
Proceedings of ICAD2006
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

ICAD-2006-29

Copyright © 2006 by ICAD2006 Page: 1/8

ABSTRACT
The design of software systems has become a well-established
discipline. Current software design methodologies and techniques
enhance the software development processes contributing to
improve software quality. However, creating a good software
design solution still depends greatly on developers’ expertise. It is
difficult to evaluate if a software design solution is good enough
without a theoretical foundation. The domain-free nature of the
Axiomatic Design Theory, its high-level design concepts, and its
theoretical foundation make the Axiomatic Design a powerful
tool to be applied together with object-oriented software
development methodologies and techniques, in order to help in
guarantying the quality of the design solution.

This work presents an approach for object-oriented software
design that intends to ensure the quality of the design solution
along the development process. The goal of this approach is to
propose and integrate methods that allow the use of the
Axiomatic Design together with the Unified Modeling Language
and the Unified Software Development Process.
Keywords: Axiomatic Design, Object-Oriented Software design,
Unified Modeling Language, Unified Software Development
Process

1 INTRODUCTION
As software became more and more important, new
methodologies and techniques for software development have
been continuously proposed and improved. The goal is making
software development a more efficient and reliable process. Each
new methodology or technique is an effort to make software
development easier for developers, in terms of dealing with
software complexity. The great challenge is to make bigger, better
and easier to maintain systems, within the schedule and, more
important, within limited budgets. To deal with these constraints,
software development is becoming more an engineering process
than an expertise based process.

Current software design notations, methodologies and
techniques such as the Unified Modeling Language (UML) [1]
and the Unified Software Development Process [2] are
remarkable improvements to software development. They

provide a unified notation for software design, better project
organization using well-defined stages, artifacts and activities, and
therefore, a better complexity management of the project.

However, according to Pressman, “even today, most software
design methodologies lack the depth, flexibility and quantitative
nature that are normally associated with more classical
engineering design disciplines” [3]. Contributions are needed to
help the designer to make design decision along the software
development process. There are many design decisions that
depends on the developers experience, especially choosing among
alternative design solutions. The absence of a precise decision
making criteria could easily make the process less reliable. Better
design decisions are essential to make a better design.

The quality of the software product is easier to verify than is
to achieve. According to Suh, “hardware, software, and systems
must be designed right to be controllable, reliable, manufacturable,
productive, and otherwise achieve their goals” [4]. A scientific
basis for design will help to improve design activities by providing
the designer with a theoretical foundation based on principles
that characterize a good design solutions. This work presents an
approach for software design that aims to guarantee the quality
of the software design itself, based on the Axiomatic Design
Theory [5]. The axiomatic design provides a theoretical
foundation, based on axioms, theorems and corollaries, for
helping the designer on deciding, which among many alternative
design solutions is the “best” choice.

2 AXIOMATIC DESIGN CONCEPTS AND OBJECT-
ORIENTED DESIGN CONCEPTS

Working in the mechanical engineering domain, at Massachusetts
Institute of Technology (MIT), N. P. Suh created the Axiomatic
Design Theory, in order to establish a scientific basis, with a
theoretical foundation, for design activities [5]. One of its goals is
to guarantee the quality of the design during the design process,
enhancing the product's quality. It provides principles and laws to
guide decision-making in design. The theory was established
finding out common elements and attributes, which characterizes
a good design. With those elements, the axiomatic theory
provides the ability to judge the quality of design. This judgment
ability helps the design process.

A USE CASE BASED OBJECT-ORIENTED SOFTWARE DESIGN

APPROACH USING THE AXIOMATIC DESIGN THEORY

Andrey Ricardo Pimentel
andreyrp@cpgei.cefetpr.br

The Federal Technological University of Paraná – UTFPR
Graduate School in Electrical Engineering and Industrial

Computer Science – CPGEI
Av. Sete de Setembro, 3165 - CEP 80230-901

Curitiba - Paraná - Brazil
Phone: +55 41 3310-4702 , Fax: +55 41 3310-4683

Paulo Cézar Stadzisz
stadzisz@lit.citec.cefetpr.br

The Federal Technological University of Paraná – UTFPR
Graduate School in Electrical Engineering and Industrial

Computer Science - CPGEI
Av. Sete de Setembro, 3165 - CEP 80230-901

Curitiba - Paraná - Brazil
Phone: +55 41 3310-4759 , Fax: +55 41 3310-4683

“A Use Case Based Object-Oriented Software Design Approach using the Axiomatic Design Theory”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 2/8

According to Suh [4], the design process involves four
different domains, as shown in Figure 1: the customer domain,
the functional domain, the physical domain and the process
domain [4].

