
Proceedings of ICAD2006
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

ICAD-2006-30

Copyright © 2006 by ICAD2006 Page: 1/6

ABSTRACT
Axiomatic Design methods were utilized in the architecture

design of Shop Floor Programming Software for Computer
Numerically Controlled (CNC) turning applications. Two very
different design alternatives were evaluated based on Axiomatic
Design. Although both alternatives complied well with the
Object Oriented Programming (OOP) principles, the Axiomatic
Design analysis helped choose the superior alternative. The
resulting software architecture turned out to be more modular,
easier to implement and easier to maintain.

Keywords: Axiomatic Design, Object Oriented Programming,
Shop Floor Programming

1 INTRODUCTION

Computer Numerically Controlled (CNC) Machine tools are
used for machining raw material stocks into finished shapes by
executing a series of instructions called a part program. The part
program commands a cutting tool through a pre-determined tool
path to cut and shape the material. Although many excellent
CAD/CAM software products are available in the market to
automatically generate the part programs (usually referred to as
G-Code), they tend to be too complicated and too time-
consuming to use by small machine shops which tend to
manufacture small lot sizes. Such machine shops prefer a sub-
category of CAM software called “Shop Floor Programming”
(SFP) software or sometimes called “Conversational
Programming Software”. The idea is literally to accomplish the
CNC programming tasks in a shop floor environment, not in the
engineering office. These software products accomplish much
the same thing as full-fledged CAD/CAM products but they tend
to be much easier-to-use and much faster to turn around fully-
functional part programs [1-2]. Their lack of sophisticated
features are well-compensated by their ability to turn out part
programs quickly and efficiently. They offer more user-friendly
user interfaces to operators, who have less training and less time
to invest into learning a new CAD/CAM software package [3].

They are especially indispensable for use with CNC lathes and
turning centers because turned parts are simpler than milled parts
and they don’t require the sophisticated features of full-fledged
CAD/CAM systems.

The author of this paper and his associates designed and
developed a Shop Floor Programming Software for CNC lathes.
This paper outlines the author’s experience and observations
especially during the design phase. The SFP software developed
here is add-on software to run on the CNC unit’s CPU, not a
separate stand-alone product. Since the CNC unit’s main
function is to execute parts programs in real time, it was
important not to compromise the real time performance of the
CNC by the demands of the shop floor program. Thus the SFP
software was required to have a small footprint (use only a small
amount of memory and hard disk space, be fast and efficient.)
The author and his associates chose the Object Oriented
Programming Technology (OOT) to make the software more
efficient, more modular and easier to maintain. The Axiomatic
Design principles were utilized to pick the best OOT framework
for the software architecture.

2 BASIC ARCHITECTURE DESIGN

The primary objective of Shop Floor Programming (SFP)

software is:

• to gather information from the user about the desired
shape of the part, and the raw stock from which the part
is to be made, and

• to generate a part program to convert a raw stock into a
finished shape.

The part program generated by the SFP software is then executed
by the CNC. The CNC machine tool moves the tools according
to the instructions contained in the part program and removes
material from the raw stock. When the execution of the part
program is completed, the raw stock has been transformed into
the finished part. This conversion process involves the

AXIOMATIC DESIGN OF

SHOP FLOOR PROGRAMMING SOFTWARE

Türker Oktay
toktay@adcole.com
Adcole Corporation

669 Forest Street
Marlborough, MA 01752 U.S.A.

“Axiomatic Design of Shop Floor Programming Software”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 2/6

application of several different types of machining (turning)
processes. Figure 1 shows a typical turned part and some of the
common turning operations such as Outside Diameter (OD)
turning, Inside Diameter (ID) turning (Boring), Face turning,
Drilling and Threading.

Figure 1 – A turned part and some of the common Turning
Operations.

Each turning process involves multiple passes of the cutting

tool on the raw stock. During each pass, only a small amount of
material is removed. For the OD turning process, these passes
are parallel to the cylindrical axis of symmetry. At each cutting
pass, as material is removed, the cutting tool gets closer to the
center of the part and the outer diameter is progressively reduced.
For the ID turning process, the cutting passes are still parallel to
the cylindrical axis of symmetry but cutting action starts from the
part center and progresses outward at each pass. Facing process
is perpendicular to the axis of symmetry. Drilling involves a drill
bit which drills into the part and retracts periodically to allow the
chips to fall, in order to prevent the chips from jamming the drill
bit. Threading operation involves the formation of a helical
thread on the inner or outer surface of the part. Threads are
again formed by multiple successive passes in order to achieve the
best thread quality. There are several other types of turning
processes, not mentioned in this list. Most turning processes
involve multiple passes of cuts where material is removed by a
small amount each time. The amount of each cut (depth of cut)
and the speed of the cutting tool (feed rate) are determined by
the material properties of the raw stock. SFP software is
expected to calculate the tool path for each successive pass in
each turning process, effect the tool changes between the turning
processes and convert the tool path into a part program which
can be understood by the CNC. Figure 2 shows the functional
requirements of SFP software in a data flow diagram format.

