outgoing the element. Thus, the representation of a
schematic is similar to the task network description (related to the
DSM) discussed above. Specifically, 'elements' and 'flow lines'
correspond to 'tasks' and 'attributes', respectively. In addition to
'flow lines', other attributes can be identified after establishing the
product architecture3. For instance, undesired interface attributes

3 The product architecture is the scheme by which the elements of

the product are arranged into physical chunks, and by which the chunks
interact and their approximate geometric layout is described [16].

that arise because of the particular physical implementation of
functional elements or because of the geometric arrangement of the
elements [16]. Examples of undesired interface attributes include
relative motion between two physical elements, vibration, drifted
radiation, poor geometric alignment between elements, undesired
heat transfer, losses in signal, material or force transfer, and thermal
expansion. Such undesired attributes can have a harmful effect and
should be reduced. Other attributes that may be identified are
attributes that are associated with 'global' or 'holistic' requirements
that a task may fulfill; e.g., total product weight, size, efficiency, or
reliability [20].

Specifying task dependencies based on the underlying
schematic of the product may lead to ineffective partitioning of
design development tasks. This is related to the fact that, in general,
the specification of tasks is not necessarily related to the underlying
product that is being designed [17]. For example, a product may be
composed of several major physical components, but the project
tasks leading to the development of this product may be
partitioned according to non-physical attributes. For instance, when
physical components have multiple functional attributes,
partitioning may be performed according to the functional
attributes.

In this paper, we suggest to utilize the 'design matrix'
representation of Axiomatic Design [21] or Quality Function
Deployment (QFD, [11]) as a means for specifying tasks and their
associated attributes (we use the term 'design matrix' specification
technique). The design matrix represents the mapping between
functional requirements in the functional domain and design
parameters in the physical domain. Using our previous terms, the
design parameters correspond to tasks while the functional
requirements to attributes. The structure of the design matrix can
be determined early in the process, during the conceptual design
stage. The detailed design of the various tasks (design parameters)
is established at the detailed design stage by the product
development teams. Each task (design parameter) in the design
matrix affects a set of attributes (functional requirements). The
interdependence between two tasks is captured by the shared
attributes (functional requirements) that are affected by both tasks.

The 'design matrix' specification technique has several merits.
First, it provides the means for identifying the interdependence
among tasks based on the underlying physical principles governing
the functioning of the product. By deducing task dependencies
based on physical principles, a more objective (and unbiased)
specification technique is obtained. This also avoids the need to
conduct long interviews with product development members in
order to elicit the task dependencies, which carries the risk of
obtaining historically derived partitions that may not address
innovation or novel design problems. Second, the 'design matrix'
specification technique can be utilized to specify 'tasks' and
'attributes' at the early stages of the product development process;
thus, enabling more effective partition decisions at the detailed
design phase.

The definition of a task in terms of its associated attributes
enables the dependency between a pair of tasks by the attributes
that are shared by both tasks. Consider the two tasks sharing a
common attribute as illustrated in Figure 3. If the two tasks are
assigned to two different teams, and they are to effectively carry out
the tasks, then the two teams will be involved in problem-solving
communication and coordination with respect to the shared
attribute(s). Coordinating attributes across teams generally
demands interaction time and may involve the utilization of
communication technology (e.g., distributed computer assisted
design). Thus, the coordination of attributes across teams carries a

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 4/11

certain cost, and may have a negative effect on the product
development time. Intuitively, if tasks that exhibit 'strong'
dependency are assigned to the same team, then the partitioning
may be more effective. However, the proper decision about how
tasks are assigned to design teams is affected by several technical and
non-technical factors.