1

1.1 1.2

1.1.1 1.1.2

1

1.1 1.2

1.1.1 1.1.2

1

1.1 1.2

1.1.1 1.1.2

1

1.1 1.2

1.1.1 1.1.2

Functional
Domain

Physical
Domain

Customer
Domain

Process
Domain

{CA} {FR} {DP} {PV}

Inception Elaboration Construction Transition

Figure 1 - The design domains and the Unified Process

phases
The customer domain represents the customer needs by

means of customer attributes (CA). The actual design activity is
performed by mapping between the functional requirements
(FRs) at the functional domain and the design parameters (DPs)
at the physical domain. The process domain represents the means
for realizing the product as process variables (PV).

The Unified Process cycle is composed of four phases:
inception, elaboration, construction, and transition [2]. There is a
close relation between the Unified Process phases and the
Axiomatic Design domains.

In the inception phase a business model that describes the
context of the system is made [2]. The business model created in
this phase represents the customer needs for the system. From
the point of view of the Axiomatic Design the customer needs
described by the business model is inserted into the customer
domain. Therefore, the business model resulting from the
inception phase is represented in the customer domain.

One of the main goals of the elaboration phase is to capture
most of the functional requirements (FRs) from the business
model and formulating them as use cases [2]. At the functional
domain of the Axiomatic Design the customer attributes are
specified in terms of functional requirements (FRs) [4].
Therefore use cases perform the same role as the functional
requirements (FRs) of the Axiomatic Design. This fact means
that the elaboration phase creates a use case model, which
represents the functional requirements (FRs) of the functional
domain.

According to Jacobson, Booch and Rumbaugh [2] the
construction phase is use case driven. In the construction phase,
the system’s classes, objects and their interaction are designed,
modeled, implemented, and tested in order to realize the system
use cases [2]. In the physical domain of the Axiomatic Design the
design parameters (DPs) are created to satisfy the functional
requirements (FRs) [4]. The system’s classes, objects and their
interaction can be considered design parameters (DPs) and are
represented in the physical domain of Axiomatic Design.

In the transition phase, the product release is completed [3].
Among the main artifacts of this phase there are: the executable
code itself, installations software, and architecture description.
The process domain represents the process variables, which are
the means to deliver the artifacts of the transition phase.

2.1 FUNCTIONAL REQUIREMENTS, DESIGN
PARAMETERS AND CONSTRAINTS

According to Suh [4], “Functional Requirements (FRs) are a
minimum set of independent requirements that characterizes the
functional needs of the product”. According to Jacobson, Booch
and Rumbaugh [2] use cases “offer a systematic and intuitive
means of capturing functional requirements (FRs) with a focus
on value added to the user”. A more detailed definition for use
cases is presented in [1]. Use cases represents, at the Unified
Process, the functional requirement (FR) concept from axiomatic
design.

In a previous work Suh and Do in [6] and [4] an object-
oriented software process was used and described. In this process,
called Axiomatic Design for Object-Oriented Software System
(ADo-oSS), a close relation between methods and attributes
(component of object) and design parameters (DPs) was
established. A use case based software lifecycle management
model that uses axiomatic approach was presented in [7]. In this
work was established a correspondence between use cases and
functional requirements (FRs).

Design parameters (DPs) are the key variables that
characterize the design that satisfies the specified functional
requirements (FRs) [4]. Collaboration is a UML concept that
represents the interaction between objects in order to realize a
use case [1]. Collaborations can be used to specify the realization
of a use case [1]. This means that collaborations can be used as
design parameters (DPs) at higher abstraction levels of the design.

According to Booch, Rumbaugh and Jacobson [1], “classes
are the most important building block of any object-oriented
software system”. A class describes a set of objects that share de
same attributes, operations, and relationships. The classes and
their instances (objects) that participate in collaborations to
realize the systems use cases are design parameters (DPs). Class
diagrams represent the structural model of the system classes.
Interaction diagrams and state diagrams, among others, compose
the dynamic model of the system classes [1].

