
 Integrated Design and Process Technology, IDPT-2006
 Printed in the United States of America, June, 2006
 2006 Society for Design and Process Science

 1

ABSTRACT

Component Oriented Software Engineering
(COSE) tools generally deal with the composition of
components using their interfaces. They operate at the
level of component’s interface and connect components
by limited semantic guidance. These COSE approaches
suffer from lack of standards and systematic
documentation of component properties. A component
interface is not detailed enough to define all interface
items and relationships among them. However, Axiomatic
Design matrix (AD) includes interface items and
Functional Requirements (FRs). In this study, AD matrix
notation is utilized for satisfying FRs defining interface
items. Still some components cannot be integrated
because of design mismatches in their mutual attributes
and interactions. Therefore, a designer is left with two
options: a) use of mature domain notion by COSE or, b)
attempt to fix mismatches by wrappers or translators. In
this study, we investigated the use of mature domains
which provide interface standard using Object Model
Template (OMT). OMT is a well known simulation
standard used to solve interface problems among
components (federate and/or federates). In this paper, we
propose a method for rapid incremental prototyping of
simulations from existing mature domain components by
using Object Model Template (OMT), Component
Oriented Software Engineering Model (COSEML), and
Axiomatic Design Theory (ADT). We support our
prototyping method with a representative simulation
example.

INTRODUCTION

All industries attempt to reduce cost and time required to
develop increasingly sophisticated products without
sacrificing reliability. Many theories, algorithms,
heuristics, and technologies have been developed to
resolve complexity issues, such as Axiomatic Design
Theory (ADT), the Theory of Inventive Problem Solving
(TRIZ), Knowledge-based Engineering (KBE), and
Semantic Web Technology (SWT). After a review of

these topics, we will propose a method to create a
simulation from existing domain components by using
Object Model Template, Component Oriented Software
Engineering Model (COSEML), and Axiomatic Design
Theory (ADT)

ADT defining System Complexity

Developed at MIT, Axiomatic Design Theory
(ADT) is an approach to design at the conceptual phase
that proposes to resolve complexity issues early in the
design process by applying two fundamental axioms: (1)
Independence Axiom and (2) Information Axiom. Axiom
1 serves to produce a design matrix that can be uncoupled,
coupled, or decoupled. An uncoupled design matrix can
be represented as a matrix mapping each functional
requirement (FR) to only one design parameter (DP),
showing a one-to-one correspondence – considered an
ideal design in a perfect world. A coupled design can be
represented as a matrix mapping each FR to every single
DP, creating a full design matrix depicting a design where
each FR is influenced by every DP – considered the most
complex design. A decoupled design is a design that can
be represented as a triangular matrix, where every DP is
not needed to fulfill each FR – considered more realistic
since it is between both complexity extremes. Once
Axiom 1 is applied, Axiom 2 is applied to select a design
from the candidates produced, as represented with the
matrices, according to information content. After
determining the design range, defined as the range of
system operations needed for a particular FR as fulfilled
by a DP, and the system range, defined as the range for
which the system can operate successfully, the probability
for success for a that particular component can be
computed. By taking into consideration all the
components, the overall system complexity can be
computed by determining the total information content
(Suh, 2001).

Synergistic Innovation process with ADT and TRIZ

In order to reduce design complexity, innovative
approaches have been developed independently of ADT,

COMPONENT ORIENTED SIMULATION DEVELOPMENT WITH
AXIOMATIC DESIGN

Cengiz Togay, Ali H. Dogru

Computer Engineering Department,
Middle East Technical University,

Turkey.

Urcun J. Tanik, Gary J. Grimes,

Electrical and Computer

Engineering Department, University
of Alabama.

