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Abstract 

Decreasing the complexity is the effective way to improve the reliability of manufacturing systems. However, the research on the reliability 
oriented complexity analysis for manufacturing system is rare. A reliable manufacturing system is a prerequisite to ensure the well-designed 
products be manufactured faultlessly. In this context, this paper proposes an axiomatic complexity analysis model of manufacturing system 
based on the fuzzy axiomatic domain mapping. Firstly, in terms of the uncertainty of domain mapping information, the fuzzy evaluation matrix 
for complexity which integrated the weights of experts is constructed based on triangular fuzzy numbers. Secondly, considering the influence 
of the design parameters (DPs) on the functional requirements (FRs), a quantitative computation approach to manufacturing system complexity 
is achieved by means of fuzzy evaluation matrix. Finally, a case study is presented to illustrate the validity of the proposed method. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of The 10th International Conference on Axiomatic Design. 
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1. Introduction 

Complexity continues to be one of the biggest challenges 
faced by the modern manufacturing today. A reliable 
manufacturing system is a prerequisite to ensure that well-
designed products can be manufactured in faultlessly [1]. 
With the dynamic development in customer demands and 
design techniques, the complexity of manufacturing systems 
is also increased accordingly in both physical and functional 
domains [2]. Decreasing complexity is an effective way to 
improve reliability of manufacturing systems [3,4]. Therefore, 
the complexity analysis of manufacturing systems has been 
extensively studied by many scholars. 

Researchers have studied the complexity of manufacturing 
systems from different perspectives. Taking into account that 
the layout of manufacturing systems determines its structural 
complexity, Elmaraghy et al. [5] proposed a model which is 
used to evaluate the structural complexity of manufacturing 
systems layout in the physical domain. Samy et al. [6] 
developed a new system granularity complexity index, which 
could sum up and normalize the complexity resulting from the 
system layout complexity and the equipment structural 
complexity. Bozarth et al. [7] analyzed the impact of supply 

chain complexity on the performance of manufacturing 
systems. Hu et al. [8] defined complexity as an entropy 
function and proposed a unified measure of complexity to 
assist in designing multi-stage assembly systems with robust 
performances. Shannon’s information theory/entropy 
approach provides a new way for complexity modeling and 
commonly used as the underlying basis for quantifying the 
complexity [9]. From the view of information theory, many 
studies have analyzed the complexity of manufacturing 
systems [10,11]. With all the documents mentioned above, not 
only is the meaning of complexity of manufacturing systems 
defined from multiple viewpoints, but also the complexity of 
manufacturing systems is described qualitatively and 
quantitatively by analyzing the relationships among 
equipment, components, and manufacturing systems. These 
studies make the research on the complexity analysis of 
manufacturing systems become scientific and systematic 
gradually. 

Suh [12] presented the Axiomatic design (AD) theory and 
defined complexity as the uncertainty in achieving the 
functional requirements that need to be met, which provides a 
new theoretical basis for complexity analysis of 
manufacturing systems from the viewpoint of quality design. 
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However, in real case problems, the relations between FRs 
and DPs may be unknown or uncertain, and the expert's 
descriptions may be fuzzy, which will lead to the uncertainty 
of the relations between FRs and DPs are difficult to represent 
rightly. Moreover, conventional qualitative evaluation of the 
design parameters constrains the designer to understand the 
complexity of manufacturing systems accurately. And then 
the reliability-oriented complexity analysis of manufacturing 
systems is prevented. 

As can be seen from the above analysis, complexity breeds 
couplings and defects, and coupling reduces reliability. 
Complexity analysis of manufacturing systems can provide 
feedback and promote the reliability evolution of the 
manufacturing system. Driven by these requirements, a novel 
approach to reliability-oriented complexity analysis of 
manufacturing systems based on fuzzy axiomatic domain 
mapping is proposed in this paper. 

2. The foundations of complexity modeling for 
manufacturing systems 

2.1. Fundamentals of axiomatic design 

The axiomatic design (AD) theory was proposed by Suh 
[13], which is typically used to guide designers to use all 
existing design tools to get a successful new design or to 
diagnose and improve an existing design. AD theory consists 
of four domains and two axioms. Four domains respectively 
refer to Customer Domain defined by Customer Attributes 
(CAs), Functional Domain for defining Functional 
Requirements (FRs) and constraints, Physical Domain for 
representing Design Parameters (DPs), and Process Domain 
for characterization of Process Variables (PVs). 