Constraints are bounds on acceptable solutions. System
constraints are constraints imposed by the system in which the
design solution must function [5]. Functional requirements (FRs)
are defined in order to deal with constraints. Similar to constraints,
nonfunctional requirements usually need some kind of system
functionality to be satisfied. These particular functionalities or
infrastructure mechanisms can be modeled by use cases called
“infrastructure use cases” [8].

2.2 DESIGN AXIOMS AND THE DESIGN MATRIX
The Axiomatic Design Theory is based on 2 axioms, related
theorems and corollaries [5]. The Axiomatic theory states that if
the design satisfies these axioms, it can be considered a good
design. The design axioms are stated as follows:

Axiom 1: The Independence Axiom. “Maintain the
independence of the functional requirements
(FRs)” [5].

Axiom 2: The Information Axiom. “Minimize the
information content” [5].

The Independence Axiom states that the functional
requirements (FRs) must always be maintained independent of
one another by choosing appropriate design parameters (DPs).

“A Use Case Based Object-Oriented Software Design Approach using the Axiomatic Design Theory”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 3/8

During the design activity, the design parameters (DPs) are
conceived from the functional requirements (FRs). Each
functional requirement (FR) is associated with those design
parameters (DPs) that satisfies it. Two functional requirements
(FRs) are dependant if a design parameter (DP) that is used to
satisfy a functional requirement (FR), is also used to satisfy the
other functional requirement (FR).

In large information systems, several development teams
frequently split the development task. Frequently, these teams are
spread out across the world. In this context, it is very important
to reduce the dependence between the teams to minimum. The
Independence Axiom applied to the system functional
requirements (FRs) will helps to guarantee that a change in a
design parameter (DP) that satisfies a functional requirement
(FR) will not affect others functional requirements (FRs). For
these reason, if the design satisfies the Axiom 1 it will be easier to
coordinate the efforts of various development teams.

The association between each functional requirement (FR)
and its correspondent design parameters (DPs) is mapped in a
matrix called design matrix. The functional requirements (FRs)
are represented as design matrix lines and the design parameters
(DPs) as its columns. The relation between a functional
requirement (FR) and a design parameter (DP) is represented as a
non-zero element of the matrix, as shown in Figure 2. A design
matrix element equals to zero means that the corresponding
design parameter (DP) and functional requirement (FR) are not
related.

From the point of view of Object-Oriented software design,
the design matrix represents the relation between the use cases
and the collaboration of objects that realize them.

 A 11 0 0
0 A 22 0
0 0 A 33

A 11 A12 A13

A 21 A22 A23

A 31 A32 A33

A 11 0 0
A 21 A 22 0
A 31 A 32 A33

Uncoupled Design Decoupled Design Coupled Design
Figure 2 - Uncoupled, Decoupled and coupled designs

The independence of the functional requirements (FRs) can
be viewed and measured with the design matrix. According to
Suh in [5], there are three main types of design with respect to
the independence of the functional requirements (FRs), as shown
in the design matrices of Figure 2: uncoupled, decoupled, and
coupled design [5].

The uncoupled design means that each functional
requirement (FR) is satisfied by only one design parameter (DP).
This type of design satisfies the Independence Axiom and can be
considered a good design. The decoupled design matrix
represents an acceptable design solution, where there is an order
for satisfying the functional requirements (FRs). The coupled
design matrix represents a bad and unacceptable design, which
doesn’t satisfy the Independence Axiom. It is a matrix that cannot
be turned into a decoupled one by changing its lines.

Only the use of Object-Oriented techniques such as use
cases, classes and objects does not guarantee a good design. In
the example shown in figure 3, for a hypothetical sales system, the
use cases “Register Customer”, “Register product”, and “Register
invoice” are found. In order to realize these use cases are created

the following classes: an user interface class, called
“RegisterForm”, that is used for all registrations, a control class,
called “ControlRegister” that controls all registration processes,
and an entity class, called “Register” that stores in memory and
handle all the information for the system. This design is clearly a
coupled design.