Examination of Figure 2 reveals two major functional

requirements (FRs): One is to receive and display user input, and
the other is to produce the tool path. Upon first glance,
maintaining the independence of these two FRs seems relatively
easy, provided an Object Oriented programming language such as
C++ is used to implement the software.

Figure 2 – SFP Software Data Flow Diagram

At the highest level of FR decomposition, the User Interface

module (DP1) and the Tool path Engine (DP2) can be kept
uncoupled from each other relatively easily.

Where

FR1=Receive user input
FR2=Generate tool path

And the DPs that satisfy the FRs are

 DP1=User interface
 DP2=Tool path engine

However, at this level of analysis of the design equation, it is
impossible to identify the software objects and their methods, and
translate those into actual implementation of the software code.
Further decomposition of the FRs through a zigzagging process
is necessary [4].

3 FUNCTIONAL REQUIREMENT (FR)
DECOMPOSITION

FR1, the capture of user input is accomplished via the User

interface of the software program. The most important user
interface element in modern operating systems (OS) is a window.
Therefore, it is fairly typical in modern OOT-based software
programs to have a software object called Window to represent
the interactions between the user and the software program. This
object often encapsulates such user-software interactions as
prompting the user to enter data, accepting and organizing the
data and after the data is processed by the software, displaying the
results on the screen. Modern software development systems
provide special software frameworks to implement the user
interface in a standard and methodical way. Therefore the
development of the user interface will be largely outside the
scope of this paper. However, FR2, the generation of tool path is
specific to our case, thus it needs to be decomposed into smaller
and more manageable requirements in order to develop the
detailed design of the SFP software.

Enter Raw Stock
Dimensions

Enter Finished
Part Dimensions

Select Tools
& Processes

Generate
Tool path

Verify
Tool path

Generate Part
Program

User Interface

Threading

OD
Turning

ID Turning

Drilling

Face
Turning

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

2

1

2

1
DP
DP

.
XO
OX

FR
FR

“Axiomatic Design of Shop Floor Programming Software”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 3/6

Object Oriented Programming encourages programmers to

think of software modules as independent entities (objects) which
contain data (attributes) and functions which operate on such
data (methods). The more self-contained the objects are, the
greater the amount of modularity that is achieved. Although it is
not absolutely required, it is always advantageous to choose the
software objects (classes) from among the objects we associate
with the physical world. In order to identify the classes, Braude
[5] recommends “listing every reasonable candidate class you can
think of, and then aggressively pairing down the list to a few
essential classes”. By just looking at Figure 1, the turned Part
emerges as the most reasonable and obvious software object for
us to choose. Turning operations such as OD Turning, ID
Turning, etc. can easily be imagined to represent the functions
(methods) of this Part object. This choice definitely has the
major advantage of maintaining a real life metaphor during the
development the software, which is extremely helpful to the
programmers during the implementation stage.

Figure 3 shows the data flow diagram between the two major
objects in this software architecture, the Window object and the
Part object. The Window object receives input from the user
and converts it into a structured form and delivers it to the Part
object. The Part object operates on that data by using its
methods such as ODTurn(), IDTurn, Drill(), etc. As a result, the
tool path is created; it is sent back to the Window object for a
graphical display and is eventually sent to the CNC to
manufacture new parts.

Figure 3 –Data flow diagram for the proposed software
objects

Based on this architecture design, we can now decompose
FR2 (generate tool path) into more detailed FRs, each FR
representing a separate turning process. The author and his team
actually began writing the software code for the tool path engine,
based on this software architecture but the presence of serious
couplings between the FRs became quickly obvious and
hampered the code development process. The axiomatic design
equation for this software architecture can be shown below:

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

25

24

23

22

21

25

24

23

22

21

DP
DP
DP
DP
DP

.

XOOOO
OXOOO
OOXOX
OOOXX
OOOOX

FR
FR
FR
FR
FR

FR21=Generate OD cutting tool path
FR22= Generate ID cutting tool path
FR23= Generate face cutting tool path
FR24= Generate drilling tool path
FR25= Generate threading tool path

DPs are

DP21= Part::ODTurn()
DP22= Part::IDTurn()
DP23= Part::FaceTurn()
DP24= Part::Drill()
DP25= Part::ThreadCut()

The Design Parameter (DP) vector here is populated by the

functions (methods) of the Part object. Xs show a coupling
between the FRs and the corresponding DPs, while Os show
instances where no coupling exists. Being members of the same
Part object and being very similar turning operations, there is a
great tendency for the ODTurn(), IDTurn(), and FaceTurn()
methods to be coupled. These turning operations are
fundamentally very similar. They all accomplish the removal of
material from the part surface by successive parallel cuts (passes)
using geometrically similar tools. It is natural that all these
methods would share some common code. However, being
function members of the same software object, there were no
access restrictions to data among these functions, therefore the
tendency for these functions to become intermingled (spaghetti-
like code) was difficult to avoid.