Communication &
Coordination

Communication Time = tj(|G|-1)

Teams
Figure 3 Assigning two tasks that share a similar

attribute to different teams requires additional
communication and coordination activities

2.2 FORMULATION OF TASK PARTITIONING
In this following, we discuss some of the

factors affecting task partitioning with the aim of
addressing the question of how design
development tasks can be distributed among a
number of design teams so as to minimize the
need for problem-solving across teams. The task
partitioning problem can be described as follows.
We are given a set of tasks, each of which is
associated with a set of attributes. Since the team's
information processing capacity is limited in terms
of the total number of attributes that it can process
(often referred to as 'bounded rationality', [14]), the
tasks are partitioned into several design teams as
shown in Figure 4. This assumption is driven by
the hypothesis that design teams can achieve larger
gains from specialization when they have fewer
attributes to attain. By introducing a limit on the
total number of attributes that can be assigned to a
team, we capture the idea that assigning a number
of attributes above the threshold considerably
reduces the problem solving performance expected
from the design team. After assigning the tasks to
several teams it is likely that an attribute (or a task)
will be assigned to more than a single team as
shown in Figure 4.

Step Two of the new task partitioning
problem formulation determines the various costs

related to the problem. We consider two costs

associated with a particular partition. The first cost is incurred when
the same attribute is included in more than a single team. As
explained above, the coordination of an attribute across teams
incurs a cost. For illustration, we use a linear communication cost
per attribute. That is, if an attribute i is included in K teams,
then the communication cost that is incurred is)1(−× Kti ,

where the communication cost coefficient it is a constant associated

with coordinating attribute i . By associating different
communication cost coefficients with attributes, we capture the idea
that coordinating some attributes is more difficult than others. For
example, in designing a certain building, the attribute "resist lateral
wind loads" may be more critical than the attribute "resist gravity
loads." In general, critical attributes require more careful
coordination than less critical attributes. Thus, coordinating (across
teams) the more critical attribute tends to have a higher cost than
coordinating the less critical attribute. In another example, the
attribute "personal safety" may be more critical than "screen parked
cars." As a result, it is desirable to minimize the assignment of an
attribute with high communication costs to too many design
teams.

The second cost is related to the assignment of a task to
several teams. In this case, each team that includes the task will have
to expend an initial preparation cost. This cost may be associated,
for example, with learning the schematic and engineering drawings,
scheduling the development activities, or preparing the resources
needed to carry out the task (e.g., setting up a 3-D computing
platform). For the sake of exposition, we use a linear preparation
cost per task. That is, if a task j is included in K teams, then the

communication cost that is incurred is KT j × , where the

...

Task

Attr. Attr.

Attr.
Attr.

Task

Attr.

Attr. Attr.

Attr.

Task

Attr.

Attr. Attr.

Task

Attr.

Attr. Attr.

Task Attr.

Attr. Attr.

Attr.

Attr.

Attr.

Task
Task

Task

Attr.
Attr.

Attr. Attr.

Task Task

Task

Attr.
Attr.

Attr. Attr.

Task Task

Task
Task

Team Team Team

Partitionin

Figure 4 Partitioning tasks to product development teams

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 5/11

preparation cost coefficient jT is a constant associated with

preparing for task j . Similar to attributes, different tasks may have
different preparation cost coefficients depending on the complexity
of the underlying task.

The goal of task partitioning is to assign tasks and attributes
to teams so as to minimize the total task and attribute costs, while
not exceeding the team's information processing capacity expressed
in terms of the maximum number of attributes assigned to a
team.

 Finally, Step Three of the task partitioning problem is related
to encompassing the above considerations using mathematical
formulation, namely integer linear programming. The integer linear
programming formulation may be found in the [5].

2.3 ILLUSTRATIVE EXAMPLE
In this section, the task partitioning problem is illustrated by

presenting an example of designing a parking garage [1]. In order
to identify the tasks and their associated attributes, we apply the
'design matrix' specification technique that was described earlier. At
the end of the conceptual design process, 12 tasks (design
parameters) are identified. Each task affects a set of attributes (the
functional requirements associated with the task). At the detailed
design stage of the project, the identified tasks are distributed
among a number of design teams for detailed design. The various
tasks and attributes are given as follows:

The set of attributes associated with each task is described in
the attribute/task binary matrix presented in Table 1.

For example, the task 'develop high-strength concrete' is
associated with the following attributes: 'design for long-term
durability,' 'design for ease of maintenance,' 'resist gravity loads,' and
'resist lateral wind loads.' We assume that the maximum number
of attributes that can be assigned to a team is 6. This number may
be determined based on the previous performance of teams. For
simplicity, all communication cost coefficients of attributes are

identical and equal to 1 unit of time (i.e., it =1), and all preparation
cost coefficients of tasks are identical and equal to 1.5 units of time
(i.e., jT =1.5). Since the total number of attributes associated with

the various tasks is greater than the information processing capacity
of a team, we need to partition the set of tasks and attributes into
several teams.