R
eg

ist
er

Fo
rm

cl

as
s

C
on

tro
lR

eg
ist

er

cl
as

s

R
eg

ist
er

 c
la

ss

Register customer X X X
Register product X X X
Register invoice X X X

FRs

DPs

Figure 3. A Coupled design for an object-oriented

software
According to Jacobson, Booch and Rumbaugh [2] prioritize

use cases is one of the activities of the Unified Process. The goal
of this activity is to determine which use cases can be realized
(analyzed, designed, implemented and tested) in early interactions
and which can be realized later [2]. If an object-oriented software
design solution is a decoupled one, according to Suh, When a
design is decoupled “the independence of the functional
requirements (FRs) can be guaranteed if and only if the design
parameters (DPs) are determined in a proper sequence” [4].
Therefore, design matrix can guide the prioritization of the use
cases in order to keep the independence of the use cases.

3 FUNCTIONAL DECOMPOSITION FOR OBJECT-
ORIENTED SOFTWARE DESIGN

According to Jacobson, Booch and Rumbaugh, the Unified
Process is use case driven. This means, “the development process
follows a flow that derives from the use cases” [2]. Use cases are
identified and specified in terms of its flows of events. These
flows of events can be specified in terms of a sequence of
interactions between the system and the actors. These
interactions can be specified as a sequence of interaction between
objects using interactions diagrams. This refinement mechanism
is very close to the decomposition of the functional requirements
(FRs), used by Axiomatic Design. Based on this, a hierarchy for
functional decomposition can be established.

In the Axiomatic approach, the functional requirements
(FRs), not the system modules, are decomposed in a hierarchical
structure. Decomposing functional requirements (FRs) instead of
decomposing modules of the system enhances the analysis
activity allowing the identification of a greater level of details of
the system in early stages. This also permits validating the
identified functional requirements (FRs) in terms of the two
axioms to verify the quality of the design early in the design
process.

3.1 DECOMPOSITION LEVELS
In the proposed design approach the decomposition of
functional requirements (FRs) will be divided into four different
levels. At the first level, the use cases are defined. The flows of

“A Use Case Based Object-Oriented Software Design Approach using the Axiomatic Design Theory”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 4/8

events are obtained at the second level. The activities are the
result of the third level of the decomposition and in the fourth
level technical services are obtained. The number of
decompositions at each decomposition level is not defined, but it
must be enough to satisfy the design needs for that abstraction
level. A model of the proposed functional hierarchy is shown on
Figure 4.

...

... ...

Use
Cases

Activities

Technical
Services

Functional
Requirements
Related to Customer
Needs

Functional
Requirements
Related to the Design
Solution

Flows of
Events

1st level

2nd level

3rd level

4th level

Figure 4 - Levels of the Proposed Functional Hierarchy

The functional requirements (FRs) will be represented by
different UML concepts, according to their level at the functional
hierarchy. The functional requirements (FRs) will, also, be
classified according to the type of the required service. According
to the hierarchy level, functional requirements (FRs) will be
represented by: use cases, flows of events, activities, and technical
services. A use case can be defined as a complete utilization of
the system. A flow of events can be defined as a sequence of
interactions between the system and an actor [2] and is a part of a
use case functionality. An activity is one event of the flow of
events. A technical service can be defined as a service (i.e., a piece
of a functional requirement (FR)) expected from an object to
another. The technical service concept is very close to
responsibility of a class defined by Beck and Cunningham in [9]
where responsibility identifies a problem to be solved by an
object.

During the design process, a design parameter (DP) is
created to satisfy a given functional requirement (FR). At the first
level of decomposition the functional requirements (FRs) are
represented by use cases. In this level, the design parameters
(DPs) are represented by collaborations. At the second and third
levels, when the functional requirements (FRs) are represented by
flows of events and activities, the design parameters (DPs) are
also represented by collaborations. In the fourth level, where a
functional requirement (FR) is represented by a technical service,
the corresponding design parameter (DP) is represented by an
object of a class.

3.2 THE DECOMPOSITION PROCESS
The design activities for each level of decomposition are similar.
The functional requirements (FRs) are identified, and then the
design parameters (DPs) are created to satisfy those functional
requirements (FRs). The relations between them are represented
in the design matrix. Then, the design is evaluated in terms of
Axiom 1 and in terms of Axiom 2. If the design is good then a
new decomposition is started. If the design has reached all
information details needed by the current level then it goes the

next decomposition level. If the obtained design solution is not
good according to the two axioms then a new design solution
should be found either by creating a new set of design parameters
(DPs) or choosing a new set of functional requirements (FRs).