 2

such as the Theory of Inventive Problem Solving (TRIZ).
Developed in Russia, TRIZ attempts to resolve this
inherent tradeoff at the concept stage using a notion called
contradiction matrix (TRIZ Web Site, 2006). This matrix
serves to compare any given object’s “improving feature”
(the feature which the designer wishes to retain) with its
“worsening feature” (the feature the designer does not
wish to sacrifice). TRIZ has been combined with
Axiomatic Design Theory when a trade-off needs to be
resolved to decouple a complex matrix by introducing an
innovative design parameter (DP) or component to replace
the previous one, thereby reducing the overall information
content.

KBE as an approach to reducing system entropy and
complexity

Knowledge-based engineering has been used to
reduce design complexity by developing accessible rule-
bases, enabling engineers to leverage best practices by
storing heuristics in addition to quantitatively knowledge.
Entropy, the state of disorganization, can be reduced and
measured using innovative KBE techniques. For instance,
the quantity of rules and the number of hierarchies, along
with the number of connections between concepts can be
considered when calculating total entropy, giving a means
for automated calculation of entropy of a knowledge base.
Also, ontologies, or specifications of a concept, can be
provided by the domain expert and captured by the KBE
system in the form of rules to form a knowledge base that
can be built using an ontology framework. This type of
framework allows the functional specifications of a part
and its inter-relationships with other parts to be
systematically and thoroughly expanded over time, as
domain experts and intelligent agents populate the rule-
base. Rule categories can include (1) rules that
automatically formulate a part’s specifications (2) rules
that calculate engineering properties of a structure (3)
rules that enable configuration selection according to
limiting conditions (4) rules that optimize to improve on
parameters such as cost, speed, and quality (5) rules that
provide guidance on where and how to procure key
information from the Internet and distributed databases (6)
rules that provide analysis and second opinions (7) rules
that impose the latest formats and standards to a design (8)
rules that reveal design intent providing justification for
an engineering decision and enabling design flexibility (9)
rules that function as heuristics, providing fuzzy guidance
on undefined problems (Tanik et al., 2005).

Semantic Web Technology as a driving force for
complexity reduction

Semantic Web technology has the potential to
revolutionize the design process through automated
synthesis by enabling intelligent assimilation of these
ontologies developed globally by individuals and/or firms.
In other words, components can be “marked-up” in

languages such as DAML, JESSKB, or OWL and
uploaded to the Internet, fetched by intelligent agents
searching for certain components to complete designs
according to guiding rules provided by the designer. The
process of storing and accessing millions of clusters of
highly-structured, machine-processible, re-usable
knowledge units, in the form of ontologies marked up in a
semantic language, is a potential technology disruptor.

COSEML “Divide and Conquer” Approach

Another more commonly used approach to solving
complex problems is the “divide and conquer” approach,
which seeks to divide the problem into simpler parts,
solve them, and integrate into a viable solution (Simon,
1969; Tanik, et al., 1991). In order to cope with the
increasing complexity of a problem, Component Oriented
Software Engineering (COSE) such as COSEML (Dogru,
et al., March/April 2003) approaches represent a
development methodology for assembling systems from
reusable components by interface matching.

Using component technologies is a cost-effective way

of constructing systems. In traditional development,
system integration is often considered as a separate phase.
In COSEML component integration is the centerpiece of
the approach; thus, implementation has given way to
integration as the focus of system construction. Because
of this, integration is a key consideration in the decision
whether to acquire, reuse, or build the components. If a
reliable component is already developed, it can be used
where it is needed. Hence, additional time or funds is not
required for implementing this part of the solution.. But
some challenges still exist that can be generally attributed
to two factors (Jololian, et al., 2004):

• Multiple competing standards, as is the case with
the multitude of component models in existence
today (e.g. COM, CORBA, EJB, etc.).

• Lack of standards, as is often the case with
separately designed components.