Another concern about this architecture design was a second

axiom concern. This design concentrated the entire tool path
generation functionality of the software in the Part object. As a
result, the information content was likely to be great, there would
be very little periodicity [6] which would have a tendency to
reduce the complexity of the design.

Both first axiom and second axiom concerns left us

unsatisfied with this design and led us to seek a better design, one
which was less coupled and simpler (lower information content).

4 AN UNCOUPLED DESIGN

When the reasons for coupling among the FRs of the
original architecture were examined, it was found that the original
choice for the software objects (DPs) did not lend itself to a
sufficiently modular design and the amount of modularity that
was achieved did not lead to functional independence [7]. In fact,
all of the functionality of the Tool path Engine was concentrated
within just one object, the Part object. Since OOT poses no
access restrictions among the function members of the same
object, there were many cross-references among the functions of
the Part class, especially among the 3 similar turning processes.

Figure 4 shows the cutting patterns of the 3 similar turning
processes. The Shop Floor Programming software needs to
calculate each individual cutting pass based on the geometry of

GUI
(Window
Object)

Part
Object

OD Turn

User Entry Structured Data
ID Turn
Face Turn
Drill
Thread Cut...

To CNC…

Tool path

“Axiomatic Design of Shop Floor Programming Software”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 4/6

the raw stock and the finished part, and the material dependent
cutting parameters such as the feed rate and the depth of cut.
Notice that the OD turning, ID Turning and Facing operations
are all similar to each other except for the direction of the cuts.
All three turning processes make parallel cuts to remove material
from the raw stock. This fact results in a sharing of the software
code among the 3 turning algorithms. Sharing of the code alone
is not necessarily an undesirable goal; however, the problem is,
the functions which perform these 3 turning algorithms are not
isolated from each other. As a result, interactions among the
groups of code are not controlled. Even though OOT is being
enforced [8], the choice for the software objects was made such
that the isolation of the software objects was insufficient. This
leads to coupling as well as increased complexity.

Figure 4 – Three different turning processes.

In order to achieve a better degree of software modularity, an
uncoupled architecture design alternative was proposed. In this
design, rather than defining an all-encompassing Part object
which has function members that perform the various turning
operations, separate individual Process objects were defined,
each one representing another turning operation such as
ODTurn, IDTurn, FaceTurn, Drilling, Threading, etc.
processes. These objects are completely independent from each
other and have no access to each other’s data or methods. This
ensures that no coupling is possible among the process-specific
components of the Tool path Engine.

Figure 5 shows the data flow diagram for this proposed
design. With this new architecture design, the turned part is no
longer the main junction point of the software. When a user
needs to generate a part program which only has an OD Turning
operation involved, the only Process object that needs to be
instantiated (created from a class blueprint) is the OD Turning
object. This design helps keep the software code for each turning
process separate, isolated and independent.

Figure 5 – Data Flow diagram among the objects in the
uncoupled design.

As the desired part shape dictates it, more process objects

are instantiated and added to a process queue. It is possible to
have multiple process objects of the same kind occurring in
multiple different places in the queue. The complete tool path can
be generated simply by executing this queue in the specified order.
The resulting design equation is fully uncoupled as shown below:

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

25

24

23

22

21

25

24

23

22

21

DP
DP
DP
DP
DP

.

XOOOO
OXOOO
OOXOO
OOOXO
OOOOX

FR
FR
FR
FR
FR

The new DPs are

DP21= ODTurn:Cut()
DP22=IDTurn::Cut()
DP23=FaceTurn::Cut()
DP24=Drilling::Cut
DP25=Threading::Cut()

The benefits of this architecture design are not solely limited

to the First design axiom considerations, however. There is also
an added benefit of reduced information content (Second axiom).
Note that the tool path for each turning process is generated by a
function simply called Cut(). Even though the software objects
to which these functions belong are separate, they all have a
function named with the same exact name and all the process
objects are derived from the same parent object simply called
Process via the inheritance mechanism of the C++ language
(Figure 6). This is called polymorphism in the OOT parlance and
it allows us to use the Cut() functions of any Process object in
the same exact way without any regard to the particulars of that
object. Basically each Process object is different in its internal
details but it presents a common interface to the outside world.
Taking advantage of OOT’s polymorphism mechanism reduces
complexity by introducing a form of periodicity to the software.