Many partitions are possible. Two feasible solutions are
presented in Figure 5. Based on the formulation presented in [5],
the total cost of each solution is obtained as follows. In Solution
One, tasks are assigned 12 times, thus incurring a total preparation
cost of 18 units of time)125.1(× . We also observe that each of
the attributes B, C, G, I, and J is included in two teams, while
attribute K is included in three teams. Thus, the total
communication cost that is incurred is 7 units of time
(21 15 ×+×). Therefore, the total cost of Solution One is 25
units of time. Similar calculations show that the total cost of
Solution Two is 22 units of time.

 In the above two solutions, a task is assigned to only a single
team. However, other partitions may be considered where a task is
assigned to several teams. For example, in the third partition
presented in Figure 6, task 8 is assigned to two teams. We observe
that Solution Three is more effective than Solution One since the
total cost that is incurred is 24.5 units of time (compared to 25
units of time). Indeed, by assigning task 8 to teams 1 and 3, the
communication costs associated with attributes I and K are reduced
(saving 2 units of time); however, additional preparation costs
associated with task 8 are added. Since the reduction in
communication costs (2 units of time) is greater than the added
preparation cost of task 8 (1.5 units of time), assigning task 8 twice
is justified. This demonstrates the important tradeoff of reducing
communication costs versus adding preparation costs.

Tasks

Task 1: Red Granite Facade Task 7: Gate Control System

Task 2: Fire Stops Task 8: High-Strength Concrete

Task 3: Sprinkler System Task 9: Drainage System

Task 4: Artificial Lighting System Task 10: Post-Tensioned Flat Plat

Task 5: Reinforced Concrete Parapet Wall Task 11: Rigid Frame System

Task 6: Security Guard Task 12: Column Spacing

Attributes

Attribute A: Screen Parked Cars Attribute G: Restrict Vehicle Access

Attribute B: Confine Fire Attribute H: Design for Long-Term Durability

Attribute C: Suppress Fire Attribute I: Design for Ease of Maintenance

Attribute D: Provide Adequate Visibility Attribute J: Resist Gravity Loads

Attribute E: Provide Perimeter Barrier Attribute K: Resist Lateral Wind Loads

Attribute F: Personal Safety

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 6/11

5

6
4

1
2

FED
K G

Team
2

1
0

8 B
C

J H
Team
3

Task
s

Attributes

K

B C

I
A G

Team
1

21 3

7 1
1 98

J

Solution 3:
Communication Time = 5 units

= Attributes in more than 1 team

= Tasks in more than 1 team

Figure 6 A Partition that assigns task 8 to more than 1
team

3 AN EFFECTIVE SOLUTION PROCEDURE

In this section, we present a fast heuristic procedure4 for
solving the task partitioning problem, and evaluate its performance
on various data sets. The solution procedure is divided into two
phases. Phase One constructs a feasible partitioning of the tasks
into several teams, while Phase Two uses the feasible solution
created by Phase One as a starting point, and iteratively improves
the partition by moving to a better "neighbor" solution. These two
phases of the task partitioning procedure are described in more
detail below:
Task Partitioning Procedure

Phase One (constructing a feasible partition):
1. The construction of a new team is initiated by

identifying the unassigned task which is associated
with the smallest number of attributes.

2. Additional tasks are sequentially added to the same
team. A task can be added to the current team if the
total number of attributes included in the team after
adding the task is less than the team's capacity. If
several unassigned tasks can be added to the team,
then the task that adds the smallest number of
additional attributes is added first.

3. If no task can be added to the same team, and there
are tasks that have not yet been assigned to a team,
then a new team is initiated and Step 2 is repeated.
Otherwise, Phase One stops and Phase Two begins.