Although there are various types of component
standards (e.g. COM, CORBA, EJB, etc.), these standards
just provide the environment for the execution of
components. Traditional components define the interface
of components independently due to lack of standards.
Because of these problems, COSE approaches assume that
there are some mature domains that include components
which are suitable for integration. Mature domains need to
have a standard naming process understood by all users.
For instance, though a Graphical User Interface (GUI)
designer may appear to have a good understanding of a
’combo box’, a semantic gap still exists causing a lack a
consensus. Therefore, more semantics included in the
component interface specification will aid in locating and
integration of components (Beugnard, et al., 1999;
Cicalese, et al., 1999; Dogru et al., March/April 2003).

 3

High Level Architecture and Object Model Template

An objective of this work is to investigate the
problems associated with COSE approaches. Both
simulation and COSE communities are conducting
research associated with the technology that will make it
possible to easily build complex systems by combining
existing components (Bartholet, et al., 2004; Togay, et al.,
2005a; Togay, et al., 2005b). Thus, we select High Level
Architecture (HLA) based applications (simulations) as a
practice area because of well-defined standards. HLA
defines the component interface (Object Model Template
(IEEE, 2000b) (OMT)) and communication standards
(Runtime Infrastructure (RTI)(IEEE, 2000a)). Simulation
based components (federates) use Object Model Template
(OMT) for offering the interface. This type of definition
is more powerful than the standard approach, because
every object of the interface must be defined based on
OMT standards. Although OMT provides some
standards, independently developed components can use
different object hierarchies and different names for the
same object. So we assume that there are lots of mature
domains. Each mature domain includes only one OMT
hierarchy (objects, interactions, complex data types, etc.)
and one or more components which use this OMT.
Compatible components can be found using OMT (Togay
et al., 2005b; Togay et al., 2005a). In (Togay et al.,
2005b; Togay et al., 2005a), we assumed that some
components have been developed before; this is a property
of mature domains. Possibly some of the components are
not developed; therefore, we need to define (design) the
missing part of the application after specifying existing
components. This design must be compatible with the
components in the solution space. Thus, we need a design
tool which will produce designs based on OMT classes.
We selected Axiomatic Design Theory (ADT) (Suh, 2001)
for this aim to create good design at conceptual level.
Axiomatic design introduces an approach to solve the
problem in a hierarchical way. Designer starts with the
more general functional requirements (FRs) of a problem
and systematically converges to more detailed
requirement specifications. But at the same time, FRs
define the abstract needs of a design, which is specified
more precisely by real world implementations (Design
Parameters (DPs)) to fulfill the corresponding FR (i.e.
DPs in software, such as program code, algorithms
satisfying FRs with abstract goals x, y, and z,
respectively.). There are some examples of software
design methodologies based on axiomatic design that are
developed for Structured Analysis and Development
Technique (SADT) (Do, et al., 1996), Object Oriented
environments (Clapis, et al., 2000; Suh, 2001; Do, et al.,
June 2000; Do, et al., October 1999) and requirements
management. But, so far there is no example or technique
for component- based or oriented development with
axiomatic design. Axiomatic design provides the

documentation which is defined as a significant problem
in (Garlan, et al., 1995). For instance, when components
are designed using axiomatic design, all relations among
attributes and interactions in case of FRs are documented.
If we design the simulation using axiomatic design, then
artifacts define all the relations among attributes and
interactions with FRs.

OMT can be helpful to the developer to define the
DPs in axiomatic design. At the end of the design, leaf-
level DPs can be used to reach components which use or
satisfy the DPs (OMT objects). Also in terms of
component development, these DPs form the interface of
components. Components can be designed using only
ADT, but we will need a component representation. We
use the COSEML tool to represent components and
relations among them. Leaf level DPs of components are
mapped to COSEML as component interface
representations, automatically. COSEML includes a
markup language. Therefore automatic operations can be
done by different tools using markup documentation of
component and/or application.

Method and Example

Mature Domain (MD) is an actionable domain
knowledge that supports integration of suitable
components (i.e SOM files, and OMT classes of domain
and a design matrix (DM) of components). A MD
expands in time with newly developed components.
Components in a MD provide the specification to develop
new ones. Therefore, compatible components that can be
developed separately from the application depend on
mature domain requirements. Also they can be developed
while designing the application.