Axioms are widely accepted principles which are 
fundamental to assure the mapping quality of the four 
domains. They are stated as follows: 

Axiom 1 Independence axiom 
Maintain the independence of the FRs. 
Axiom 2 Information axiom 
Minimize the information content of the design scheme. 
Independence axiom, the first axiom of the AD principles, 

is about maintaining the independence between FRs. The 
mapping relationship between FRs and DPs can be expressed 
as: 
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where {FRs}is the collection of FR vectors, {DPs}are the 
collection of DP vectors, and [A] is the design matrix. 

Information axiom, the second axiom of the AD principles, 
is about minimizing the information content of the design. 
Since the information content is determined by probability. 
The axiom also shows that the design with the highest 
probability of success is the best [14]. The positive 
significance of the information axiom lies in that it has 
provided a criterion for evaluating the quality of design. If the 
probability of success for a given FR is pi, the information 
content can be denoted as:  
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If there is more than one FR, the information content can 
be calculated as: 
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2.2. Manufacturing systems complexity 

Manufacturing system complexity is usually divided into 
dynamic complexity and static complexity. The dynamic 
complexity is mainly related to real-time operation and 
material flow pattern, which emphasizes the complexity of the 
operating state of manufacturing systems [15]. However, in 
the design stage of manufacturing systems, its complexity is 
mainly characterized by the static complexity that determined 
by system structure and components. The focus of this paper 
is on the mapping relationship between the functional domain 
and the physical domain in the design process, namely the 
static complexity. 

The complexity of manufacturing systems increases with 
the increase of the coupling degree and uncertainty. A higher 
complex system often requires a larger amount of information 
to describe the system state. That is, an increasing complexity 
of a system, through increased coupling, variety, and 
uncertainty, will increase its information content [14]. 
Therefore, the complexity of manufacturing systems could be 
measured by the information content.  

2.3. Fuzzy axiomatic domain mapping theory 

The relation matrix which is used to characterize the 
correlation between functional requirements and design 
parameters consists of “0” and “1” . Those symbolize whether 
there are relations between FRs and DPs. However, in dealing 
with practical problems, there is always a potential or very 
small or indirect relationship or even an unknown relationship 
between an FR and a DP.  And the descriptions of these 
relations are often fuzzy, such as medium, higher, lower, very 
high and so on. In order to clearly express and make full use 
of these fuzzy information, fuzzy axiomatic domain mapping 
theory, a better solution to the problem of fuzzy information 
in evaluation and decision-making is proposed, which refers 
to adopt the triangular fuzzy number method into the “Zig” 
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mapping between adjacent domains in AD, and quantify the 
qualitative fuzzy information.  As shown in Fig.1. 
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Fig.1. An overview of fuzzy axiomatic domain mapping 

Fig.1 shows a schematic diagram of the fuzzy axiomatic 
domain mapping between functional domain and physical 
domain. The linguistic scale is used to describe the relations. 
As shown in Fig.2, seven linguistic terms, namely none, very 
low, low, medium, high, very high and excellent, are defined 
in a range from 0 to 1. Based on the language scale, the fuzzy 
relation between FRs and DPs can be defined on the interval 
ranging from 0 to 1. 
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Fig.2. Linguistic scale for relationships 

3. Fuzzy complexity modeling method of manufacturing 
systems 

3.1. Modeling framework 

In order to analyze the static complexity of manufacturing 
systems in the design stage, a method of reliability-oriented 
complexity analysis of manufacturing systems based on fuzzy 
axiomatic domain mapping is proposed in this paper. As 
shown in Fig.3. 
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Fig.3. Framework of fuzzy complexity modeling method 

As shown in the above Figure, before evaluating the 
complexity of manufacturing systems, five main steps are 
proposed. Firstly, based on the triangular fuzzy number and 
AD theory, the relationship between the functional domain 
(i.e., design objects) and the physical domain (i.e., 
components) is established, and the fuzzy evaluation matrix 
can be obtained. Owing to the difference in cognition and 

experience of each expert, the weight coefficient is introduced 
to evaluate the weight of each evaluation matrix, and then the 
comprehensive evaluation matrix can be obtained. After that, 
the coupling analysis is carried out based on the 
comprehensive evaluation matrix. Further, after obtaining the 
coupling degree, the uncertainty of the components should be 
evaluated in which the uncertainty is characterized by the 
probability of the component to work properly in the specified 
conditions and within the specified time (i.e., inherent 
reliability of components). Finally, by integrating the design 
coupling degree and the uncertainty of the functional 
requirement, the information content which is used to 
characterize the complexity of the functional requirement can 
be calculated, and the complexity index reflects the reliability 
state of the manufacturing system to a certain extent. 