Phase Two (local improvements):
To improve the feasible solution that has been obtained in

Phase One, two possible operations are sequentially performed.
The first operation is related to transferring a single task (along with
its attributes) from one team to another, where the second

4 This is based on the generic partitioning algorithms in [7, 28].

Table 1 Attribute/Task Design Matrix for a parking garage design
Tasks

Attributes

1 2 3 4 5 6 7 8 9 10 11 12

A 1 0 0 0 0 0 0 0 0 0 0 0

B 0 1 0 0 0 0 0 1 0 1 0 0

C 0 0 1 0 0 0 0 1 0 1 0 0

D 0 0 0 1 0 0 0 0 0 0 0 0

E 0 0 0 0 1 0 0 0 0 0 0 0

F 0 0 0 1 1 1 0 0 0 0 0 0

G 0 0 0 0 1 1 1 0 0 0 0 0

H 0 0 0 0 0 0 0 1 0 0 0 0

I 0 0 0 0 0 0 0 1 1 0 0 0

J 0 0 0 0 0 0 0 1 0 1 0 1

K 0 0 0 0 0 0 0 1 0 0 1 1

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 7/11

21 3
7 11

9

B C
A G

Team 1

5
6

4

12

FED
G

Team 2

10 8 B
C

IK J
H

Team 3

Tasks Attributes
Step 3:

K

K

B C
A G

Team 1

5
6

4

12

FED
G

Team 2

10 8 B
C

IK
J
H

Team 3

Tasks Attributes

Step 2:

I

21 3
7

11
9

B
A G

Team 1

5
6

4

12

FED
G

Team 2

10 8 B
C

IK J
H

Team 3

Tasks Attribute
s

Step 4:

C

21

3

7

11
9

B
A

Team 1

5
6

4

12

FED
G

Team 2

10
8 B C

IK J
H

Team 3

Task
s

Attributes Step 5:

G
21

3

7

11
9

A

Team 1

5
6
4

12

FE D
G

Team 2

10 8
B

C

I K J
H

Team 3

Task
s

Attributes Step 6:
B

21 3
7 11 9K

B C

I
A G

Team 1

FE

J

D
K G

5
6
4

12
Team 2

108 B
C

IK
J
H

Team 3

Tasks Attributes Step 1:

21 3
7 119

Figure 7 Consecutive steps performed by Phase Two of the task
partitioning heuristic

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 8/11

operation is related to exchanging two tasks (along with their
attributes) that are included in two different teams. The executed
operation at each iteration is the one that results in the largest cost
saving. The local improvement operations are continued until no
feasible cost saving operation can be identified, in which case Phase
Two stops and returns the current partition.
 To illustrate the task partitioning procedure, we consider the
illustrative example presented in Section 2.3. Solution One in Figure
5 presents the three teams that have been constructed by Phase One

of the task partitioning procedure. Phase Two uses the feasible
partition returned by Phase One as a starting point, and iteratively
improves Solution One (shown in Figure 5) by either removing a
single task from its current team and including the task in another
team, or removing two tasks from different teams and including
each task in the team in which the other was included. Figure 7
shows the consecutive steps performed by Phase Two: removing
task 12 from the second team and assigning it to the third team,
removing task 9 from the first team and assigning it to the third

2

1

3

7

11
9

A
Team 1

5

6

4

12

F
ED

GTeam 2

10
8 B

C

IK
J

H
Team 3

Tasks Attributes

Architectural Design

Security System

Structural System

Fire Safety System

Figure 8 The optimal solution of the Parking Garage partitioning problem

Table 2 Characteristics of tested data
Data

set

Number of

tasks

Number of

attributes

Average number of

tasks

sharing the same

attribute

Number of

problems

tested

% of 1s in

matrix

1 16 53 7 25 13.3

2 26 52 4.73 25 14.1

3 34 162 5.92 25 12.1

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 9/11

team, removing task 11 from the first team and assigning it to the
third team, removing task 3 from the first team and assigning it to
the third team, and removing task 7 from the first team and
assigning it to the second team. At this point, since neither a
feasible cost saving move nor a feasible cost saving swap can be
identified, the task partitioning procedure stops and the final
partition solution is obtained as presented in Figure 8. We observe
that at the first step of Phase Two, a reduction in total cost (of one
unit of time) can also be obtained by swapping tasks 7 and 12.
However, moving task 12 from team 2 to team 3 is executed since a
larger reduction in total cost can be identified (2 units of time).
Interestingly, the solution presented in Figure 8 reflects the structure
of the parking garage system. Specifically, tasks that are assigned to
team 1 correspond to the 'architectural design', tasks that are
assigned to team 2 correspond to the 'security system', and tasks
that are assigned to team 3 correspond to the 'structural system' and
'fire safety system' of the parking garage. This also suggests the
possibility of utilizing the proposed model for defining the
product architecture.