From the point of view of the Axiom 1, a design solution is
considered a bad or unacceptable solution when it is a coupled
one. In this case a new design solution should be created. The
best design solution is an uncoupled design. A decoupled design
can be considered a satisfactory one. However, the designer could
want to find a better design and for this, establish an alternative
solution. An alternative statement for the Independence Axiom is
“Of two feasible designs, the one with higher functional
independence is superior” [5]. Modifying the current design in a
few points can create an alternative solution. The evaluation of
which design solution is better can be done with the application
of Axiom 1 calculating the reangularity (see Equation 1) of the
possible solutions.

R
i 1, n 1
j 1 i , n

1 k 1

n

Aki Akj
2

k 1

n

Aki
2

k 1

n

Akj
2

1 2

(1)

The independence between functional requirements (FRs)
can be evaluated by a quantitative measure, called reangularity [5].
Reangularity measures the orthogonality between the design
parameters (DPs) and is calculated as shown in Equation 1
defined by Suh in [5]. The meaning of the reangularity metric is
better explained in [5]. This measure has the value 1 when the
design matrix is uncoupled, and 0 when coupled.

For Reangularity calculation purposes, an “X” in a cell of the
design matrix corresponds to a numeric value equals to 1. In this
way, an empty cell corresponds to a 0.

The Unified Process iterative and incremental and its
construction phase is said to be “use case driven”. The
construction phase is divided in iteration. The use cases of the
system are prioritized and ordered to establish which group of
use cases can be realized at each iteration of the construction
phase. In every iteration, a group of use cases that fulfill a
system’s functionality is analyzed, designed, implemented and
tested and then start another iteration with other group of use
cases [2].

The decomposition of the functional requirements (FRs) in
software design follows the basic principles of the Axiomatic
Design but has to be adapted to the needs of software design.
The decomposition process of the Axiomatic Design, illustrated
in Figure 5, creates the hierarchy fulfilling each level before
passing to the next one. A use case driven interactive and
incremental process could also, needs to decompose a branch of
hierarchy tree totally in depth before going to others branches.
This depth-first approach is possible if the designer maintains
each decomposition level design matrix coherent to the previous
level [10]. This means that if a relation between a functional
requirement (FR) and a design parameter (DP) appears and this
relation is not coherent with the previous levels, the designer
must review the design at those levels [10].

“A Use Case Based Object-Oriented Software Design Approach using the Axiomatic Design Theory”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 5/8

Decompose FRs into
next level FRS

Create DPs to
Satisfy the FRs

Apply the Axioms
1 and 2 to Validate

the Design

Go to the Next
Decomposition level

Create Another
Design Solution

Satisfy the Axioms

Do not Satisfy

Previous Decomposition
Level

Figure 5 - Proposed Process Activity Flow

3.3 FIRST LEVEL OF DECOMPOSITION
At the first level of decomposition, functional requirements (FRs)
represented by use cases will be mapped into design parameters
(DPs) represented by collaborations and this will be represented
in the design matrix. Each non-zero element of the design matrix
will represent that a collaboration is related to the use case. It will
be a full relation when the whole collaboration is associated to the
use case or it will be a partial relation when only part (roles) of
the collaboration is related.

 The design matrix represents the use cases in the lines and
the respective collaborations in the columns. The matrix cells
represent the relations between the use cases and the
collaborations. An “X” at the cell relating a given use case and a
collaboration, indicates that this collaboration realizes the use case.
It is also possible to represent partial dependencies in the design
matrix. The “X” at the cell relating a given use case and a
collaboration that realizes another use case, indicates that the
realization of the use case requires a method of a class used in
this collaboration. This indicates that these two use cases are
dependent one of another.