3.2. Specific algorithm in modeling process 

The overview and steps of the fuzzy complexity modeling 
method are introduced in Section 3.1, and each step will be 
explained in detail below. 

Step 1. Construction of fuzzy evaluation matrix 
Firstly, define FRs in the functional domain and DPs in the 

physical domain in a module by zigzagging between domains, 
and determine the design matrix, as in Eq.6. Then, the 
evaluation of these relations can be implemented with the aid 
of experts, and the linguistic evaluation matrix iD can be 
gotten, as in Eq.7. 
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where e indicates the number of experts and eD is the 
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Based on the Eq.7, transform the linguistic valuation matrix 
into the fuzzy evaluation matrix 

eA  expressed by a triangular 

fuzzy number ( , , )ij ijl ijm ijha a a a , as in Eq.8. 
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Step 2. Construction of fuzzy comprehensive evaluation 
matrix 

The total number of experts is M. Assuming that the prior 

weight of each expert is 1
sc M

. Then, the consistency of an 

evaluation matrix with the remaining M-1 evaluation matrices 

can be expressed as
1,

1
( , )

1

M

e h
h h e

S A A
m

 based on the 

calculation method of similarity degree proposed by Chen and 
Liu [16].  

Therefore, the posterior weight can be computed by Eq.9. 
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The final correction weights of each expert can be obtained 
by the convex combination of the prior weight and the 
posterior weight, as in Eq.10.  

(1 )e e
c sc dc                       (10) 

where 0 1, which reflects the preference of the weights 
of the experts. 

Finally, the comprehensive evaluation matrix can be 
denoted as: 

1 2
1 2

M
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Step 3. Computation of fuzzy coupling degree  
Based on the fuzzy comprehensive matrix that was 

obtained by step 2, the fuzzy coupling degree can be 
calculated by Eq.12 and Eq.13 proposed by Cebi [17]. 
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where C and c indicate the index of coupling degree. is 
the value which shows the tolerable relation defined by 
experts. When the value of c  is 0, design is uncoupled. 
Otherwise, design is decoupled. Therefore, if the design is 
coupled, the coupling degree is ( )c c C , otherwise, c c . 

Therefore, the coupling degree with removing fuzziness of 
a set of FRs (k) can be denoted as:  

( 2 )
( )
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where , ,l m ha a a are the fuzzy numbers in c. 

Step 4. Computation of fuzzy information content  
According to the above analysis, two factors will affect the 

information content: the uncertainty of the component 
functions and the coupling degree of design. The coupling 
degree of design can be calculated by Eq.14, and the 

functional uncertainty of component is represented by 
inherent reliability. Assuming that the function of each 
component is a series relation in a set of FRs, that is, any 
component fails, the set of FRs cannot be satisfied. The 
inherent reliability of component (i) is iR .  

Therefore, based on the Eq.4, the fuzzy information 
content can be calculated below:   
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In the design process of manufacturing systems, the 
hierarchy levels from the top to the bottom in a functional 
domain and physical domain reflects the evolution of the 
design process from early stages to more detailed stages. 
Therefore, the complexity of the top layer can be expressed by 
the fuzzy information content of the bottom layer. Assuming 
that each function module is independent of each other, then 
the system complexity can be denoted as follows: 

2
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where K is the total number of functional modules. 

4. Case study 

In this part, reliability-oriented complexity analysis of a 
furniture manufacturing system is discussed. In the design 
stage, FRs required by the production requirements are 
defined in the functional domain, and the equipment and 
components which are needed to perform the production 
activities will be defined in the physical domain. The main 
design requirement for the new manufacturing system is to 
maximize the return on investment. To achieve these goals
three requirements are defined by management : 

 Increase production of 150% to 170%. 
 Reduce production cost of one piece product. 
 Improve the utilization rate of machines. 

 The partial Functional Requirements (FRs) and Design 
Parameters (DPs) are collected as the analysis object, and the 
results are shown as follows. 

Table 1. Partial FRs and DPs. 

Level FRs Description DPs Description 

Level 1 FR1 Manufacture 1000 
finished goods/day 
according to specs. 

DP1 A manufacturing 
system capable of 
producing 1000 
required goods. 

Level 2 FR11 Make x writing 
desks/day according 
to specs. 

DP11 Machines (cutting, 
edge banding, etc.) to 
make writing desk. 

Level 2 FR12 Make y 
cupboards/day 
according to specs. 