We selected the embedded cruise-control system to
demonstrate our method. Cruise Control System controls
the speed of a vehicle at a desired value as long as the
speed remains uninterrupted by the pressing of the break
pedal. If the system is switched on, pressing the “set”
switch, it immediately begins maintaining the current
speed unless it reacts to the actuating of switches in order
to increase or decrease speed, or actuating of the
accelerator pedal (Tanik et al., 1991).

Component Development

As mention above, components can be developed
using a MD. We assume that there is only one component
developed and located in the MD. In Figure 1, all
component representations are demonstrated except OMT
tables. OMT tables include more detailed information
about components such as attribute types, data types etc.
Developers are able to implement new component(s)
based on these representations. For instance, Figure 1.a
shows that Current Speed Calculator component that
requires the Clock-Tick from outside. FRs of Clock-Tick
in Figure 1.c may include more information about why the
component needs this particular object. Actually, we can

 4

see that Clock-Tick is used for calculating current speed
in the same figure. Therefore, a developer can implement
a Clock component to satisfy the Clock-Tick requirement
of Current Speed Calculator component. When Clock
component (see Figure 2) is developed, it is also added to
the MD.

Application Development

Another process for component development is to
create components while application is being developed.
We assume that eight components (Gas Tank, Throttle,
Engine, Wheel, Current Speed Calculator, Clock, Throttle
Setting Calculator, and Desired Speed Calculator) of
Cruise Control domain are developed before and are
present in the MD. In this paper, we only provide selected
components and their respective representations due to
page limitations, but COSEML representation of mature
domain is given in Figure 3.

Application developer can see all components and
their relations in the MD. Therefore, a developer can
select components from a MD for simulation. MD may or
may not be executable. In this example, MD components
are executable because all components are satisfied by the
publish-subscribe mechanism. Each object in components
have at least one publisher and zero or more subscribers.
Objects of Gas Tank are listed in Table 1. It shows that
Gas Tank is ready to execute with supporter components.
However, semantically some objects must be satisfied
with a subscriber component such as Tank.Fill. This
object must be called at the beginning of the application
otherwise the system will not work because there is no gas
in the tank. Also, some component must call (subscribe)
the Brake, Accelerator, Resume interactions. Therefore,
an application specific component must be developed.
This component has all specification, interaction and
attribute names, FRs, data types etc. to develop new
emergent component(s). Customer may be concerned to
see visually current speed and desired speed values. User
Interface Emergent component attribute and interactions
are depicted in Figure 4 and visual representation is given
in Figure 5.

CONCLUSION

In this paper, we proposed a method to help COSE
approaches using AD, COSEML, and OMT. AD connects
the FRs with DPs (attributes and interactions) and
represents a design matrix. COSEML is used to show
abstract designs to support human understanding.
Interface items of components in COSEML are directly
related with design matrix of a component. OMT
provides the interface standard for components.

ACKNOWLEDGEMENT

We sincerely appreciate intellectually stimulating
discussions with our colleagues in Component Based

Systems (CBS) research group, especially Ozgur Aktunc,
Gayathri Sundar, and Rajani Sadasivam. We also
appreciate useful comments provided by Dr. Murat M.
Tanik.

REFERENCES

TRIZ Web Site, 2006, 21 February, from
www.triz40.com.

Bartholet, R. G., Brogan, D. C., Reynolds, P. F. and
Carnahan, J. C., 2004, "In Search of the
Philosopher's Stone: Simulation Composability
Versus Component-Based Software Design,"
Proceedings of the 2004 Fall Simulation
Interoperability Workshop, Orlando,FL.

Beugnard, A., Jezequel, J.-M., Plouzeau, N. and Watkins,
D., 1999, "Making Components Contract
Aware," IEEE Computer, 32, 38-45.