RS232

Flash Mem

FR 1.3 register
events

FR 1.1 visualize
operation data

FR 1.5 reset

FR 1.2 visualize
events

FR 1.4 change
configurations

User
{by Display and Keyboard}

{by DigInput}

{by Display and Keyboard}

{by Display and Keyboard}

Figure 6 - Use cases for the case study system

As an example, the design of an embedded system for
eSysTech eAT55’s evaluation board1 hardware is analyzed. The
use cases for this example are identified and shown in Figure 6.
The design matrix, shown in Figure 7 represents the relations

1 “eSysTech eAT55 Evaluation Board” is a trade mark of eSysTech

Embedded Systems Technologies. www.esystech.com.br

between the use cases and the collaborations for the system. The
“X” at the cell relating the use case “Register Events” and
“Collaboration Visualize Operation Data”, indicates that the
realization of the use case requires a method of a class used in
this collaboration. This means that the use case “Register Events”
depends on the realization of the use case “Visualize Operation
Data”. “Visualize Operation Data” realization is also used for the
use case “Register Events” realization. This fact means that
“Visualize Operation Data” has to be realized before “Register
Events”.

Figure 7 - First level Design Matrix for the system
The dependence between the use case “Register Events” and

the use case “Visualize Operation Data” can be minimized if an
infrastructure use case is identified and factored from the two
other use cases. Infrastructure use cases are not instantiated but
included or extended by other use cases. In this case it is possible
to identify the infrastructure use case “read serial port”. The
design matrix for this alternative solution is shown in Figure 8.

Figure 8 - First level Design Matrix for the alternative

solution
The two design solutions have to satisfy the Axiom 1. Both

of them are decoupled, which means they are satisfactory design
solutions. In order to help to decide which one is better, it is
possible to calculate the reangularity of the design matrices. The
reangularity is calculated using Equation 1. The value for
reangularity of the first design solution is 0,0114. The obtained
value for the alternative design solution is 0,1018. A greater value

“A Use Case Based Object-Oriented Software Design Approach using the Axiomatic Design Theory”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 6/8

for reangularity means a less coupled and better design, according
to Axiom 1. In terms of the Independence Axiom, the alternative
solution is possibly better than the first one. These two solutions
must also be evaluated in terms of the Information Axiom.

3.4 SECOND AND THIRD LEVELS OF DECOMPOSITION
At the second decomposition level, the functional requirements
(FRs) are represented by flow of events, elicited from the use
case specification. The flows of events describe a use case. The
flows of events is obtained through the description of the
interaction between an actor and the system as described in [2],
[8] and [14].

Once the functional requirements (FRs) were found, its
necessary to create the design parameters (DPs) to satisfy them.
At this decomposition level, the design parameters (DPs) will be
represented by collaborations between objects. For each flow of
events, one collaboration was created. The collaborations at this
level will represent a part of the corresponding collaboration of
the previous level.

At the third level of decomposition, the flows of events
were decomposed into activities. Each activity represents one
interaction between the actor and the system. As a design
parameter (DP), one collaboration between objects was created
for each activity (functional requirement (FR)).

3.5 FOURTH LEVEL OF DECOMPOSITION
The activities were decomposed into technical services at the
fourth level of decomposition. The design parameters (DPs) for
this level of decomposition are represented by objects (i.e.
instances of software classes). For each technical service, one
object was created and this relation was mapped into the design
matrix. The relations between each technical service and the
others objects that were used to satisfy it were mapped into the
matrix. Therefore each line of the matrix represents a technical
service and the objects that take part on the collaboration that
satisfies. The definition and the representation of the interactions
between objects is an important artifact in an Object-Oriented
software design. The representation of these interactions by the
UML is done using the sequence diagrams or the communication
diagrams [1].

At the fourth level of decomposition, the lines of the design
matrix are closely related to the sequence diagram construction.
Considering the design matrix shown in Figure 9, the technical
services, “FR 1.6.1.1.1 control read port”, “FR 1.6.1.1.2 read
port”, “FR 1.6.1.1.3 receive new operation data”, and “FR
1.6.1.1.4 receive new event” are a result of the decomposition of
the functional requirement (FR) (activity) “FR 1.6.1.1 read port”.
The objects (design parameters (DPs)) that satisfy those technical
services will be those that appear on the sequence diagram for the
activity “FR 1.6.1.1 read port” as shown in Figure 10.

 D
P

1.
6.

1.
1.

1
ob

je
ct

 fr
om

 c
la

ss

C
C

trl
R

ea
dS

er
ia

lP
or

t

D
P

1.
6.

1.
1.

2
ob

je
ct

 fr
om

 c
la

ss

C
In

tR
S2

32

D
P

1.
6.

1.
1.

3
ob

je
ct

 fr
om

 c
la

ss

C
O

pD
at

a

D
P

1.
6.