To evaluate the performance of the task partitioning
procedure, two data sets are examined. The characteristics of the
underlying design matrix (e.g., percentage of 1s in the matrix) of
each data set have been randomly generated based on data in [28]
and is presented in Table 2. Many different task partitioning
problems have been generated for each data set by varying the
maximum number of attributes assigned to a team. To evaluate
the quality of the solutions found by the task partitioning
procedure, the relative error between the heuristic solutions and the
optimal solutions5 has been determined. The results show that the
average percentage error in the heuristic solutions is 6%, 7.2%, and
8.5% for data sets 1, 2, and 3, respectively. These results
demonstrate the effectiveness of the task partitioning procedure,
both in terms of CPU time (a few seconds) and solution accuracy.
The results also suggest that the proposed heuristic could be easily
applicable to large-scale product development processes.

4 CONCLUSION

4.1 SUMMARY
Empirical research in various industries has shown that task

partitioning affects problem-solving interdependence, and that by
properly managing task partitioning the efficiency and effectiveness
of the product development process may be improved [13, 17].
Ineffective product development processes may be attributed to the
failure of some companies to consider task problem-solving
interdependence as an important aspect of partitioning decisions
[17]. In such ineffective projects, partitioning is performed
according to economies of specialization (e.g., all electrical design
work is done by the same team), or according to traditional and
rigid problem-solving patterns.

In this paper, we embark on a new mathematical formulation
for task partitioning. The formulation is based on several key
elements. First, it has been suggested to specify a task in terms of
its associated attributes. Using this approach, task dependency is
interpreted as the attribute types shared by (affected by) the tasks.
As a useful specification technique, we have proposed to identify
attributes as the set of functional requirements that are affected by
the various tasks. Second, partitioning costs related to the
coordination of an attribute across teams, and the preparation for a

5 The optimal solution has been found by employing a branch-and-
bound enumeration algorithm.

task by a team have been incorporated into the model. Third, the
task partitioning problem has been formulated through integer
linear programming, which is stated as the distribution of tasks
and attributes among a number of teams so as to minimize the
total attribute communication and task preparation costs. Several
characteristics have been derived based on the mathematical
formulation. Since the task partitioning problem has been shown
to be inherently intractable in the general case (Theorem 2), a
heuristic algorithm that finds "good" solutions fast has been
developed. The heuristic algorithm is particularly useful for
partitioning large-scale product development projects.

4.2 FUTURE IMPLICATIONS
In the following, we delineate several ways by which the

proposed formulation can be extended in order to address
additional characteristics of task partitioning. In this paper, we
assume that the tasks and their related attributes are completely
specified prior to distributing the tasks among a number of design
teams (e.g., by specifying the tasks and attributes at the end of the
conceptual design stage or after establishing the product
architecture). However, task specifications and task dependencies
may change during project development due to new information
that is generated as product development unfolds. For example,
assume that a new requirement for an 'economic engine' arises
during the project development process. This new requirement may
lead to the generation of new tasks such as the development of
'electronic ignition' and 'fuel injection' systems. These two tasks, in
turn, may create new dependencies with existing tasks of the
project. Thus, new partitioning problems will be introduced with
the generation of new tasks and attributes. If the specification of
tasks and attributes is not relatively stable over time, then the
various tasks and attributes may be re-partitioned as the project
unfolds. To carry out the re-partitioning activity, we need to develop
techniques for identifying changes in task specification.