DP12 Machines (cutting, 
edge banding, etc.) to 
make cupboard. 

Level 3 FR111 Make x gables with 
drilling pattern 
GR1022 according 
to specs. 

DP111 Machines for 
processing gables with 
drill head. 

Level 3 FR112 Make x tops with DP112 Machines for 
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drilling pattern 
TR1022 according 
to specs. 

processing tops with 
drill head 

Level 3 FR113 Make 4x rails with 
dowels according to 
specs. 

DP113 Machines for 
processing rails with 
dowel 

     

Take the functional module (k), FRs and DPs of the level 3, 
as a computation example, then the design matrix between the 
functional domain (FR111~FR113) and the physical domain 
(DP111~DP113) is constructed as follows. 

111 11 12 13 111

112 21 22 23 112

113 31 32 33 113

FR A A A DP

FR A A A DP

FR A A A DP

 

Step 1. Construction of fuzzy evaluation matrix 
There are three experts to participate in the evaluation. 

Three linguistic valuation matrices are obtained as follows. 
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Based on the Fig.2, transform these linguistic valuation 
matrices into the fuzzy evaluation matrices expressed by 
fuzzy triangular number, the final results are shown below. 

1
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Step 2. Construction of fuzzy comprehensive evaluation 
matrix 

The number of experts is 3, so prior weight of each expert 

is 1

3sc
. 

Based on the Eq.9, the posterior weight of each expert can 
be obtained.  

1

0.333 0.333 0.339

0.346 0.333 0.333

0.333 0.346 0.333
dc

;

2

0.333 0.333 0.339

0.307 0.333 0.333
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dc

;

3

0.333 0.333 0.321
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0.354 0.307 0.333
dc

. 

Set the coefficient as 0.3 . The weight of each expert is 

calculated by Eq.10, and the results are shown as follows: 

1

0.333 0.333 0.337

0.342 0.333 0.333

0.333 0.342 0.333
c

; 

2

0.333 0.333 0.337

0.315 0.333 0.333

0.318 0.342 0.333
c

; 

3

0.333 0.333 0.325

0.342 0.333 0.333

0.348 0.315 0.333
c

. 

Finally, the comprehensive evaluation matrix can be 
obtained by Eq.11. 

(1,1,1) (0,0,0) (0,0.033,0.065)

(0.163,0.363,0.536) (1,1,1) (0,0,0)

0.032,0.130,0.229 (0.237,0.437,0.636) (1,1,1)

A

Step 3. Computation of fuzzy coupling degree  
According to the fuzzy comprehensive evaluation 

matrix A , the fuzzy coupling degree can be calculated.  Due 
to the triangular fuzzy number (0, 0.033, 0.065) is small 

enough to be ignored in this case, that is, 0C . Based on the 
Eq.13, the value of the parameter c can be calculated 
as (0.144,0.310,0.437)c c . Removing fuzziness and the 

coupling degree can be expressed as: 
( 2 )

( )
4

(0.144 2 0.31 0.437)

4
0.300
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Step 4. Computation of fuzzy information content  
Based on the test data for each component, the inherent 

reliability of each type of components is as follows: 

111 0.990R ; 112 0.942R ; 113 0.975R  

Based on the Eq.15, the fuzzy information content can be 
calculated as: 

3

2 11
1

1 ( ) log

0.054

k k i
i

I E c R
 

The computation result indicates the information content 
contained in this set of function design. Further, based on the 
information content, the designers can determine whether the 
set of functional requirements and the selection of design 
parameters meet the requirements. At the same time, it 
provides scientific guidance for reliability-oriented 
optimization design and verification. 

5. Conclusions 

In this paper, from the perspective of reliability-oriented 
complexity analysis of manufacturing systems in design stage, 
a novel approach to complexity analysis is proposed by 
introducing the triangular fuzzy number into AD. The 
approach focuses on the fuzziness and uncertainty of 
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information and helps to build fuzzy evaluation matrices. 
Further, quantify the coupling degree and uncertainty in the 
form of information content. The proposed approach provides 
a way for reliability-oriented complexity analysis of 
manufacturing systems. In addition, it also should be an 
effective tool to guide the designers to carry out the reliability 
optimization design and verification. 

However, this study is located at the design stage. When 
quantifying the uncertainty, only the inherent reliability of 
components is considered, and the dynamic change of 
manufacturing process is ignored. In order to improve the 
applicability, the study of dynamic complexity analysis of 
manufacturing systems which considering the actual operation 
is planned. 
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