1.
1.

4
ob

je
ct

 fr
om

 c
la

ss

C
O

pE
ve

nt

FR 1.6.1.1.1 control read port X

FR 1.6.1.1.2 read port X X

FR 1.6.1.1.3 receive new operation data X X

FR 1.6.1.1.4 receive new event X X

DPs

FRs

Figure 9 – Partial 4th level design matrix

The design matrix is a useful tool for identifying and creating
the design parameters (DPs) and on guarantying the functional
independence of the functional requirements (FRs). Beside this
utility, the design matrix can help the designer at the task of
creating the UML diagrams such as sequence diagrams, which are
an important part of an Object-Oriented software design.

:RS 232

:CIntRs232 :CCtrlReadSerialPort :COpData

loop
[each 30ms]

:CCtrlRegEvents

alt
[type == "opData"]

[type == "event"]

String:= readPort()

read Port
verifyInput()

setOpData(data)

set event(event)

Figure 10 - Sequence diagram for “FR 1.6.1.1 read port”

4 INFORMATION CONTENT OF SOFTWARE
DESIGN

In order to validate the design quality according to the
information axiom, it is necessary to calculate the information
content for the design. Suh suggests that the information content
of software systems is related to the complexity of the software
[4]. Information content is defined as the inverse of the
probability that a design parameter (DP) would satisfy a related
functional requirement (FR). The more complex a software
system is, more difficult is to design and implement it with
success.

To calculate the information content for a software system
design it will be used metrics of software design complexity. The
chosen metrics should be easy to calculate and well established in
the software industry. Different software design concepts are
used to represent functional requirements (FRs) and design
parameters (DPs) at the different levels of the functional

“A Use Case Based Object-Oriented Software Design Approach using the Axiomatic Design Theory”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 7/8

hierarchy. For this reason, different software complexity metrics
will be used for each level of the hierarchy.

The most important design concept at the first level of
decomposition is use case. There is a software complexity metric
called use case points that is based on use case [11]. The use case
point measures the functional complexity of the actors and the
use cases of the system. The information content will be
calculated by the ratio of the use case points counting (ucpc) for
the system and the estimation for the use case points for the
system based on historical data of the organization (eucp). The
resulting equation is shown in Equation (2). This equation will be
used to calculate the information content at the first and the
second level of decomposition.

I log ucpc
eucp (2)

The information content of the third level of decomposition
can be calculated using function points [12]. In an equation,
shown in Equation (3) and similar to the Equation (2), the
information content will be calculated by the ratio of the function
points counting (fpc) for the system and the estimation for the
function points for the system based on historical data of the
organization (efp).

I log pfc
epf (3)

At the fourth level of decomposition, an object-oriented
complexity metrics should be used. The suite of metrics
proposed by Chindamber and Kemerer measures object-oriented
software characteristics [13]. The metrics are: weighted methods
per class (WMC), depth of the inheritance tree (DIT), number of
children (NOC), coupling between objects (CBO), response for a
class (RFC) and lack of cohesion of methods (LCOM) [13].

The information content for each metric is calculated with
the ratio between the metric value for the class and the estimation
for this value based on historical data of the organization. The
resulting equations are shown in Equations (4), (5), (6), (7), (8)
and (9).

IWMC log WMC
EWMC

(4)

I DIT log DIT
EDIT

(5)

I NOC log NOC
ENOC

(6)

I CBO log CBO
ECBO

(7)

I RFC log RFC
ERFC

(8)

I LCOM log LCOM
ELCOM

(9)

I classe IWMC I DIT I NOC ICBO IRFC I LCOM (10)

The total information content for a class is calculated by a
weighted sum, as shown in Equation (10). The weights will be
given by the designer experience.

As an example, the information content calculation for a
class of a given working hours registering system will be shown.
In Figure 11, two classes are presented: “CIntBD” and

“CActivity”. The information content for classes “CIntBD” and
“CActivity” is calculated by the sum of the information content
of each class. For each class, the information content is calculated
by the sum of the information content of each metric. The
obtained value for class “CIntBD” is ICIntBD = -0.530 and for class
“CActivity” is ICActivity = -0.585. A negative value for the
information content represents a decrease on the total
information content. This fact can indicate that these classes
could be a good solution. But, the solution can only be
considered good when the information content for all classes of
the system has been calculated.