Tasks and attributes can be specified at a number of levels of
abstraction depending on the company's objectives. For example,
consider the task of designing a model of a family car, which is
associated with a set of aggregate attributes. This task can be further
broken down into an entire task network; e.g., to a level including
'develop the chassis,' 'develop the power plant,' 'develop the power
train,' and 'develop the body.' This level may be further broken
down; for instance, the 'develop the power plant' task, in turn, may
be broken down to a level of detail such as 'develop the engine,'
'develop the fuel system,' and 'develop the cooling system.' The
problem of task partitioning, thus, becomes hierarchical and
recursive. That is, a partition on one level of aggregation may affect
the partition on the next level. Consequently, an effective
partitioning on one level of aggregation ('local' partition) may not
necessarily render the entire partitioning ('global' partition) of the
system effective. We also observe that if tasks and attributes are
specified at a level of aggregation related to the schematic of the
underlying product ([15, 16]), then the formulation developed in
this paper can be utilized to form and define the product architecture.

The structure of the attribute/task design matrix affects the
efficiency and effectiveness of the underlying task partitioning
problem. Given two design matrices defined by the same set of task
and attribute types and same cost coefficients for the two problems,
we can determine their comparative merit by examining their
optimal task partitioning solutions. This approach of comparing
design matrices is different from the dichotomy considered by
Axiomatic Design, where design matrices are classified as
uncoupled, decoupled (or quasicoupled), and coupled [21] in
descending order of preference. Indeed, this difference is

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 10/11

exemplified in [5] where coupled design matrices may be more
efficient than decoupled design matrices when comparing their
corresponding optimal task partitioning solutions. The
mathematical criteria for comparing design matrices have yet to be
determined.

In this paper, task partitioning has been treated as a
manageable variable. Problem-solving interdependence can also be
managed by assuming a given partitioning, and by trying to reduce
the cost of communication and coordination across task
boundaries with the proper information technology tools. For
instance, Since the procurement of information technology tools
carries a certain cost, it would be desirable to extend the model
proposed in this paper so as to incorporate this cost.

To solve the task partitioning problem, tasks and attributes
need to be completely specified. In this paper, it is suggested to
apply the mapping between functional requirements in the
functional domain and design parameters in the physical domain as
a means for specifying tasks and their associated attributes. The use
of data mining and knowledge discovery in databases may also be
used for identifying dependencies between design tasks [6]. Having
specified tasks and attributes, the next step is to derive the task
preparation and attribute communication costs. In this paper, we
utilize 'units of time' as an objective measure of project
performance. In addition, for exposition purposes, a linear
communication cost modeling has been introduced. Other aspects
may be considered instead. First, a subjective project performance
measure can be developed; e.g., by ranking the attributes according
to their extent of criticality, and assigning values to the various
attribute communication costs by utilizing the Analytic Hierarchy
Process [22]. Second, a non-linear attribute communication cost
modeling may be incorporated; e.g., by employing a concave rather
than a linear function.

Another consideration is related to pre-imposed constraints.
Such constraints may require that specific tasks (or attributes) be
included in the same team, or that specific tasks (or attributes) be
included in particular teams.

The model developed in this paper can be incorporated within
a decision support system. In order to find out whether a potential
improvement in product development process efficiency and
effectiveness is expected, one may compare the optimal partitioning
as obtained by the model with respect to the partitioning that is
adopted in practice. A major discrepancy in the way tasks are
assigned to various teams may be an indicator for potential
improvement or the need to incorporate additional considerations.

Finally, we hope that the model developed in this paper will
lead to a better understanding of other partitioning related
problems, including decomposition, specialization, multifunctional
integration, team formation, the role of suppliers in the product
development process, and the effect of partitioning decisions on
the overall product design.

5 REFERENCES

1. Albano, L. D., Connor, J. J., and Suh, N. P., "A Framework
for Performance-Based Design," Research in Engineering Design,
Vol. 5, Number 2, pp. 105-118, 1993.

2. Alexander, C., Notes on the Synthesis of Form. Harvard University
Press, Cambridge, MA, 1964.

3. Allen, T. J., Managing the Flow of Technology. MIT Press,
Cambridge, MA, 1977.

4. Baldwin, C. Y. and Clark, K. B., "Modularity-in-Design: An
Analysis based on the Theory of Real Options," Technical
Report , Harvard University, 1994.