GUI
(Window
Object)

OD Turn Object
Cut

User Entry

OD Turn Data

ID Turn Data

Face Turn Data

Drilling Data

Threading Data

ID Turn Object

Face Turn Object

Cut

Cut

Drilling Object

Threading Object

Cut

Cut

Raw

Stock

Finished
Part

Process
Queue

Face
Cutting

OD Cutting

ID Cutting

“Axiomatic Design of Shop Floor Programming Software”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 5/6

This periodicity not only ensures encapsulation but also
facilitates the maintenance of the software and adding new
features to the software. For example, if a new type of turning
process is to be added, it can be derived from the same parent
Process class as all the others and contain the same kind of Cut()
function to generate the tool path as all the others. When adding
a new process, there is no need to have a precise knowledge of
any of the other turning processes. Axiomatic Design Theorem
Soft 1 [6] states that “Uncoupled software or hardware systems
can be operated without precise knowledge of the design
elements (i.e., modules) if the design is truly an uncoupled
design…” In the context of SFP software, this means a new
turning process can be added without precise knowledge of the
other turning processes.

Figure 6 – Parent-child relationship among the classes.

Figure 7 shows a screen shot of the SFP software which was

developed based on the chosen design. This screen displays the
tool path generated by the software in 2-dimensions.

Figure 7 – Tool paths generated by the Shop Floor
Programming software.

The software also has the capability to display a 3-D rendering of
the part. As material is removed from the stock surface, the view
of the part on the screen evolves step-by-step into the finished
shape in a 3-dimensionally realistic form. (Figure 8)

Figure 8 – 3-Dimensional simulation of the turning
processes.

In addition to the 5 primary turning operations, several other

turning processes were added to the SFP software over time:
Grooving, Relieving, Copy turning, cut-off process, etc. Due to
the modular design of the software, adding those processes was
very easy and it did not increase the complexity of the software.

5 CONCLUSIONS

Object Oriented Software Technology (OOT) is a powerful
method for developing a modular software design. This paper
examined the author’s experience with developing Shop Floor
Programming Software by using OOT. It turned out that OOT
alone did not ensure the selection of the best software
architecture. There were at least two OOT alternatives which
were equally valid in terms of their object-oriented structure but
they were not equally desirable as design candidates. The
advantage of the first proposed design was a much closer real life
metaphor between the real-life objects and the software objects,
namely the Part object. However, when this design was put to
the test of the design axioms, it did not fare so well.

The second design was built around Process objects. Child

objects such as OD Turning, ID Turning, etc. process objects
were created via the inheritance mechanism of OOT. Each of
these processes were different in their internal details but
exhibited a uniform behavior to the outside world. This could be
thought of as a form of periodicity which was lacking in the first
design. As a result, the second design was superior both from the
point of view of reduced coupling (1st axiom) and from the point
of view of simplicity (2nd axiom).

The second design was also much more modular. It was
quite easy to add a brand new turning process too the software
because it could simply be added as yet another child process.
Adding a new process didn’t involve any interactions with the
already-existing processes. As a result, maintaining the software
and adding new processes were much easier in this design than
the first proposed design.

Process
class

OD Turn
class

ID Turn
class

Face Turn
class

Drilling
class

Threading
class

Derived
(Child)
classes

Parent
class

“Axiomatic Design of Shop Floor Programming Software”
4th International Conference on Axiomatic Design

Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 6/6

6 REFERENCES

[1] Dickin, P. “Specialized CAM Takes Center Stage”, Desktop
Engineering, February 2006, Vol.11, No.6, pp. 24-28.

[2] Lewis, M. “Turning on CAM Technology”, American Machinist,
May 2002, Vol. 146, No.5, pp. 63-71.

[3] Evans, K., Polywka, J. and Gabrel, S. “Conversational
Programming Considered”, Tooling & Production, September
2001, pp. 70-73.

[4] Suh, N.P., Axiomatic Design: Advances and Applications,
Oxford University Press, 2001.

[5] Braude, E.J. , Software Engineering: An Object-Oriented
Perspective, John Wiley & Sons, Inc., 2001, pp. 205-210.

[6] Suh, N.P., Complexity : Theory and Applications, Oxford
University Press, 2005.

[7] Do, S.H. and Suh, N.P., “Object-Oriented Software Design
with Axiomatic Design”, Proceedings of the 1st International
Conference on Axiomatic Design, Cambridge, MA, June 21-23,
2000.

 [8] Clapis, P.J. and Hintersteiner, J.D., “Enhancing Object-
Oriented Software Development Through Axiomatic
Design” , Proceedings of the 1st International Conference on
Axiomatic Design, Cambridge, MA, June 21-23, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