Cicalese, C. D. T. and Rotenstreich, S., 1999, "Behavioral
Specification of Distributed Software Component
Interfaces," IEEE Computer, 32, 46-53.

Clapis, P. J. and Hintersteiner, J. D., 2000, "Enhancing
Object Oriented Software Development Through
Axiomatic Design," First International
Conference on Axiomatic Design, Cambridge,
MA.

Do, S. H. and Park, G. J., 1996, "Application of Design
Axioms for Glass-Bulb Design and Software
Development for Design Automation," Third
CIRP Workshop on Design and Implementation
of Intelligent Manufacturing, 119-126.

Do, S. H. and Suh, N. P., June 2000, "Object Oriented
Software Design with Axiomatic Design,"
Proceedings of ICAD2000 First International
Conference on Axiomatic Design.

Do, S. H. and Suh, N. P., October 1999, "Systematic OO
Programming with Axiomatic Design", IEEE
Computer, 32, 121-124.

Dogru, A. H. and Tanik, M. M., March/April 2003, "A
Process Model for Component-Oriented
Software Engineering", IEEE Software, 20, 34-
41.

Garlan, D., Allen, R. and Ockerbloom, J., 1995,
"Architectural Mismatch or Why it's hard to
build systems out of existing parts," Proceedings
of the 17th International Conference on Software
Engineering, 179-185.

IEEE, 2000a. "IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture
(HLA)- Federate Interface Specification,"
Institute of Electrical and Electronics
Engineering, Inc., Standard-1516.1-2000, New
York.

http://www.triz40.com

 5

IEEE, 2000b. "IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture
(HLA)-Object Model Template (OMT)
Specification," Institute of Electrical and
Electronics Engineering, Standard-1516.2-2000,
New York.

Jololian, L. K., Ngatchou, J. C. and Seker, R., 2004, "A
Component Integration Meta-Framework using
Smart Adapters," IEEE Proceedings of the 2004
International Symposium on Information and
Communication Technologies ACM, 90, 128-
133.

Simon, H. A., 1969, "The Science of the Artificial," The
MIT Press.

Suh, N. P., 2001, "Axiomatic Design: Advantages and
Applications," Oxford University Press.

Tanik, M. M. and Chan, E. S., 1991, "Fundamentals of
Computing for Software Engineers," Van
Nostrand Reinhold.

Tanik, U. J., Grimes, G. J., Varadraj Gurupur and
Sherman, C. J., 2005, "An Intelligent Design
Framework Proposal Leveraging Axiomatic
Design and the Semantic Web," Journal of
Integrated Design and Process Science, 9, 41-53.

Togay, C. and Dogru, A. H., 2005a. "A Framework for
Component Integration Using Axiomatic Design
and Object Model Template for Simulation
Applications," Department of Electrical and
Computer Engineering University of Alabama,
Technical Report- 2005-11-ECE-001,
Birmingham, Alabama.

Togay, C. and Dogru, A. H., 2005b, "Infrastructure
Design for HLA Based Automated Federation
Development," The Eighth World Conference on
Integrated Design and Process Technology, 698-
704.

FIGURES AND TABLES

 6

Figure 1: Current Speed Calculator component representations: a) Publish-Subscribe Policy of

component objects, b) COSEML Component representation c) Design Matrix of component

Figure 2: Clock component representations: a) Publish-Subscribe Policy of component object, b)

COSEML Component representation c) Design Matrix of component

 7

Figure 3: All components in Cruise Control Domain with COSEML Representation

Figure 4: User Interface Emergent Component

 8

Figure 5: Cruise Control Simulation User Interface Component (Federate)

Table 1: Gas Tank Publish-Subscribe Check Table

Object Name Component Name Publish-Subscribe Result

Gas Tank P
Tank.Gas

Throttle S

OK

Tank.Fill Gas Tank P OK

Gas Tank P
Tank.Decrease

Throttle S

OK