Figure 11 - “CIntBD” and “CActivity” Classes

Use case points and function points are well-established
metrics of software functional complexity. The use case points
and the function points for a system can be counted with the help
of a CASE software tool. The Chindamber and Kemerer metrics
suite can be easily calculated during the design activity using the
class diagrams and the interaction diagrams and later by the
analysis of the code of the classes.

5 CONCLUSIONS
This work presented an approach for object-oriented software
design that intends to ensure the quality of the design solution
along the development process. The goal of this approach is to
propose and integrate methods that allow the use of the
Axiomatic Design together with the Unified Modeling Language
and the Unified Software Development Process.

This design approach has defined object-oriented software
design concepts and their correspondence with Axiomatic Design
concepts. Relationships between object-oriented software design
concepts such as use cases, collaborations, classes, operations, and
objects and functional requirements (FRs), design parameters
(DPs), and the zigzagging process were defined. Relationships
between the four domains of Axiomatic Design and the phases
of the Unified Software Development Process were established
in order to facilitate their integrated use.

A functional decomposition hierarchy, strongly based on the
use case concept, has been defined. The proposed approach
defines the main stages, activities, and artifacts and how they are
applied. It describes the application of the Independence and the
Information axioms. The proposed approach helps the design to
maintain a quality of the software design due to the application
of the Axioms 1 and 2.

“A Use Case Based Object-Oriented Software Design Approach using the Axiomatic Design Theory”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 8/8

The proposed approach is closely related to the utilization of
the system by an actor (human, software or hardware). For this
reason it helps to maintain a correspondence between the
functional requirements (FRs) from lowers levels and the systems
use cases. This correspondence with the use cases helps the
application of the use case driven, iterative and incremental life
cycle of the Unified Software Development Process.

A framework for information content calculation, specific
for object-oriented software design was described. This
framework uses object-oriented software complexity metrics from
literature, such as use case points and the CK metrics suite.

6 ACKNOWLEDGEMENTS
The present work was supported by the National Council for
Scientific and Technological Development (CNPq) – Brazil.

7 REFERENCES

[1] Booch, G., Rumbaugh, J., Jacobson, I., 2005, The Unified
Modeling Language User Guide, 2nd Edition, Addison Wesley

[2] Jacobson, I.; Booch, G.; Rumbaugh, J., 1998, The Unified
Software Development Process, Addison Wesley

[3] Pressman, R. S., 2005, Software Engineering: A practitioner’s
approach, 6th ed, McGraw-Hill

[4] Suh, N. P., 2000, Axiomatic Design: Advances and
Applications, Oxford University Press

[5] Suh, N. P., 1990, The Principles of Design, Oxford University
Press

[6] Suh, N. P.; Do, S., 2000, Axiomatic Design of Software
Systems. In: CIRP Annals. Vol. 49, n. 100, p. 95-100

[7] Do, S. H., 2004, Software Product Lifecycle Management
Using Axiomatic Approach. In: Proceedings of the 3rd
International conference on axiomatic design – ICAD2004

[8] Jacobson, I., Ng, P. W., 2004, Aspect-Oriented Software
Development with Use Cases. Addison Wesley

[9] Beck, K., Cunningham, W, 1989, A Laboratory for Teaching
Object-Oriented Thinking, in: Proceedings of the OOPSLA'89

[10] Tate, D., 1999, A Roadmap for decomposition: Activities,
Theories, and Tools for System Design. PhD thesis,
Department of Mechanical Engineering at Massachusetts Institute of
Technology

[11] Anda, B.; Dreiem, D.; Sjøberg, D.; Jørgensen, M., 2001,
Estimating Software Development Effort Based on Use
Cases - Experiences from Industry. In: UML 2001 - The
Unified Modeling Language. Modeling Languages, Concepts, and
Tools, 4th International Conference

[12] Albrecht, A. J., 1979, Measuring Application Development
Productivity. In: Proc. IBM Application Development Symposium,
pp 83-92

[13] Chindamber, S. R.; Kemerer, C. F., 1994, A Metrics Suite for
Object-Oriented Design. In: IEEE Transactions on Software
Engineering, vol. SE-20, no. 6

[14] Bittner, K., Spence, I., 2003, Use CaseModdeling, Addison
Wesley

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