5. Braha, D., "Notes on Partitioning in Product Design and
Development," Working Paper, Center for Innovation in Product
Development, MIT, Cambridge, MA, 2001.

6. Braha, D. (Ed.), Data Mining in Design and Manufacturing.
Kluwer Academic Publishers, Boston, 2001.

7. Braha, D. and Maimon, O., A Mathematical Theory of Design:
Foundations, Algorithms, and Applications. Kluwer Academic
Press, Boston, 1998.

8. Clark, K. B., "The Interaction of Design Hierarchies and
Market Concepts in Technological Evolution," Research Policy,
Vol. 14, pp. 235-251, 1985.

9. Clark, K. B. and Fujimoto, T., Product Development Performance.
Harvard Business School Press, Boston, 1991.

10. Eppinger, S. D., Whitney, D. E., Smith, R. P., and Gebala, D.
A., "A Model-Based Method for Organizing Tasks in Product
Development," Research in Engineering Design, Vol. 6, pp. 1-13,
1994.

11. Hauser, J. R. and Clausing, D., "The House of Quality,"
Harvard Business Review, Vol. 88, pp. 68-72, 1988.

12. Henderson, R. M., The Failure of Established Firms in the
Face of Technical Change: A Study of Photolithographic
Alignment Equipment, Ph.D. Thesis, Harvard University, 1988.

13. Shirley, G. V., "Models for Managing the Redesign and
Manufacture of Product Sets," Journal of Manufacturing and
Operations Management, Vol. 3, pp. 85-104, 1990.

14. Simon, H. A., Administrative Behavior: A Study of Decision-
Making Processes in Administrative Organization. Free Press, New
York, 1976.

15. Sosa, M. E., Eppinger, S. D. and Rowles, C. M.,
"Understanding the Effects of Product Architecture on
Technical Communication in Product Development
Organizations," Working Paper Number 4130, MIT Sloan School
of Management, 2000.

16. Ulrich, K. T. and Eppinger, S. D. Product Design and
Development. McGraw-Hill, New York, 1995.

17. von Hippel, E., "Task Partitioning: An Innovation Process
Variable," Research Policy, Vol. 19, pp. 407-418, 1990.

18. Steward, D., "Planning and Managing the Design of Systems,"
in Proceedings of Portland International Conference on Management
of Engineering and Technology, Portland, Oregon, 1991.

19. Proceedings of the DSM Workshop at the Sloan School of
Management, Massachusetts Institute of Technology,
September, 2000.

20. Ulrich, K. T. and D. J. Ellison, "Holistic Customer
Requirements and the Design-Select Decision," Management
Science, Vol. 45, pp. 641-658, 1999.

21. Suh, N. P., The Principles of Design. Oxford University Press,
New York, 1990.

22. Saaty, T., The Analytic Hierarchy Process. McGraw-Hill, New
York, 1980.

Partitioning Tasks to Product Development Teams
Second International Conference on Axiomatic Design

Cambridge, MA – June 10&11, 2002

Copyright © 2002 by Institute for Axiomatic Design Page: 11/11

23. Koopman, P. J., "A Taxonomy of Decomposition Strategies
based on Structures, Behaviors, and Goals," Design Theory &
Methodology Conference, September 1995.

24. Pahl, G., and Beitz, W., Engineering Design. The Design
Council, London, 1984.

25. Hubka, V., and Eder, W. E., Theory of Technical Systems: A
Total Concept Theory for Engineering Design. Springer-Verlag,
New York, 1988.

26. Perry T. S., "E-mail at Work," IEEE Spectrum, October, pp. 24-
28, 1992.

27. Sproull, L., and Kiesler, S., Connections: New Ways of Working in
the Networked Organization. MIT Press, Cambridge, MA, 1991.

28. Daskin, M. S., Maimon, O., Shtub, A., and Braha, D.,
"Grouping Components in Printed Circuit Board Assembly
with Limited Component Staging Capacity and Single Card
Setup: Problem Characteristics and Solution Procedures,
International Journal of Production Research, Vol. 35, pp. 1617-
1638, 1997.

